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Abstract 
 
Our objective was to develop a Fuzzy logic (FL) based industrial two-shaft gas turbine gas path diagnostic method based on gas path 

measurement deviations. Unlike most of the available FL based diagnostic techniques, the proposed method focused on a quantitative 
analysis of both single and multiple component faults. The data required to demonstrate and verify the method was generated from a 
simulation program, tuned to represent a GE LM2500 engine running at an existing oil & gas plant, taking into account the two most 
common engine degradation causes, fouling and erosion. Gaussian noise is superimposed into the data to account measurement uncer-
tainty. Finally, the fault isolation and quantification effectiveness of the proposed method was tested for single, double and triple compo-
nent fault scenarios. The test results show that the implanted single, double and triple component fault case patterns are isolated with an 
average success rate of 96 %, 92 % and 89 % and quantified with an average accuracy of 83 %, 80 % and 78.5 %, respectively.  
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1. Introduction 

Failure or performance deterioration of a gas turbine engine 
strongly affects its operation. Gas turbine performance highly 
relies on the performance of the main gas path components, 
namely compressor and turbine [1, 2]. The gas path compo-
nents’ performance can be degraded due to different faults 
such as fouling, erosion, blade tip clearance, corrosion, and 
foreign/domestic object damage [3]. To avoid these faults and 
ensure a high level reliability and availability, an effective 
diagnostic system that can detect, isolate, and identify devel-
oping engine faults, at the earliest possible, is very critical. 
This will help the operators to take the appropriate mainte-
nance action at the right time so that the engine can restore its 
best performance. Degradation can be manifested by changes 
in gas path parameters (pressure, temperature, fuel flow rate, 
shaft speed, etc.) from the established baseline. The deteriora-
tion extent of the engine gas path components is expressed in 
terms of efficiency (η) and flow capacity (Γ) deviations. For 
example, fouling results in a decrease in efficiency and flow 
capacity, while turbine erosion leads to a decrease in effi-
ciency and an increase in flow capacity [4, 5]. 

In the field of gas path diagnostics, an accurate assessment 
of the actual health status of the engine is challenged by the 
small number of measurements available, measurement noise 

and sensor biases, and the presence of multiple faults at the 
same time. Concerning these issues, previously, several stud-
ies have been conducted and many diagnostic techniques with 
improved accuracy devised [6-8]. 

To confront the first problem, Ganguli [9] developed an FL 
based single fault isolation system for a jet engine. He exam-
ined the diagnostic effectiveness of different sets of measure-
ments ranging from four to eight. The proposed method iso-
lated 95 % of the fault signatures correctly using only four 
parameters. As the number of sensors increased, the accuracy 
increased and reached 100 % with eight sensors, even at high 
measurement noises. On another study, Ogaji et al. [10] dis-
cussed the possible optimal parameter combinations that are 
sufficient to perform both single and multiple fault diagnostics. 
A combination of GPA and measurement subset concept has 
also been applied to select appropriate instrumentation sets for 
multiple gas path component fault diagnostics [11]. Recently, 
the potential of Genetic algorithm (GA) on measurement se-
lection was evaluated by Chen et al. [12]. 

A single fault detection and isolation effectiveness of Kal-
man filter (KF), ANN and hybrid ANN was investigated by 
Volponi et al. [13]. Although three of them were able to iso-
late more than 90 % of the fault signatures, the result from the 
hybrid system was the best. Ganguli [14] suggested trend shift 
detection mechanism using median filters and fuzzy logic. 
The measurement outliers were removed and noises were 
reduced before the fault detection process. However, it was 
limited to single component fault cases only. Similarly, Ogaji 
et al. [15] devised a fuzzy logic based fault identification tech-
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nique for a military turbofan engine application that can esti-
mate single component faults with an accuracy of 92.5 %. 
Kyriazis et al. [16] proposed an FL based gas turbine com-
pressor fault diagnostic system using performance data. Its 
diagnostics effectiveness was compared with pattern recogni-
tion and Probabilistic neural network (PNN) methods. They 
reported that the FL based method showed as good generality 
and effectiveness in fault diagnostics as the other two methods. 
The fault detection and identification performance of FLs in 
full-load and part-load engine operating condition was tested 
by Mohammadi and Montazeri-Gh [17]. The robustness to-
wards measurement noise has been undertaken. Tsoutsanis et 
al. [18] proposed a component map tuning based performance 
diagnostics method for a GE's LM2500+ engine compressor. 
In this work a component curve fitting scheme and a gas tur-
bine dynamic model are integrated.  

Nevertheless, in practice, it is likely to have one or more af-
fected components at the same time. Methods that are good in 
single component fault analysis would produce wrong diag-
nostic result, whenever multiple faults exist simultaneously. 
This may be due to the possible existence of similar patterns 
or fault indicators of different fault types [19]. In this regard, 
many different attempts were performed to develop methods 
that can deal with multiple fault diagnostics problems. For 
example, authors in Refs. [20-29] devised ANNs based meth-
ods and some other authors in Refs. [30-34] developed GPA 
based methods. The ANN based techniques can deal with 
measurement uncertainties and limited numbers of sensors. 
Whereas, the GPA based methods are suitable for multiple 
fault analysis although they are not coping with measurement 
uncertainties and require a large number of sensors [7]. Unlike 
the other Artificial intelligence (AI) methods, there are limited 
numbers of techniques utilizing an FL for quantitative multi-
ple fault diagnostics [7]. The capability of FLs for multiple 
fault isolation and identification was evaluated by Marinai et 
al. [35, 36]. In this work, although the proposed method was 
able to quantify faults, it was limited to double component 
faults only, where in reality, there is a possibility that more 
than two components of the case engine could be affected at 
the same time. Simulated data sets for clean and faulty engine 
cases were used to test the fault detection performance of the 
model, and results showed that the detection based on filtered 
data was very accurate with negligible missed alarms and no 
false alarms. Recently, a multiple component fault diagnostic 
method based on a nonlinear component adaptation scheme 
was proposed by Tsoutsanis et al. [37] for a 2-shaft industrial 
gas turbine engine under transient operating conditions.  

In this paper, an FL based multiple fault isolation and iden-
tification system is proposed for a twin-shaft stationary gas 
turbine engine application. The capability of the proposed 
method to isolate and quantify single, double and triple com-
ponent faults has been evaluated. To model and demonstrate 
the method, the necessary data was generated from a perform-
ance simulation program, tuned to represent GE LM2500 
engine running at oil & gas industries. The performance of the 

method towards measurement non-repeatability was also 
tested by superimposing standard Gaussian white noise values 
to the performance data. Compressor fouling (CF), Gas gen-
erator turbine erosion (GGTE), and Power turbine erosion 
(PTE) were considered as the gas path component faults that 
exist individually or together. The major contribution of this 
paper can be summarized as follows: 
·The problem of multiple gas path component fault diag-

nostics of an industrial two-shaft engine was investigated 
using an FL-based method. As discussed in the literature 
review, most of the previous works have only focused on 
SCFs and DCFs diagnostics. In our method, we included 
the Triple component fault scenario (TCF). In addition to 
this, some others, as in Refs. [22-28], have considered 
the effects of component faults on efficiencies and flow 
capacities separately or independent of one another. 
Meaning that efficiency and flow capacity performance 
parameters are considered as SCFs taking them individu-
ally and as DCFs taking them concurrently. Conversely, 
in the new method, a more appropriate and reasonable 
consideration, as considered in Ref. [38], i.e., taking two 
performance parameters together as a SCF, four parame-
ters as a DCF and six parameters as a TCF was made.  
·In this paper a quantitative assessment of the health con-

dition of a gas turbine engine based on a FL approach us-
ing rules generated from the engine performance model 
has been provided. In this regard, unlike the other AI 
methods, there are a very limited FL based techniques 
available in the literature that have tried to solve the di-
agnostic problem quantitatively, and they are limited to 
SCFs [15, 17] and DCFs [36]. Unlike most of these sys-
tems, in our method, the most effective MFs are created 
for each input parameter by a careful study of the nature 
of the training data and dividing into Nj (where j = 1, 2, 
…, k and k is the number of measurement parameters) 
number of subsets and taking the center of each subset as 
a midpoint of the associated MF. This enhanced the iso-
lation and quantification capability of the method signifi-
cantly with an increased training time.  
·Finally, we tested the performance of our method in the 

case of measurement noises, and showed good isolation 
success rate even though the TCF estimation accuracy is 
relatively low, especially when compared with the ANN 
based result reported in Ref. [38]. It was due to the small 
amount of data we used for training.  

 
2. Engine physical problems  

Gas turbine performance can be degraded temporarily or 
permanently. The former can be partially recovered during 
operation and/or engine overhaul while the latter requires re-
placement [39]. Fouling, erosion, corrosion, blade tip clear-
ance and object damage are among temporary degradation 
causes. Whereas, airfoil untwist and platform distortions lead 
to permanent deterioration [40]. The discussion of the most 
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common degradation causes is available hereafter. 
Fouling: Fouling is the adherence of contaminants such as 

sand, dust, dirt, ash, oil droplets, water mists, soot, carbon 
particles, hydrocarbons and industrial chemicals [39, 40]. It 
results in increased surface roughness and change in airfoil 
shapes [41]. Performance deterioration due to compressor 
fouling can be represented by a decrease in flow capacity and 
isentropic efficiency [42]. Different studies [1, 43] indicated 
that about 70-85 % of the gas turbine performance loss is due 
to compressor fouling. Fouling-based performance deteriora-
tion can be reversed by online and offline compressor washing 
using water and/or detergents [40, 44]. 

Erosion: Erosion is the gradual loss of material from the 
surface of gas path components caused by sand, dust, dirt, ash, 
carbon particles, and water droplets [1]. The influence of ero-
sion is less for industrial gas turbines than aircraft engines due 
to the presence of an inlet air filtration system. Performance 
deterioration subjected to erosion can be expressed in terms of 
component flow capacity and isentropic efficiency changes. 
Isentropic efficiency decreases during both compressor and 
turbine erosions. While flow capacity decreases for compres-
sor erosion and increases for turbine erosion [45]. 

Corrosion: Corrosion is the deterioration of gas path com-
ponents as a result of oxidation reaction or chemical interac-
tion with inlet air contaminants (sodium and potassium salts 
and mineral acids) and combustion gases (for instance sulfur 
oxides) [39]. It leads to a decrease in compressor flow capac-
ity, compressor efficiency, and turbine efficiency and an in-
crease in turbine flow capacity [1, 39]. 

Blade tip clearance: It is an increase in the clearance be-
tween moving blades’ tips and stationary blades’ tips or mov-
ing blades’ tips and the casing because of particulate ingestion 
[39]. It results efficiency and flow capacity reduction [2]. 

Object damage: Gas path components are subjected to 
damage due to foreign objects (objects enter into the system 
with the inlet air such as birds, stones, and runway gravel) or 
domestic objects (i.e., broken out engine parts due to other 
problems) [46]. 

In general, since the majority of the gas turbine performance 
deterioration belongs to compressor fouling and turbine ero-
sion [1, 4], in this study, the effects of compressor fouling, 
Gas generator turbine (GGT) erosion and Power turbine (PT) 
erosion were considered. 

 
3. FL based gas turbine fault diagnostic system 

Fuzzy logic (FL) is one of the most commonly used compu-
tational intelligence methods, which used to map an input 
feature vector into scalar output [47]. It allows computers to 
make decisions using imprecise quantities working more like 
a human brain. It consists of four basic components: Fuzzy 
rules (sets of if-then statements), fuzzifier (the mechanism 
which maps numbers of input signals into the fuzzy set), in-
ference engine (the technique used to determine the ways in 
which the fuzzy sets are combined with each other), and de-

fuzzifier (the mechanism used to predict the output values). 
The measurable parameters (temperature, pressure shaft speed, 
and flow rates) and the performance parameters (efficiency 
and flow capacity) deltas are inputs and outputs of the Fuzzy 
inference system (FIS), respectively. In this work, nine engine 
parameters were selected as input and six performance pa-
rameters as output. Figs. 1 and 2 illustrate the general proce-
dure to develop engine fault diagnostic system using simula-
tion data and the proposed FIS, respectively. 

 
3.1 Dataset generation  

Due to the difficulty of obtaining operational data in the re-
quired quality and quantity [48], in this work, the necessary 
data used to model and verify the diagnostic system was gen-

 
 
Fig. 1. FL based GT fault diagnostic procedure using simulation data. 

 

 
Fig. 2. Schematic illustration of the FIS.  
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erated from a GT simulation software called GSP. GSP is an 
off-line component based user friendly performance simula-
tion tool composed at National Aerospace Laboratory. The 
target engine GE LM2500 is a double-shaft industrial gas 
turbine consisting of 16-stage axial compressor (C), 2-stage 
GGT and 6-stage PT that can produce 23.3 MW power output. 
Fig. 3 illustrates the schematics of the basic engine compo-
nents with its gas path parameters. Its design point specifica-
tions are given in Table 1. At first, the clean condition steady 
state simulation was performed followed by establishing the 
baseline for gas-path measurements. Next, the deteriorated 
engine measurements were predicted by implanting different 
component fault cases, intentionally. Finally, the engine pa-
rameter deltas, which are input to the diagnostic system, were 
determined using Eq. (1). Single component faults (two pa-
rameters at a time), dual component faults (four parameters at 
a time) and triple component faults (six parameters at a time) 
were considered to generate the data. As a result, 700 and 341 
fault case patterns were used to develop and test the FIS, re-
spectively. Table 2 presents the implanted component fault 
cases and the search space. To account for sensor non-
repeatability, white Gaussian noise, as given in Table 3, was 
added to the data. 
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where ΔZb is the measurement delta from the established 
baseline, Zp is the predicted value, and Zb is the baseline value. 

3.2 Fuzzy rules  

To use FLs in decision making, determining the fuzzy sets 
and constricting the fuzzy rules are the two most important 
steps. The knowledge that can be obtained from fuzzy sets is 
combined using fuzzy rules to make decisions based on this 
information. Fuzzy rules take partially true facts, find out to 
what degree they are true and then take another fact, making it 
true to that degree. A number of fuzzy rules can then be com-
bined and the final decision made. Suppose that Iij and Oij 
represent the input and output matrixes of the FIS, respec-
tively, where Iij is the ith observation of input j, Oij is the ith 
observation of output j, n and p are the number of input and 
output parameters and m is the number of observations. Then 
the fuzzy rules for the FIS can be expressed as:   
·Rule 1: IF I1 = I11 AND I2 = I12 AND … AND In = I1n   

THEN O1 = O11 AND O2 = O12 AND … AND On = O1p 
·Rule 2: IF I1 = I21 AND I2 = I22 AND … AND In = I2n 

THEN O1 = O21 AND O2 = O22 AND … AND Op = O2p 
·Rule m: IF I1 = Im1 AND I2 = Im2 AND … AND In = Imn 

THEN O1 = Om1 AND O2 = Om2 AND … AND Op = Omp 
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Table 1. LM2500 design point specifications. 
 

Parameter Value 

Power output (KW) 20163 

Mass flow (Kg/s) 66 

Compressor pressure ratio  17.5 

Cycle efficiency  0.39 

Max cycle temperature (K) 1400 

Compressor isentropic efficiency 0.88 

Gas generator turbine isentropic efficiency  0.915 

Power turbine isentropic efficiency  0.915 

 

 
 
Fig. 3. Double shaft engine gas-path measurements. 

 

Table 2. Implanted fault cases to develop the FIS. 
 

Range of deviation No. of cases 
Case Fault type 

Γ η Training Test 

1 CF 0 → -5 0 → -2.5 100 49 

2 GGTE 0 → +5 0 → -2.5 100 49 

3 PTE 0 → +5 0 → -2.5 100 49 

4 CF+GGTE - - 100 49 

5 CF+PTE - - 100 49 

6 GGTE+PTE - - 100 49 

7 CF+GGTE+PTE - - 100 47 

 
 

Table 3. Engine measurement uncertainty standard deviation (STD). 
 

Parameter Description Unit STD (%)  

Ma Air mass flow rate Kg/s 1 

T3 Compressor discharge temperature K 0.4 

P3 Compressor discharge pressure bar 0.25 

Ngg Gas generator spool speed rpm 0.05 

T5 GGT exit/PT inlet temperature K 0.25 

P5 GGT exit/PT inlet pressure bar 0.25 

T6 PT exit temperature K 0.4 

P6 PT exit pressure bar 0.25 

Wf Fuel flow rate Kg/s 0.4 
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Accordingly, to design the FIS, 701 rules, 100 from each 

fault type and 1 for the clean engine, have been generated. 
 

3.3 Membership functions (MFs) construction 

Prediction accuracy of fuzzy systems highly depends on ge-
ometry and number of fuzzy sets. So in FL based algorithms 
the optimal selection of fuzzy sets with the appropriate MFs is 
the critical step. As far as geometry is concerned, the most 
commonly used types are linear, triangular, trapezoidal and 
Gaussian. Regarding the number of fuzzy sets, there is no 
standard for a specific application, rather it is expert based. 
Applying imprecise qualitative measures such as, high, low, 
hot, cold, etc. to create MFs is one of the most commonly used 
techniques [49]. Ogaji et al. [15] and Ganguli [47] used 15 
qualitative features to generate fuzzy sets for each input and 
output parameters of the diagnostic system. Another approach 
is to use the engine measurement deltas as midpoints of the 
MFs and identifying the most accurate geometry of the sets by 
trial and error. Using this method, acceptably good results can 
be obtained, but the complexity of the algorithm and computa-
tional time will be high. Marinai [35] applied this approach 
and created 500 MFs from 1771 parameter deltas by taking 
the mean of the measurement deltas, having very small differ-
ence, and by discarding the overlapped values, except the one. 

In this paper, the MFs for each input parameter were cre-
ated by a careful study of the nature of the entire data and 
dividing into Nj, where j = 1, 2, 3…9, number of subsets and 
taking the center of each subset as midpoint of the associated 
MF. Fig. 4 shows variations of the measurement parameters 
sorted from the minimum to the maximum (taking the sign 
into account), to create the associated fuzzy sets. As explained 
in Sec. 3.1, in this analysis, SCFs, DCFs and TCFs are consid-
ered and represented by two, four, and six performance pa-
rameters together, respectively. The highest deviation for each 

measurement, like the 30 % drop in Ngg, was obtained in the 
case of TCF scenario, at the maximum severity level of the 
combined faults. Likewise, the output fuzzy sets were created 
by subdividing the range of the deterioration, at different steps. 
Gaussian and triangular MFs were used for input and output 
fuzzy sets. 

 
3.4 Antecedent and consequent evaluation 

Antecedent, the IF part of the inference system, and conse-
quent, the THEN part of the inference system, can be evalu-
ated using the following procedures. 

Fuzzification: The degree of membership, µ(x), of each in-
put exemplars’ values is determined from the associated MFs. 

Logical operator: It is the process of implementing the 
AND operator and determining the degree of activation of 
each rule by using the corresponding degree of membership 
values of each exemplars obtained from the fuzzification and 
taking the minimum or the product. In matrix form it can be 
expressed as: 
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Implication: Refers to the step of integrating the antecedent 

and the consequent using the logical implication functions.  
Aggregation: It is the process of combining MFs of each 

output parameter, corresponding to each rule, to a single MF. 
This can be done by associating each output parameters’ MFs 
with the respective degree of activation of the antecedent. 
Output MFs which are corresponding to zero degree of activa-
tion are zero. Then, the remaining MFs are connected by using 
either the fuzzy intersection (function –‘min’) or fuzzy union 
(function –‘max’).  

Defuzzification: In this stage a crisp value for the aggre-
gated output is estimated. Different defuzzification methods 
are available in the literature. For instance, center of area or 
centroid, where the defuzzified value is the center of gravity of 
the aggregated fuzzy set, center of maxima, finds the crisp 
value at the center of the MF with the highest activation, and 
mean of maxima, finds the mean of the crisp values corre-
sponding to the maximum fuzzy values, are the most com-
monly used ones. For this analysis a center of area (centroid) 
scheme was implemented. 

Accordingly, the proposed FIS chose the functions ‘prod’ 
(i.e., product) for AND operator and implication, ‘sum’ (i.e., 
summation) for aggregation and centroid for defuzzification as 
the best combination. 

 
4. Results and discussion  

The fault diagnostic performance of the proposed FIS was 
evaluated using the generated test data sets presented in Table 
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Fig. 4. Range of measurement deltas for 700 fault cases. 
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2. First, the model was demonstrated on the training dataset. 
Then, in order to evaluate the generalization capability of the 
method a new dataset called the test data was used. The test 
data represents the so-called blind-test-case that the system 
“unseen” during training. In principle, if the method can cate-
gorize the new dataset into the corresponding main fault 
classes and estimate their magnitude correctly, then its gener-
alization ability would be confidential.  

In fault isolation the fault with the highest degree of fulfill-
ment was taken as the most likely fault. A fault classification 
is wrong whenever the method grouped the test input pattern 
with other fault categories. Accordingly, the component level 
as well as the overall fault isolation Success rate (SR) of the 
proposed method has been computed using the following 
equation. 

 

100%,NCCPSR
TNTP

é ù= ´ê úë û
                           (2) 

 
where NCCP is the number of correctly classified patterns and 
TNTP is the total number of test patterns. 

Isolation and identification accuracy of the method is 
clearly illustrated in Fig. 5. The first three sections present 
results of Single component faults (SCFs) (Cases 1-3 of Table 
2), the next three sections of Double component faults (DCFs) 
(Cases 4-6 of Table 2), and the last section presents Triple 
component faults (TCFs) (Case 7 of Table 2). SCFs were iso-
lated with negligible wrongly classified patterns. But, in the 
case of DCFs and TCFs, there were reasonable numbers of 
fault patterns classified wrongly. Meaning that, for example, 
in the case of DCFs, when small amount of deterioration was 
considered for any one of the two components, the method 
recognized some of the patterns as SCF, and vice versa. Like-
wise, in the case of TCFs, when small amounts were consid-
ered for any one of the three faults, while the rest two were 
suffering high level of performance deterioration, the method 
wrongly classified some of the TCF patterns as DCF, and vice 
versa. In general, SCFs were isolated with an average success 
rate of 96 %, DCFs with 92 % and multiple component faults 

with 89 %. Specifically, when the SR values associated with 
the three SCFs are compared to each other, the value for the 
PTE is the highest, followed by GGTE, and finally by CF. 
While, in the case of DCFs, the order of accuracy when sorted 
in descending order is CF+PTE, GGTE+PTE and CF+GGTE.  

As far as identification is concerned, in general, there was a 
significant difference in the fault approximation accuracy of 
the different fault scenarios, assumed in this analysis. If we 
consider component faults in general or parameter values in 
particular, PT faults and efficiencies showed better accuracy 
for all scenarios. Specifically, in the first section (fault case 1), 
the target values of the health parameters for the other fault 
types were zero. Similarly, in the second section (fault case 2), 
the target values of the corresponding health parameters for 
the remaining fault cases were zero. Same was true for the rest 
fault scenarios. But, as shown in this figure, the RMS error 
deviates from the target value by some range of threshold. The 
average estimation accuracy was 83.5 %, 80 % and 78.5 % for 
single, double and triple component faults, respectively. In 
both the fault isolation and identification cases, the accuracies 
decrease as the number of concurrent fault increases, and that 
is what was basically expected. Moreover, we observed that as 
high severity fault levels are considered the prediction accu-
racy was reduced.  

To improve the prediction accuracy of the proposed method, 
we suggest the following techniques:  

(1) Increasing the size of the training data: In fact, FL sys-
tem’s estimation performance highly depends on the amount 
of the training data and its domain [7]. Conversely, in this 
analysis a small amount of performance data has been used;  

(2) Integrating it with other AI based optimizing methods 
like genetic algorithm, in order to select the most appropriate 
MFs and fuzzy sets automatically [50]; 

(3) Integrating the proposed method with an AI based de-
noising method prior to the fault diagnostics [51].  

 
The average identification accuracy of the FIS can be de-

termined using Eq. (3).  
 
% .Error implanted predicted= -                 (3) 
 
Table 4 reports the percentage distribution of the estimation 

errors with in the given standard Confidence interval (CI) 
values. It can be seen that the average estimation errors are 
contained within the standard CI values.  

Table 5 shows the fault quantification results of sample test 
fault cases corresponding to each fault type listed in Table 2. 
The sample test fault cases were selected randomly to verify 
the prediction accuracy of the method at different fault levels. 

Table 6 presents the advantages and limitations of the 
method. Most of the advantages and limitations are from the 
nature of the FL used in developing the diagnostic system. 

As far as practical aspects are concerned, a maintenance de-
cision through diagnostics requires three basic activities: Data 
acquisition, data processing and diagnostics. Data acquisition 
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Fig. 5. The gas path component fault diagnostic accuracy of the 
proposed FIS againest 410 noisy test cases. 
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is the process of collecting and storing the necessary data from 
the engine under monitoring. The data processing task, in-
volves the activities of data cleaning followed by validating, 
through appropriate screening technique, and extracting the 
data patterns according to the requirements of the diagnostic 
technique for the decision-making. Finally, the fault diagnos-
tics method will detect, isolate and quantify the available 
faults based on the extracted data patterns and suggest the 

appropriate maintenance action to the engine operators at the 
right time. Though, the proposed method incorporated with a 
data acquisition and processing system could be employed to 
a gas turbine gas path fault diagnostics. 

 
5. Conclusions 

We investigated the use of FL for single and multiple com-

Table 4. Test estimation error mean, standard deviation (STD), and confidence interval (CI) values. 
 

 ΓC ηC ΓGGT ηGGT ΓPT ηPT 

Mean -0.024 0.004 0.047 0.032 0.01 0.038 
 

 
STD 0.572 0.153 0.545 0.157 0.654 0.211 Average 

CI90± 88.85 90.24 86.6 87.8 97.56 94.63 90.95 

CI95± 91.5 98.8 92.7 97.8 98.3 96 95.85 
% of error fall between 

the given CI 
CI99± 96.83 99.02 97.56 98.3 99.51 97.1 98.05 

 
Table 5. Test results of sample component faults. 
 

Implanted fault (%) Predicted fault (%) 

C GGT PT C GGT PT Component (s) 

Γ η Γ η Γ η Γ η Γ η Γ η 

-3.9 -1.3 - - - - -3.86 -1.27 - - - - 
C 

-5 -3 - - - - -4.95 -2.98 - - - - 

- - 4.4 -2.2 - - - - 4.69 -2.03 - - 
GGT 

- - 5 -3 - - - - 4.89 -3.03 - - 

- - - - 4 -2 - - - - 4.02 -1.83 
PT 

- - - - 5 -3 - - - - 4.95 -3.06 

-4 -2 4 -2 - - -3.73 -1.92 3.76 -1.97 - - 
C+GGT 

-5 -3 5 -2 - - -4.86 -2.98 4.86 -1.94 - - 

-4 -2 - - 4 -2 -3.88 -1.79 - - 4.2 -1.75 
C+PT 

-5 -3 - - 5 -3 -4.86 -2.91 - - 5.18 -3.11 

- - 4 -2 4 -2 - - 3.9 -1.83 3.91 -2.09 
GGT+PT 

- - 5 -3 5 -3 - - 4.89 -2.94 4.77 -3.08 

-4 -2 4 -2 4 -2 -3.82 -1.85 3.56 -1.76 4.4 -2.05 
C+GGT+PT 

-5 -3 5 -3 5 -3 -4.86 -2.87 5.3 -2.88 4.75 -2.92 

 
Table 6. Advantages and limitations of the method [2, 7, 15, 49, 52, 53]. 
 

Advantages  Limitations 

Fuzzy rules are derived from the available data; this makes them particu-
larly suited for finding solutions to problems for which there are no exact 
solutions. 

They cannot recognize new data sets that the model “unseen” during train-
ing, a huge amount of training data is required. 

It is capable of handling problems which are difficult to be described and 
solved mathematically. 

Fuzzy rules depend on the knowledge of subject expert, and diagnostic 
accuracy depends on the available rules. 

It can deal with the non-linear nature of the gas path problems. For a better accuracy large quantity of rules are essential. 

It is robust towards measurement uncertainties.  Inefficient in fault diagnostics with a very limited data 

It can undertake multiple component fault diagnostics. Difficult to define exact queries that identify specific faults 

The rule generation process is fast and observable. High memory requirement 

High computational speed  High model complexity  

It has good explanation facility about the nature of the faults.   - 

It is flexible to be integrated with other AI based methods. - 
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ponent fault isolation and identification using gas path meas-
urement variations. The study focused on stationary GT en-
gines under steady-state operating conditions. The FIS was 
developed based on 701 fuzzy rules derived from 9 gas path 
and 6 performance parameters’ deviations. The data required 
to develop and illustrate the inference system was generated 
from simulation software, called GSP, tuned to represent 
LM2500 engine running at an existing oil & gas plant. The 
fault isolation and assessment performance of the system was 
examined for single double and triple component faults. The 
main component faults, compressor fouling, gas generator 
turbine erosion and power turbine erosion were considered 
one at a time and simultaneously. As shown in the result, the 
FIS is capable to isolate single, double and triple component 
faults with an average accuracy of 96 %, 92 % and 89 %, re-
spectively. It can also identify single, double and triple com-
ponent faults with an average accuracy of 83.5 %, 80 % and 
78.5 %, respectively. Since the FIS was developed from only 
700 fault case patterns (100 fault case patterns for each fault 
type) and diagnostic accuracy of fuzzy logic based methods 
depend on the data size, the obtained success rate was promis-
ing. Eventually, the performance of the proposed method 
could also be evaluated for other stationary GT engines under 
transient operating conditions or with different configurations; 
it needs only a small modification.  
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Nomenclature------------------------------------------------------------------------ 

AI     : Artificial intelligence    
ANN   : Artificial neural network 
C   : Compressor 
CF : Compressor fouling 
CI  : Confidence report 
DCF  : Double component fault 
FIS  : Fuzzy inference system 
FL  : Fuzzy logic 
GA  : Genetic algorithm 
GE  : General electric 
GG  : Gas generator 
GGT  : Gas generator turbine 
GGTE  : Gas generator turbine erosion 
GPA  : Gas path analysis 
GSP  : Gas turbine simulation program 
GT    : Gas turbine 
KF  : Kalman filter 
I  : Input 
MF  : Membership function 
NCCP  : Number of correctly classified patterns 
O  : Output  
TNTP : Total number of test patterns 

PT  : Power turbine 
PNN  : Probabilistic neural network 
PTE  : Power turbine erosion 
RMS  : Root mean square 
SCF  : Single component fault 
SR     : Success rate 
STD   : Standard deviation 
TCF  : Triple component fault  
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