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Abstract 
 
We investigate a multi-frequency signal that cannot be decomposed by empirical mode decomposition directly. Moreover, this kind of 

signal in the noisy background cannot be decomposed successfully by the traditional stochastic resonance with bistable system yet. We 
propose a new method which using the empirical mode decomposition combined the adaptive stochastic resonance in a new periodical 
model to solve this problem. The results show that the proposed method decomposes the multi-frequency signal perfectly. Meanwhile, 
the general scale transformation and random particle swarm optimization algorithm are used to help obtain a better result in the process 
of optimization. Through using this new method, the simulation results are satisfactory. More importantly, this new method also shows 
good performance in the application of bearing fault diagnosis.  
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1. Introduction 

The Empirical mode decomposition (EMD) was put for-
ward by Huang et al. in 1998 to extract the frequencies in a 
complicated signal [1]. This method decomposes the compli-
cated signal into a series of Intrinsic mode functions (IMF). 
Through analyzing each IMF, we can receive the features of 
data information more accurately and effectively. The IMF 
must satisfy two conditions, one is that the number of the ex-
treme points and the zero-crossing points must be equal or at 
most one difference in the whole data sequence; the other is 
that the mean value of the envelope defined by local maxi-
mum and local minimum is zero at any points [2]. A compli-
cated signal can be decomposed into the following form by 
the EMD, i.e., 
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in Eq. (1), ci is the ith IMF component and rn(t) is the residual 
amount after the IMFS are extracted. Each IMF represents the 
characteristic frequency of the signal at different time scales 
and the residual amount represents the information of trend 
quantity in the original data. 

In the field of fault diagnosis, EMD has been applied widely 
and made some achievements [3-7]. Moreover, the extraction 
of the characteristic frequency can be achieved an effect by 
combining the EMD with other methods. Li proposed an im-
provement EMD method based on the optimized rational 
Hermite interpolation approach [8]. Yu proposed an applica-
tion of EMD method and Hilbert spectrum to the fault diagno-
sis of roller bearings [9]. Liu proposed bearing fault diagnosis 
method based on hybrid LS-SVM and EMD [10]. Cheng pro-
posed the application of energy operator demodulation ap-
proach based on EMD [11]. Cheng proposed a fault diagnosis 
approach for roller bearings based on EMD method and AR 
model [12]. 

In general, some original signal with multi-frequency com-
ponents can be decomposed successfully by the EMD method. 
However, the effect of EMD becomes unsatisfactory when the 
original signal is submerged into the noisy background. The 
EMD combined with the Stochastic resonance (SR) can be 
used to deal with this problem [13-17]. The SR is a famous 
nonlinear phenomenon in which an approximate dose of noise 
can enhance the weak signal and improve the Signal-to-noise 
ratio (SNR) of the output [18]. Specifically, the nonlinear 
system will exhibit SR when SNR reaches its maximum value 
by optimizing the noise intensity. This kind of SR is called the 
traditional SR. As the noise intensity increases, the value of 
SNR will firstly increase and then decrease. The effect of the 
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stochastic resonance will come to the best condition until the 
SNR reaches the maximum value. The signal, noise and 
nonlinear system achieve the best match at this time. Through 
the SR processing, the EMD can achieve a better effect than 
using this method separately.  

Although the EMD method is widely applied, some tech-
nique problems still exist. One of them, if an original signal 
cannot be decomposed by EMD directly, whether can it be 
decomposed successfully with the aid of SR? It is the motiva-
tion of this work. 

The outline of this paper is arranged as follows. In Sec. 2, 
we will show an original signal with multi-frequency that 
cannot be decomposed by EMD successfully. In Sec.3, the 
method of EMD combined with a general scale transformation 
adaptive SR will be proposed. Moreover, the adaptive SR will 
be realized by the random particle swarm optimization algo-
rithm. In Sec. 4, we will present an example where the multi-
frequency signal can successfully be decomposed using a 
combination of SR with a new periodic potential model, 
whereas decomposition using EMD with the traditional bista-
ble model in failure. The superiority of SR in the periodic 
model to the SR in the bistable model will be discussed in 
detail. In Sec. 5, the method of EMD with SR in periodic 
model will be used to extract the characteristic of the bearing 
faults. Meanwhile, the method of EMD with SR in bistable 
system will also be used to make a comparison. The fault fre-
quency and its multiplication will be extracted. Finally, the 
main conclusions will be drawn in Sec. 6. 

 
2. The multi-frequency signal 

Multi-frequency signals are usually encountered in the en-
gineering field. We consider a typical multi-frequency signal. 
i.e.,  

 

1 1 2 2( ) cos(2 ) sin(2 )s t A f t A f tp p= +  (2) 
 

where A1 = 0.1, A2 = 0.2, f1 = 60, f2 = 90. 
We use the traditional EMD method to decompose the sig-

nal in Eq. (2) directly. The time domain waveform and the 
frequency spectrum of the original signal are shown in Figs. 1 
and 2, respectively. In Figs. 1 and 2, IMF1 is almost the origi-
nal signal and the two frequencies cannot be separated into 
different IMFs. As a result, the signal is decomposed by the 
EMD method in failure. The reason for the failure is that the 
parameters of the signal do not satisfy the sufficient condition 
of successful decomposition [19]. 

 
3. The method of EMD combined with the adaptive 

SR 

In some engineering circumstance, the noise only can be 
added but not can be reduced. It is a limitation for the applica-
tion of the traditional SR. To solve this problem, some re-
searchers proposed another kind of SR named adaptive SR in 

which the excitations are fixed and the system parameters are 
tuned to induce the SR [20-23]. Usually, the traditional SR 
occurs under the precondition of adiabatic approximation. In 
other words, it needs the excitation is weak and the signal is in 
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Fig. 1. Time domain waveforms of the original and the decomposed 
signals. 
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Fig. 2. Frequency spectrums of the original and the decomposed sig-
nals. 
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low-frequency. However, in the engineering fields, the pa-
rameters of the excitations may be in large case. Specifically, 
the excitation may not be weak and the frequency of the char-
acteristic signal may be ranged from several to thousands Hz. 
It is another limitation for the application of the traditional SR 
in engineering field. There are some method can solve this 
problem, such as the frequency-shifted and rescaling SR [24], 
the twice sampling SR [25], the multiscale noise tuning SR 
[26-27]. Among these methods, the multiscale noise tuning 
SR is an easy and effective method. However, the multiscale 
noise tuning SR is realized by the normalized scale transfor-
mation. Further, through the normalized scale transformation, 
the output cannot achieve the optimal SR. Hence, in this paper, 
we will propose a general scale transformation to achieve the 
optimal SR. 

The model of SR is usually governed by the following 
Langevin equation [28-29],   
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in Eq. (3), s(t) is the weak signal. In this paper, we focus on 
the multi-frequency signal. Hence, we let 
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Here in n(t) is Gaussian white noise. D is the intensity of 

noise. δ(t) is the delta function. 
In terms of the traditional bistable system, its potential func-

tion is 
 

2 4( ) .
2 4
a bU x x x= - +  (5) 

 
In Eq. (5), a > 0 and b > 0 are the system parameters. 
Besides the bistable potential, there are some other potential 

functions in which the SR can be appearance. Among them, 
the periodic potential is a new type [30-34]. For example, 
Nicolis first proposed the SR in multistable system [30], Sai-
kia explored the role of damping on SR in a periodic potential 
[31], Liu and his co-workers found the SR in periodic poten-
tials driven by colored noise [32]. We also did some works on 
the dynamics of the system with periodic potential. In Ref. 
[33], we found that the sequential vibrational resonance dis-
tinguishes from the traditional multiple vibrational resonance 
because its appearance is much more regular and the presence 
of the resonance is periodic. We also discover adaptive SR 
with periodic potential has more advantages than adaptive SR 
in the bistable model [34]. These articles confirm that the pe-
riodic potential system is much more superior and worth to 
apply. The concrete expression of the periodic potential is 

( ) cos( ) .U x a bx= -   (6) 
 
The shapes of bistable potential function and periodic po-

tential function are shown in Fig. 3. Herein, Fig. 3(a) shows 
the double potential function. The highest point locates at zero 
which is the unstable state and the lowest points locate at 

/a b± which are stable states. The height of the barrier 
is 2 / (4 )a b . In Fig. 3(b), the periodic potential function is de-
scribed. 2U aD = is the height of potential barrier and the 
distance between two adjacent high points is 2 / bp . The dif-
ference between Figs. 3(a) and (b) is that the height changes 
with the change of width in bistable potential, but the height is 
independent of the width in the periodic potential system. 

Substituting Eq. (5) into Eq. (3), then Eq. (3) can be written 
as 
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Eq. (6) leads to Eq. (3) in the form 
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Eq. (8) is the model of SR with periodic potential. For sim-

plify, we label the SR in the system with bistable potential and 
periodic potential as BSR and PSR, respectively. 

In order to realize the general scale transformation, some 
variables are introduced, specifically,  
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For bistable system, substituting Eq. (9) into Eq. (7), Eq. (7) 

can be written as 
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where m is the scale of time. 

Eq. (10) is expressed as  
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Eq. (11) is the equivalent form of Eq. (7). In addition, the 

system parameters a/m and b/m are unequal in the general 
scale transformation.  

For periodic potential system, substituting Eq. (9) into Eq. 
(8), Eq. (8) can be written as 
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Then this equation can be sorted as  
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where m is the scale of time and the system parameters a/m 
and b can be obtained their optimal values by the optimization 
algorithm. Meanwhile this type of equation can be solved by 
the fourth-order Runge-Kutta algorithm [35]. 

To improving the efficiency, different optimization algo-
rithms can be used. In this paper, the random particle swarm 
optimization algorithm [36-39] is applied to obtain the optimal 
parameters of the system in the adaptive SR. The SNR is set 
as the evaluation index in the calculation. SNR is defined as 
the ratio of signal power to noise power. It is widely used to 
evaluate whether the system achieves the optimal output [40]. 
The concrete of the SNR is defined as 
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In Eq. (14), f is the frequency of the input signal and k is the 

serial number of f. S(f) is the power of the input signal and 
N(f) is the average power of the noise. M is selected according 
to sampling points N and sampling frequency fs. 

The main steps of the random particle swarm optimization 
algorithm are as follows: 

Step 1: Giving the initialization condition. Setting the learn-

ing factors, the mean of the random weight, the number of 
iterations, the number of particles and the spatial dimension. 

Step 2: Initializing individuals of a population. Initializing 
the position and speed randomly. 

Step 3: Calculating the fitness of each particle and finding 
the local optimal and global optimal. 

Step 4: Entering the main loop. Firstly, updating the posi-
tion and velocity of the particle. Secondly, recalculating the 
fitness of each particle and updating the local optimal and 
global optimal. Finally, judging whether the maximum num-
ber of iterations has been reached. If not, continuing the loop. 
If reached, go to the next step. 

Step 5: Obtaining the best result. 
The specific process of the signal processing based on adap-

tive SR and EMD is shown in Fig. 4. 

 
4. Numerical simulation 

In this section, we verify our method proposed in Sec. 3 by 
the multi-frequency signal in Sec. 2. 

 
4.1 EMD combined with BSR  

In this section, the signal in Eq. (2) is submerged into the 
Gaussian white noise, specifically  

 
( ) ( ) ( )x t s t n t= +   (15) 

 
where s(t) is defined in Sec. 2, n(t) is the Gaussian white noise 
with intensity D. According to the sampling theory, the sam-
pling frequency should be larger than twice the signal frequency. 
Whether the sampling point is second power or not, it has little 
influence on accuracy and speed of the calculation because of 
the rapid computation of the computer. Since the frequencies 
are integer in numerical simulation, the high resolution is not 
necessary. So the simulation parameters are set as fs = 10000, N 
= 2000 and then resolution is 10000/2000 = 5. In this subsection, 
we deal with the signal by EMD combined with BSR. In terms 
of the EMD by BSR at 60 Hz, D is set as 0.2. Rescaling factor 
m is set as 600 in general scale transformation, then the fre-
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Fig. 3. Shape of the nonlinear potential function: (a) Bistable potential function; (b) periodic potential function. 
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quency rescaled is 60/600 = 0.1<<1 and meets the condition of 
SR. In fact, the SNR here is the local SNR and N(f) is the noise 
intensity in the vicinity of signal frequency. So M is set as 10. 
When dealing with the EMD by BSR at 90 Hz, the parameters 
are set as D = 0.3, m = 900, M = 10. 

Fig. 5 shows the frequency spectrum of the EMD by BSR at 

60 Hz. In the frequency spectrum, there are two clear highest 
points in IMF5. They are located at 60 Hz and 90 Hz, respec-
tively. Due to different frequencies appear in one IMF, it is 
one kind of mode mixing problems. 

Fig. 6 shows the frequency spectrum of the EMD by BSR at 
90 Hz. Fig. 6 is similar to Fig. 5 as it also appears the mode 

 
 
Fig. 4. Flowchart of the signal processing, shows a procedure of adaptive SR and EMD. 

 
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1
0.2

Mixed signal

Am
pl

itu
de

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5
x 10

-3

IMF1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.005

0.01
IMF2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02
IMF3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05
IMF4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2
IMF5

■■

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1
IMF6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1
res

Frequency(Hz)  
 
Fig. 5. The frequency spectrum of EMD by BSR at 60 Hz: Optimal 
output with a = 0.2442 and b = 1021.2. In IMF5, the first highest point 
is located at 60 Hz, and the second highest point is located at 90 Hz. 
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Fig. 6. The frequency spectrum of EMD by BSR at 90 Hz: Optimal 
output with a = 1.1179 and b = 1322.4. In IMF5, the first highest point 
is located at 60 Hz, and the second highest point is located at 90 Hz. 
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mixing problem. Hence, the EMD combined with the tradi-
tional BSR is failure in dealing with the multi-frequency sig-
nal.  

   
4.2 EMD combined with PSR 

In this section, the noisy signal in Eq. (15) is treated by 
EMD combined with PSR. When dealing with the EMD by 
PSR at 60 Hz, simulation parameters are set the same as the 
parameters in the solution of EMD by BSR at 60 Hz. In terms 
of EMD by PSR at 90 Hz, simulation parameters are set the 
same as EMD by BSR at 90 Hz. 

Fig. 7 shows the frequency spectrum of EMD by PSR at 60 
Hz. In the frequency spectrum, the highest points at 60 Hz and 
90 Hz appear in IMF4 and IMF5, respectively. 

Fig. 8 shows the frequency spectrum of EMD by PSR at 90 
Hz. As Fig. 7, it also shows the same phenomenon. Gratify-
ingly, the multi-frequency is decomposed successfully. It 
solves the problem appearing in Figs. 5 and 6.  

In this section, we obtain that the method of EMD com-
bined with PSR is superiority to the method of EMD com-
bined with BSR in dealing with the multi-frequency signal 
especially when the signal is submerged into the noisy back-
ground. 

 
5. Experimental verification 

Rolling bearing fault signals show typical characteristics of 
nonstationarity, modulation and weakness. The feature infor-

mation is usually submerged into the noisy background. 
Hence, it is difficult to extract the weak feature information. In 
this section, the original data come from the Case Western 
Reserve University (CWRU) [41] is used to analyze the fault 
character firstly. The experiment system of a bearing test rig is 
shown in Fig. 9. The type of the bearing is 6205-2RS JEM 
SKF and the sampling frequency is 12 kHz. The structure 
sizes of rolling bearing are shown in Table 1. The characteris-
tic frequencies of the bearing element faults are shown in Ta-
ble 2. When the bearing speed is 1797 rpm (1797 / 60 Hz), the 
fault characteristic frequencies of the inner ring, outer ring and 
rolling element are shown in Table 3. 

From Table 3, the defect frequency of the inner ring is 
162.19 Hz and calculates its second frequency is 324.38 Hz.  

To deal with the experimental signals, the EMD combined 
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Fig. 7. The frequency spectrum of EMD by PSR at 60 Hz: Optimal 
output with a = 58.005 and b = 2.1648. In IMF4, the highest point is 
located at 90 Hz. In IMF5, the highest point is located at 60 Hz. 
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Fig. 8. The frequency spectrum of EMD by PSR at 90 Hz: Optimal 
output with a = 744.4556 and b = 1.9595. In IMF5, the highest point is 
located at 90 Hz. In IMF6, the highest point is located at 60 Hz. 

 

 
 
Fig. 9. The experiment system of the bearing test rig. 
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the PSR is used. At the same time, the method of EMD com-
bined with BSR is also used as a comparison. With the devel-
opment of failure in rolling bearing, some characteristics of 
deterioration will appear in the vibration signal. A common 
phenomenon is that the harmonic components of defect fre-
quency will present. Therefore it is a more obvious feature to 
show the bearing failure in the developing stage. The parame-
ters are set as N = 120000, fs = 12000 and then resolution is 
12000/120000 = 0.1. For the scale transformation method, the 
rescaling factor m is set as 2000. Then the frequency rescaled 
is 162.19/ 2000 = 0.081 << 1. In the calculation of SNR, M is 
set as 160 to estimate the noise intensity around the frequency. 

When D = 1.3, the defect frequency is not obvious in the 
strong noise background. Through the method in this paper, 
the defect frequency is clearly revealed. Figs. 10 and 11 show 
the frequency spectrums of the optimal decomposition results 
at the defect frequency by EMD combined with BSR and 
EMD combined with PSR, respectively. In Fig. 10, the highest 
point is located at 161.7 Hz both in IMF5 and IMF6. Because 
the same frequency is presented in different IMFs, it is another 
kind of mode mixing phenomena.  

In the frequency spectrum at Fig. 11, the highest point is lo-
cated at 161.7 Hz in IMF6. The defect frequency of inner ring 
is 162.19 Hz from Table. 3. Without considering the effect of 
the load, the change in the contact angle of the rolling bearing 
can lead to a change in the frequency of the failure shock. As a 
result, there is a deviation between the theoretical defect fre-
quency and the actual defect frequency. This figure doesn’t 
appear the mode mixing problem like Fig. 10.   

To explain the phenomenon further, we give Fig. 12 which 
is related to Figs. 10 and 11. Fig. 12 shows the time domain 
waveforms and frequency spectrums of BSR and PSR at the 
defect frequency, respectively. Moreover, the output in Fig. 12 
is obtained after adaptive SR but before the procedure of 
EMD. We use Fig. 12 to explain the reason of mode mixing in 

detail. Huang pointed out that the main reason of the mode 
mixing is intermittence of the signal [42]. Besides the inter-
mittent signal, impulse interference and noise also lead to the 
mode mixing problem. We call these circumstances anoma-
lous events. Anomalous events will result in the anomalous 
distribution of local extreme points and then envelope distor-
tion will generate because the smoothness and flexibility of 
the envelope should be guaranteed. Firstly, we make a com-
parison of the first subgraph and the third subgraph in Fig. 12. 
The local extreme points of the time domain waveform of 
BSR change drastically whereas the time domain waveform of 
PSR with no similar phenomenon. Therefore, the drastic 
change of local extreme points is the root cause of the mode 
mixing problem. Secondly, the second subgraph and the 
fourth subgraph have some differences. In the frequency spec-
trum of BSR, we clearly find some noise jamming before the 
defect frequency. However, there is basically a smooth line 
which closes to zero before the defect frequency in the fre-
quency spectrum of PSR. The reason of this deference is that 
the BSR is optimized by two parameters, while the PSR is 
equivalent to optimizing the infinitely parameters because the  

Table 1. The structure size of rolling bearing. 
 

Outside diameter Inside diameter Rolling element  
diameter Thickness Pitch diameter Contact angle No. of rolling 

elements 

2.0472 inches 0.9843 inches 0.3126 inches 0.5906 inches 1.537 inches 0° 9 
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Fig. 10. The frequency spectrum of EMD by BSR at the defect fre-
quency: Optimal output with a = 463.7 and b = 413.736. In IMF5 and 
IMF6, the highest point is located at 161.7 Hz. 

 

Table 2. The defect frequencies of rolling bearing (fr is running speed 
in Hz). 
 

Bearing’s  
components Inner ring Outer ring Rolling element 

Defect frequencies 
/Hz 5.4152fr 3.5848 fr 4.7135 fr 

 
Table 3. The defect frequencies with the running speed of 1797 rpm. 
 

Bearing’s  
components Inner ring Outer ring Rolling element 

Defect frequencies 
/Hz 162.19 Hz 107.36 Hz 141.17 Hz 
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sinx in the equation of PSR will contain infinitely items when 
it expands into the Maclaurin series. So the effect of the fre-
quency spectrum of PSR is better. As a result, much more 
noise jamming in the second subgraph will also bring about 
mode mixing.  

When D = 0.1, Figs. 13 and 14 show the frequency spec-
trums of the optimal decomposition results at its second har-
monic frequency by EMD combined with BSR and EMD 
combined with PSR, respectively. In addition, the signal is 
preprocessed by a band-stop filter for the purpose of a better 
effect. In Fig. 13, the highest points are located at 161.7 Hz 
and 323.4 Hz in IMF5. In IMF6, the highest point is located at 
161.7 Hz. 323.4 Hz is twice the actual defect frequency 161.7 
Hz and instead of theoretical second harmonic frequency 
324.38 Hz. As we mentioned before that different frequencies 
appear in the same IMF, it is also reveals mode mixing phe-
nomena. 

In Fig. 14, the highest point is located at 323.4 Hz in IMF4 
and 161.7 Hz is the highest point in IMF5. This figure shows 
the successful decomposition because 161.7 Hz and 323.4 Hz 
has clearly appeared in different IMFs. 

Compared with Figs. 10 and 11, Figs. 13 and 14, we obtain 
the conclusion that the method of EMD combined with PSR is 
much better than the method of EMD combined with BSR. 

In order to further verify the common of the conclusion, we 
use the bearing failure data collecting in our laboratory to 
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Fig. 11. The frequency spectrum of EMD by PSR at the defect fre-
quency: Optimal output with a = 3148.244 and b = 0.019. In IMF6, the 
highest point is located at 161.7 Hz. 
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Fig. 12. The time domain waveforms and frequency spectrums of 
adaptive SR at the defect frequency: (a) The time domain waveform 
and frequency spectrum of BSR at the defect frequency; (b) the time 
domain waveform and frequency spectrum of PSR at the defect fre-
quency. 
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Fig. 13. The frequency spectrum of EMD by BSR at the second har-
monic frequency: Optimal output with a = 3.62 and b = 2922.228. In 
IMF5, the highest points are located at 161.7 Hz and 323.4 Hz, respec-
tively. In IMF6, the highest point is located at 161.7 Hz. 
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support it. The experimental system of a bearing test rig is 
shown in Fig. 15. This fault diagnosis of the bearing is based 
on the scratch fault. The type of the bearing is N306E and the 
structure sizes of rolling bearing are shown in Table 4. When 
collecting the experimental signal, a piezoelectric acceleration 

sensor is used and sampling frequency is 2048 Hz. When the 
bearing speed is 1494 rpm (1494 / 60 Hz), we can calculate 
the theoretical fault frequency of bearing rolling element is 
124.69 Hz and its theoretical second frequency is 249.38 Hz. 
The parameters are set as N = 10240, fs = 2048, M = 160 and 
then the resolution is 2048/10240 = 0.2.  

In order to simulate the actual situation, D is set as 6 to 
make fault information submerged in the noise. m is set as 
2000 and then the frequency rescaled is 124.69/ 2000 = 
0.0623 << 1, Figs. 16 and 17 show the frequency spectrums of 
the optimal decomposition results at its defect frequency by 
EMD combined with BSR and EMD combined with PSR, 
respectively. In Fig. 16, 124 Hz appears both in IMF2 and 
IMF3. As mentioned above, it is a mode mixing problem.  

In the frequency spectrum at Fig. 17, the highest point is lo-
cated at 124 Hz in IMF3. The mode mixing phenomenon does 
not appear as it in Fig. 16. 

When D = 1, the second harmonic frequency is not obvious. 
M is as 3000 and then the frequency rescaled is 249.38/3000 =  

Table 4. The structure size of rolling bearing. 
 

Outside diameter Inside diameter Rolling element 
diameter Thickness Pitch diameter Contact angle No. of rolling 

elements 

2.8346 inches 1.1811 inches 0.3937 inches 0.748 inches 2.047 inches 0° 11 
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Fig. 16. The frequency spectrum of EMD by BSR at the defect fre-
quency: Optimal output with a = 675.47 and b = 1708.97. In IMF2, 
one of the highest points is located at 124 Hz. In IMF3, the highest 
point is located at 124 Hz. 
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Fig. 14. The frequency spectrum of EMD by PSR at the second har-
monic frequency: Optimal output with a = 3941.9 and b = 0.39. In 
IMF4, the highest point is located at 323.4 Hz. In IMF5, the highest 
point is located at 161.7 Hz. 

 

 
 
Fig. 15. The experiment system of the bearing test rig. 
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0.083 << 1. Moreover, the signal is preprocessed by band-stop 
filter to remove useless waves. Figs. 18 and 19 show the fre-
quency spectrums of the optimal decomposition results at 
second harmonic frequency by EMD combined with BSR and 
EMD combined with PSR, respectively. 

In IMF2 in Fig. 18, the highest points are located at 125.4 
Hz and 248.6 Hz. In IMF3, the highest point is located at 
125.4 Hz. It also shows a mode mixing problem.  

In Fig. 19, 248.6 Hz and 125.4 Hz appear in IM2 and IMF3, 
respectively. This figure illustrates the method of EMD com-
bined with PSR is an effective method. 

Compared with Figs. 16 and 17, Figs. 18 and 19, we find 
that the EMD combined with the PSR can deal with the ex-
perimental signals much more excellently than EMD com-
bined with the BSR.  

By analyzing these two series of experimental data, the ef-
fectiveness of the EMD combined with the PSR in decompos-
ing the multi-frequency signal is verified. 

 
6. Conclusions 

In this paper, we propose a method of EMD combined with 
the adaptive SR to deal with the multi-frequency signal sub-
merged into noisy background. The original signal cannot be 
decomposed by the EMD only. We realize the decomposition 
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Fig. 17. The frequency spectrum of EMD by PSR at the defect fre-
quency: Optimal output with a = 1778.291 and b = 0.19987. In IMF3, 
the highest point is located at 124 Hz. 
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Fig. 18. The frequency spectrum of EMD by BSR at the second har-
monic frequency: Optimal output with a = 1306.62 and b = 11314.6. In 
IMF2, the highest points are located at 125.4 Hz and 248.6 Hz. In 
IMF3, the highest point is located at 125.4 Hz. 
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Fig. 19. The frequency spectrum of EMD by PSR at the second har-
monic frequency: Optimal output with a = 124.288 and b = 6.782. In 
IMF2, the highest points are located at 248.6 Hz. In IMF3, the highest 
point is located at 125.4 Hz. 
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by EMD combined with the PSR. The main highlights and 
conclusions are as following: 

(1) A general scale transformation is proposed and the ran-
dom particle swarm optimization is used to realize the adap-
tive SR. 

(2) The signal cannot be decomposed by the EMD com-
bined with the traditional BSR. However, it can be decom-
posed successfully by the EMD combined with the PSR 
which is proposed in this paper. In other words, the method of 
EMD combined with PSR is superior to EMD combined with 
BSR.  

(3) This method can not only deal with the simulation signal 
successfully, but also analyze the experimental signal excel-
lently. Therefore, it can be used in the bearing fault diagnosis. 

 
Although the method proposed in this paper has its advan-

tages, some other problems still exist. For example, the noise 
in our study is considered as a white noise. However, in the 
real industrial engineering, the noise is not a white noise but a 
real one, such as the Poisson noise, the colored noise, the non-
Gaussian noise, the bounded noise, etc. Under these complex 
and real noisy background, whether the method in this paper 
can be still used in decomposing the multi-frequency signal is 
an open problem. We will do our best to study this problem 
further. Especially, we will focus on the method of EMD 
combined with SR in the complex and real noisy background 
in our future work. 
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Nomenclature------------------------------------------------------------------------ 

t      : Time 
A    : Amplitude 
D     : Noise intensity 
f   : Frequency 
ωj : Angular frequency 
U(x) : Potential function 
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