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Abstract 
 
The parameter space approach based robust PI control design methodology for DC motor speed control is proposed in this paper. The 

multi-objective design requirements like D-stability, phase margin and mixed sensitivity (frequency domain) bounds are mapped into the 
controller parameter space to determine PI controller coefficients which satisfies the desired user-defined specifications. Besides robust 
PI controller, an add-on disturbance observer is utilized to enhance the tracking performance and disturbance rejection of the control 
system. The proposed control scheme is validated by simulations and experiments. The results prove that the effectiveness of the pro-
posed control system against uncertainties in the modeling and disturbances on the system response.  
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1. Introduction 

Direct current (DC) motors are essential parts of mecha-
tronic and control systems. The use of DC motors in scientific 
research and industrial applications is very prevalent for their 
accurate and simple control characteristics. DC motors have 
been widely used in robotic applications, positioning systems, 
electric vehicles, flatbed scanners [1-5] and all sorts of rota-
tional actuation processes.  
One of the main challenges in DC motor speed control is to 

achieve stability and precise speed regulation even under un-
certainties in the modeling and external disturbances [6, 7]. 
Generally, nominal model used in the design stage of the 
speed controller does not include high frequency dynamics 
(unmodeled dynamics) and also it suffers from the parametric 
variations due to the change of physical parameters in time. 
Another problem is the external disturbance (load torque) that 
affects the system response of DC motor. If the parametric 
variation, unmodeled dynamics and external disturbance do 
not take into consideration in the controller design stage, they 
may cause performance degradation and instability as a worst 
case [8]. 
There have been many contributions in the literature for DC 

motor control ranging from conventional PID control to ad-

vanced control methodologies such as sliding mode control, 
robust H∞ control, LMI based robust control, adaptive control, 
intelligent control such as fuzzy logic, neural network and 
fractional order controllers. 
In Ref. [8], sliding mode controller, integral sliding mode 

controller and dynamic sliding mode controller designs are 
represented for the DC motor speed control and the controllers 
are compared each other using simulation results with respect 
to their robustness against matched uncertainties and chatter-
ing reduction. Chattering is reduced with integral and espe-
cially dynamic sliding mode techniques. In Ref. [6], sliding 
mode control approach is applied to separately excited DC 
motor and the results are compared with the conventional PI 
controller using simulations. In Ref. [9], a sliding mode con-
troller requiring only output feedback is proposed and verifi-
cation with three different experiments on a DC motor speed 
control system is performed. A pre- and post-filtering ap-
proach to output feedback variable structure speed control of a 
permanent magnet DC motor is proposed and tested by simu-
lations and experiments in Ref. [10]. In Ref. [11], a DC motor 
speed controller is proposed gathering the features of sliding 
mode control, fuzzy inference system, neural network and 
genetic algorithms in order to avoid the chattering disadvan-
tage of sliding mode control. The designed controllers are 
implemented on a FPGA. The fluctuations in the conventional 
sliding mode controller results are reduced with sliding mode 
controller with adaptive neural fuzzy interference system and 
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after the optimizing the fuzzy inference system with genetic 
algorithms the best final results are obtained. 
A robust H∞ optimal speed control scheme for a DC motor 

with parameter variations using a linear matrix inequality ap-
proach is introduced and tested by simulations in Ref. [12]. In 
Ref. [7], a mixed H2/H∞ robust controller design for DC motor 
speed control is presented and tested by simulations. Improved 
particle swarm optimization is used to solve the optimization 
problem of H2/H∞ controller and find the optimal parameters 
of the controller. 
A robust adaptive discrete variable structure control scheme 

for DC motor speed control is described and successfully im-
plemented in Ref. [13]. A self-tuning minimum variance adap-
tive control method is developed and successfully imple-
mented for speed and position tracking of a DC motor in Ref. 
[14]. In Ref. [15], an online self-tuning artificial neural net-
work based speed control scheme is proposed and experimen-
tally implemented for a DC motor. The proposed scheme is 
compared with PI controller based system. The results show 
that the performance of artificial neural network based system 
is superior. An adaptive control algorithm using bacterial for-
aging algorithm for DC motor speed control is represented in 
Ref. [16]. In this research, bacterial foraging algorithm is used 
for identification and control of DC motor. A comparison of 
bacterial foraging algorithm based control and genetic algo-
rithm based control is carried out. An adaptive PID-type neu-
ral network control method is applied for the speed control of 
a DC motor system dead-zone characteristics in Ref. [17]. A 
fractional order PI controller for controlling the speed of a DC 
motor was designed and implemented on a FPGA target in 
Ref. [18].  
Disturbances exist in the DC motor systems inherently and 

externally originating from different sources such as load 
torque, friction, low-frequency vibration in the supporting 
structure, etc. [19]. They may occur as step disturbance or 
high-order disturbances such as ramp or parabola disturbances. 
Among high-order disturbances, ramp disturbances are espe-
cially important. The viscous friction which increases with the 
increase velocity under uniform accelerated motion is an ex-
ample of ramp disturbance in the DC motor systems [20]. 
There are numerous papers in the literature to deal with the 

disturbance in the DC motor systems [6, 8, 13, 15, 19-24]. 
They use different approaches such as sliding mode control, 
artificial neural network based control, disturbance observer 
based control, sliding mode observer based model reference 
adaptive control, model reference fuzzy adaptive control.  
In this paper, parameter space approach based robust PI 

controller design was carried out to control of DC motor speed 
considering multi-objective design requirements such as D-
stability, phase margin bounds and mixed sensitivity (robust 
performance) requirements. The parameter space approach 
can be used to determine a set of coefficients for a given con-
troller structure which simultaneously stabilize a finite number 
of plants. The set of parameters for which the characteristic 
polynomial is Hurwitz-stable is determined. Along with Hur-

witz stability, the method has been extended to D-regions for 
treating relative stability and bandwidth constraints. The pa-
rameter space approach cannot handle only parametric (struc-
tured) uncertainties. By mapping frequency domain specifica-
tions into parameter space, the parameter space method pro-
vides the using of experience in the field of frequency domain 
robust control methods which generally tackle unstructured 
uncertainties such as H∞ robust control. The further informa-
tion about parameter space approach can be found at Refs. [25, 
26]. The mapping of design requirements into the parameter 
space to find the robust fixed disturbance observer parameters 
was applied to vehicle yaw stability control successfully in 
earlier works [27-30]. In this paper, parameter space approach 
based design methodology used for designing robust PI con-
troller. Also, an add-on disturbance observer employed to 
improve the tracking and disturbance rejection properties of 
the robust PI based control system. Robust PI and add-on 
disturbance designs were tested by simulations and experi-
ments.  
Some major robust control methods have already been ap-

plied to DC motor speed control. These methods can be cate-
gorized as linear and nonlinear control techniques. One of the 
most important nonlinear control technique applied DC motor 
speed control is sliding mode and related control methods [6, 
8, 11]. Using sliding mode control, the bounded uncertainties 
and the external disturbance can be compensated. However, 
the main drawback of the sliding mode control is chattering 
resulting from nonlinear controllers. Chattering reduction can 
be achieved by improvements on the sliding mode control 
method [8], but this effect is not removed entirely. The main 
advantage of the proposed control system in this paper is that 
there is no chattering effect in this method.  
Linear robust control techniques such as robust H∞ optimal 

control method have also been applied to the DC motor speed 
control [7, 12]. A comparison of the parameter space approach 
and frequency domain approaches like robust H∞ control 
optimal control can be done briefly as follows [26, 31]. The 
advantages of parameter space approach in comparison with 
H∞ methods are: (i) The ease of visualization due to the 
graphical representation of the solution in parameter space, (ii) 
the determination of a solution region rather than one specific 
solution, (iii) obtaining fixed structure low order controller 
filters that are easily implementable. There are also some 
shortcomings of the parameter space approach in comparison 
to H∞ methods such as: (i) The method can simultaneously 
accommodate the design of only two to three controller pa-
rameters due to its graphical display of the solution region, (ii) 
the method does not result in a single analytical solution. 
The organization of the rest of the paper is as follows. The 

DC motor model and the uncertain parameters of the DC mo-
tor are introduced in Sec. 2. Mapping the robust controller 
design requirements into the parameter space such as Hurwitz 
stability, D-stability, phase margin and mixed sensitivity (ro-
bust performance) requirements are explained and also design 
method is applied to DC motor speed control in Sec. 3. The 
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add-on disturbance observer structure and design methodol-
ogy are given in Sec. 4. The simulation results are shown in 
Sec. 5. Experimental set-up is described and experimental 
results are given in Sec. 6. The paper ends with conclusions in 
Sec. 7. 
 

2. DC motor modelling and uncertainties 

This section describes the DC motor modeling. Fig. 1 
shows the DC motor scheme with its electrical and mechani-
cal parts.  
Using Kirchhoff’s law, the following equation is obtained. 
 

m
m m m m i m

dI
V L R I k

dt
ω= + +                        (1)                                                                                         

 
where Vm is the voltage from the amplifier which drives the 
motor, Rm is the motor armature resistance, Im is the motor 
armature current, Lm is the motor armature inductance, ki is the 
back- EMF constant and ωm is the motor angular speed. 
The dynamics of the motor is given by Newton’s second 

equation with the following equation: 
 

m m m dJ k Iω τ= +ɺ                                 (2)                                                                                                           
 

where J is the total moment of inertia (motor rotor and the 
load), τd is the disturbance torque and km is the motor torque 
constant. In SI units, the motor torque constant is equal to 
back-EMF constant, that is ki = km. After this, km is used for 
both constants.  
Using Eqs. (1) and (2) and assuming Lm << Rm and neglect-

ing the viscous friction in the system, the transfer function 
G(s) from voltage applied to the motor to motor angular speed 
can be written as follows: 
 

( )
2
.m

m
m

m

k
G s

k
R Js

R

=
 

+ 
 

                           (3)                                                                                               

 
The open loop block diagram of the motor with torque dis-

turbance is depicted in Fig. 2.  
In the simulations and experiments Quanser DC motor set 

which includes a Maxon high quality DC motor is used. The 
nominal parameters of the DC motor used is given at Table 1. 
Two parameters km and J are taken as uncertain parameters 

considering ± 20 % uncertainty on nominal values. km values 
are between 0.0402 and 0.0602 Nm/A and J values are be-
tween 17.68x10-6 and 26.52x10-6 kgm2. An uncertainty box is 
depicted in Fig. 3 for showing these uncertainties. 

 

3. Design methodology by mapping multi-objective 

requirements into parameter space 

In this section, a robust PI controller design methodology 
based on parameter space approach is introduced. The map-
ping of multi-objective design requirements into the parameter 

space is explained including Hurwitz stability, D-stability, 
phase margin bounds and frequency domain (mixed sensitiv-
ity) bounds mapping. The PI controlled closed loop system 
can be seen from Fig. 4.  

 

3.1 Hurwitz stability 

Consider the plant is given by  

 

( ) ( )
( )

N s
G s

D s
=                                   (4)                                                                             

 

where N represents the numerator of the plant and D repre-
sents the denominator of the plant. The real and imaginer parts 
of the numerator and denominator can be defined as N(jω) = 
NR(jω)+NI(jω) and D(jω) = DR(jω)+DI(jω). 

Table 1. The nominal parameters of the DC motor. 
 

Parameter Value Unit 

km 0.0502 Nm/A 

J 22.1x10-6 kgm2 

Rm 10.6 Ω 
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Fig. 1. The DC motor scheme. 
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Fig. 2. The open loop block diagram of the dc motor with torque dis-
turbance. 
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Fig. 3. Uncertainty box for the DC motor parameters. 
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The PI controlled closed loop system characteristic equation 
can be written as  
 

( ) ( ) ( ) ( )
1

1 1 0...... 0

c p i

n n
n n

p s sD s k s k N s

a s a s a s a+
+

= + +

= + + + + =
               (5)                                                                                                                 

 
where n is the degree of the plant G(s). 
The Hurwitz stability boundary crossed by a pair of com-

plex conjugate roots is characterized by the following equa-
tions: 
 

( )
( )

Re 0

Im 0 for [0, ).

c

c

p j

p j

ω

ω ω

  = 

  = ∀ ∈ ∞ 
                 (6) 

 
This is called as Complex root boundary (CRB). 
There may be a real root boundary such that a single real 

root crosses the boundary at frequency ω = 0 is characterized 
by 
 

( )0 0cp =  or 0 0 .a =                             (7) 

 
This is called as Real root boundary (RRB).  
There may exists an Infinite root boundary (IRB) which is 

characterized by a degree drop in characteristic polynomial at 
ω = ∞. This degree drop in characteristic polynomial is char-
acterized as 
 

1 0 .na + =                                         (8) 

 
CRB, RRB and IRB solutions by parameterizing ω can be 

plotted into the kp-ki parameter plane to show the Hurwitz 
stability regions of the given closed loop system. The kp-ki 
values which provide Hurwitz stability can be chosen visually 
from the stable region of the parameter plane. 

 

3.2 D-stability 

The aforementioned parameter space computation method 
to determine Hurwitz stability regions can be extended to 
specify relative stability regions such as D-stability. A closed 
loop system is D-stable when the roots of the closed loop 
characteristic equation lie in the D-stable region in the com-
plex plane as depicted in Fig. 5.  
The boundary ∂1 in Fig. 5 can be mapped into the parameter 

space by using s – σ instead of s in Eq. (5) in order to shift the 
stability boundary to ∂1 in the complex plane. Solving for kp 
and ki in Eq. (6) for CRB and Eq. (7) for RRB, and then plot-
ting results in the kp-ki plane will result in the ∂1 boundary in 
the parameter space. For ∂1 boundary, there is no IRB because 
s is never equal to infinity in the D-shaped region. For map-
ping ∂2 boundary, use re 

jθ for s in Eq. (5) and parameterize r 
in Eq. (6) to obtain the CRB of ∂2. No RRB and IRB solution 
exists because r is never equal to zero or infinity. Lastly, ∂3 
boundary maps into the parameter space by substituting s with 
Re jθ where R is constant and parameterizing over θ in Eq. (5). 
This results in CRB for changing θ and RRB for θ = 0.  

 

3.3 Phase margin  

The constant phase margin can be also plotted in the pa-
rameter space. The constant phase margin boundary satisfies 
the following equation:  

 

( ) ( )j m
L j e φ πω −

=                                 (9)   

 
where L is the loop gain and mϕ is the phase margin bound.  
The real and imaginary parts of L(jω) can be written as 

 

( ) ( ) ( )

( )

Re Re

Re cosp i R I

R I

L j C j G j

k j k N jN
m

j D jD
φ

ω ω ω

ω

ω

   =   

+ +
= = − 

+ 

          (10) 

 
and   
 

( ) ( ) ( )

( )

Im Im

Im sin .p i R I

R I

L j C j G j

k j k N jN
m

j D jD
φ

ω ω ω

ω

ω

   =   

+ +
= = − 

+ 

          (11) 

 
From Eqs. (10) and (11), solving for kp and ki values result 

in phase margin bound into the parameter space. Constant 
gain margin bounds can also be obtained in following similar 
procedure.                                                                                                    

p ik k s

s

+er
2
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m

k
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R
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m
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k

R

dτ

mωmu V=

 
 
Fig. 4. The PI controlled closed system block diagram. 

 

 
 
Fig. 5. D-stable region in the complex plane. 
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3.4 Mapping mixed sensitivity (frequency domain) bounds 

The aim of this section is to map frequency domain criteria 
of robust control into the parameter space. Similar to the ap-
proach in Refs. [26, 27, 29, 30], a parameter space design 
based on satisfying the robust performance requirement is 
used here as follows:  
 

1S TW S W T
∞

+ < or 1,  S TW S W T ω+ < ∀       (12) 

 
where S = 1/(1+L) and T = L/(1+L) are the sensitivity and 
complementary sensitivity functions and WS and WT  are cor-
responding weights.  
Mixed sensitivity problem Eq. (12) can also be expressed in 

the limit as the equality 
 

1 ,  S TW W L L ω+ = + ∀                        (13) 

 
which is called the point condition at each frequency. The 
point condition is depicted in Fig. 6.  
A circle with origin at -1 and a radius equal to |WS(ω)| at a 

specific frequency ω is drawn first. Loop gain L(jω) at the 
same frequency is shown as vector L with magnitude |L| and 
angle θL in Fig. 6 and is given by 
 

( ) .LjL j L e θω =                                 (14)                                                                                                             

 
A second circle with origin at L(jω) and with a radius equal 

to |WT(ω)L(ω)| for specific frequency ω is drawn next. 
The vector 1+L originating at -1 and ending at L in Fig. 6 

should be greater than |WS|+|WTL| to satisfy the inequality 
version of the point condition Eq. (13). This point condition 
needs to be solved at each frequency to find the controller 
parameter pairs that satisfy it. Solving and graphically inter-
secting the solution regions for a sufficient large number of 
frequencies result in the controller parameter space where 
robust performance is satisfied.  
A graphical solution for |L| using the cosine rule for Fig. 6 

results in 
 

2

cos

1

L S T

T

W W
L

W

θ− + ± ∆
=

−
                    (15) 

where 
 

2 221 cos 2 cos .L S T L S TW W W Wθ θ∆ = + − + +     (16) 
 
The first part of the solution procedure for loop gain L is the 

formation of a grid of θL in [0, 2π] and then solving Eq. (15) 
for |L| and computing L = |L| e jθL. Then, L is expressed in 
terms of a fictitious controller K as follows:  
 

( ) .R IL KG K jK G= = +                         (17) 
 
Solving Eq. (17) for the real and imaginary parts KR and KI 

of the fictitious controller K and then solving  
 

p i

R I

k j kL
K jK

G j

ω

ω

+
+ = =                    (18) 

 
for PI controller parameters kp and ki result in  
 

p Rk K=                                       (19) 

i Ik K ω= −                                     (20) 
 

which is the final step of the solution.  
The aforementioned point condition solution procedure is 

summarized below.  
1. Choose a specific ω value. |WS(ω)|, |WT(ω)| and G(jω) at 
frequency ω are all known at this point.  
2. Let θL ϵ [0, 2π]. Evaluate ∆ using Eq. (16), and select the 
active range of θL, where ∆ ≥ 0 is satisfied. For all values of θL 
in the active range.  
2.1. Evaluate |L| using Eq. (15). Keep only the positive so-

lutions (since |L| cannot be negative). 
2.2. Evaluate L = |L| e jθL. 
2.3. Solve for the corresponding fictitious controller real 

and imaginary parts KR and KI in Eq. (17). 
2.4. Substitute for KR and KI into the right-hand sides of Eqs. 

(19) and (20), and solve for kp and ki. 
3. Plot the closed curve of kp versus ki values (for all active θL 
values in 2). Either inside or the outside of this curve is a solu-
tion of Eq. (13) at chosen frequency ω. The obtained region is 
the point condition solution in the chosen controller parameter 
plane at the frequency chosen in step 1.  
4. Go back to step 1, and repeat the procedure at a different 
frequency.  
5. Plot the intersection of all point condition solutions for all 
frequencies considered. This is the overall solution region for 
robust performance. 
 

3.5 Application to robust PI DC motor speed control  

The aforementioned multi-objective robust controller de-
sign methodology was applied to PI DC motor speed control 
here. D-stability, phase margin and mixed sensitivity bounda-
ries mapping procedure were realized for four operating points 
(vertices of the uncertainty box) shown in Fig. 3. Then, the 
common kp-ki value that satisfies the design requirements for 
all points was selected from the kp-ki parameter plane.  

 
 
Fig. 6. The point condition for mixed sensitivity. 
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D-stability requirements were determined as follows: No 
roots can be closer than -1 to the Im axis (σ = 1) and no roots 
can be further than -15 (R = 15), a maximum damping can be 
70 degree (θ = 70o) which corresponding to a damping ratio of 
0.342. 
Phase margin can be at least 50 degree (PM ≥ 50 deg). 
Fig. 7 shows the solution regions for D-stability and phase 

margin requirements in parameter space. ∂1 CRB and RRB, ∂2 
CRB and ∂3 CRB of D-stability and the increasing phase mar-
gin bounds depicted. The intersection of bounds determined 
the D-stable region with satisfying required PM bound.  
In order to map robust performance criteria into the parame-

ter space, firstly the sensitivity and the complementary sensi-
tivity weights were determined. The inverse of the sensitivity 
function weight is selected as 
 

1 .s s
S s

s s

s l
W h

s h

ω
ω

− +
=

+
                              (21) 

 
With ls = 0.5 (i.e., less than 50 % steady state error) being 

the low frequency bound, hs = 4 being the high frequency 
bound, and ωs = 4 rad/sec being the approximate bandwidth. 
The complementary sensitivity function weight is chosen as 
 

T T
T T

T T

s l
W h

s h

ω
ω

+
=

+
                              (22) 

 
where the low frequency gain is lT = 0.2, the high frequency 
gain is hT = 1.8 (corresponds to uncertainty of up to 180 % at 
high frequencies), and the frequency of transition to signifi-
cant model uncertainty is ωT = 4 rad/sec.  
The mixed sensitivity requirement for the selected weights 

was mapped into the parameter space. The results with includ-
ing D-stability and phase margin boundaries can be seen from 
Figs. 8-11 for the points P1, P2, P3 and P4 shown in Fig. 3. 
Blue lines restricted the parameter space for D-stability, red 
lines restricted for PM bounds and green lines restricted the 
parameter space for mixed sensitivity requirements. 
The common kp and ki were selected as (0.025, 0.65), these 

points satisfies all design requirements for all operating points.  
These controller parameters were used in all of the simulation. 
Table 2 shows the closed loop pole locations and phase 

margin values for four operating points. The closed loop poles 

are in the D-stable region (shown in Fig. 12) and the phase 
margin requirement is satisfied, all phase margins is larger 
than 50 degree.  
Fig. 13 shows the |WSS|+|WTT| frequency-domain plots for 

all four points as a function of frequency. It is clear from this 
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Fig. 7. Detailed view of D-stability and Phase Margin boundaries in 
parameter space for P1. 
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Fig. 9. Solutions for P2 where km,max = 0.0502, Jmin = 17.68x10
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Fig. 11. Solutions for P4 where km,min = 0.0402, Jmax = 26.52x10
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figure that constraint Eq. (12) is satisfied at each of the differ-
ent operating points in Fig. 3 and for the chosen controller 
parameters, as none of the plots touch the 0-dB (|WSS|+|WTT| 
= 1) line.  

 

4. Improvement on system response using distur-

bance observer 

4.1 Add-on disturbance observer structure 

The disturbance observer is a well-known approach in the 
mechatronic systems control area that is used to achieve insensi-
tivity to modeling error and disturbance rejection. It was intro-

duced by Ref. [32] and further refined by Ref. [33]. It has been 
used successfully in a variety of mechatronics applications. For 
instance, friction compensation in Ref. [34], road vehicle yaw 
stability control in Refs. [27-30], robust atomic force micro-
scope control in Ref. [35], power assisted electric bicycle con-
trol in Ref. [36], table drive system in Ref. [20], hard-disc-drive 
servo system in Ref. [37] and heavy vehicle rollover prevention 
[38]. In the disturbance observer approach, the inverse of the 
desired or nominal plant model is used to observe the distur-
bances and to cancel the effect of disturbances in the control 
signal. As a result, the closed system is forced to act like its 
nominal or desired model. The system structure with add-on 
disturbance observer is depicted in Fig. 14.  
Consider plant G with multiplicative uncertainty ∆m and in-

put disturbance d:  
 

( )y G u d= +                                   (23)  

 

where ( )1n mG G= + ∆  and nG  is the nominal model of the 
plant.  
The aim in the disturbance observer usage is to obtain  
 

n ny G u=                                       (24) 

 
where un is the new control input. 
This aim can be achieved in disturbance observer design by 

treating the external disturbance and model uncertainty as an 
extended disturbance e and solving for it as  

 

n n n m n my G u G d G u G d

e

= + + ∆ + ∆
�����������

                (25) 

ne y G u= −                                     (26)  

 

and using the new control signal un given by  
 

1 1
n n

n n

u u e u y u
G G

= − = − +                     (27) 

 
to approximately cancel its effect when substituted in Eq. (25). 
With the aim of not to overcompensate at high frequencies 
and to avoid stability robustness problems, the feedback sig-
nals in Eq. (27) are multiplied by the low pass filter Q. In this 
case, the final equation becomes  

Table 2. Closed loop pole locations and phase margin values for four 
vertices of the uncertainty box. 
 

Points 
Closed loop pole  

locations 
Phase margin [deg] 

1 
-6.9929 + 9.5146i 
-6.9929 – 9.5146i 

61.1032 

2 
-13.6842 + 4.6411i 
-13.6842 – 4.6411i 

83.5883 

3 
-9.1228 + 7.4815i 
-9.1228 – 7.4815i 

73.8756 

4 
-4.6619 + 8.4391i 
-4.6619 – 8.4391i 

51.5451 
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Fig. 12. Closed loop poled locations and D-stability region. 
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Fig. 13. Robust performance plots |WSS|+|WTT|. 
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Fig. 14. The system structure with add-on disturbance observer. 
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( )1
n

n

u u Q y n u
G

 
= − + +  

 
                      (28)  

 
where n represents the sensor noise and, it is available for the 
case of real implementation.  
The disturbance observer can be designed both in continu-

ous time and discrete time. For discrete time design, please 
refer to Ref. [39]. In discrete time implementation, if ( )nG z  
is a minimum phase system, its inverse can directly be as-
signed, if not, stable version of ( )1

nG z−ɶ  can be obtained us-
ing Input shaping filter (ISF) designing techniques such as 
Zero phase error tracking control (ZPETC), Precision tracking 
control (PTC), Optimal precision tracking control (OPTC).  
The loop gain of the disturbance observer compensated 

plant is  
 

( )1n

GQ
L

G Q
=

−
                                 (29) 

 
with the model regulation, disturbance rejection and sensor 
noise rejection transfer functions given by  
 

( )1
n

n n

y G G

u G Q GQ
=

− +
                           (30) 

( )
( )

11

1 1
n

n

G Qy

d L G Q GQ

−
= =

+ − +
                    (31)  

( )
.

1 1n

y L GQ

n L G Q GQ

− −
= =

+ − +
                    (32) 

 
It is seen that Q must be a unity gain low pass filter. This 

choice will result in y/un→ Gn, y/d→ 0 at low frequencies 
where Q→ 1 and y/n→ 0 at high frequencies where Q→ 0.  
There are limitations in the selection of the bandwidth of 

the Q filter. First of all, the bandwidth of the Q filter cannot 
exceed the bandwidth of the actuator used. Another limitation 
for the Q filter arises from the robust stability requirement.  
The characteristic equation of the disturbance observer 

compensated system can be written  
 

( ) ( )1 1 0n n mG Q G Q− + + ∆ =                     (33) 

 
as  
 

( ) 1
1 0  n m

m

G Q Q+ ∆ = → = −
∆

                 (34) 

 
and note that when the presence of ∆m does not change the 
number of unstable poles and zeros of G in comparison to 
those of Gn, the application of the Nyquist stability criterion 
results in  
 

1
 < ,  

m

Q ω∀
∆

                                (35) 

as the necessary and the sufficient condition for robust stabil-
ity.  
The feedback controller C also affects the robust stability of 

the overall system. In the presence of the feedback control as 
shown in Fig. 14, the closed loop system, disturbance rejec-
tion and sensor noise rejection transfer functions can be writ-
ten as  
 

( ) ( )1
n

n n

y CG G

r G Q G CG Q
=

− + +
                   (36) 

( )
( ) ( )

1

1
n

n n

G Qy

d G Q G CG Q

−
=

− + +
                   (37) 

( )
( ) ( )

.
1

n

n n

G CG Qy

n G Q G CG Q

− +
=

− + +
                   (38) 

 
In the case of feedback control, the characteristic equation 

of the closed loop system can be written by  
 

( ) ( )( )1 1 0n n m nG Q G CG Q− + + ∆ + =             (39) 

 
as 
 

1

1
n

n m

Q CG

CG

+
= −

+ ∆
                               (40) 

 
and using the Nyquist stability criterion results in  
 

1
 < ,  

1
n

n m

Q CG

CG
ω

+
∀

+ ∆
                          (41) 

 
as the necessary and the sufficient condition for robust stabil-
ity including feedback control shown in Fig. 14. Thus, robust 
stability condition of the system can be investigated in the 
absence and presence of the feedback control using Eqs. (35) 
and (41), respectively. 
 

4.2 Disturbance observer design  

Using the stability robustness conditions given in Eqs. (35) 
and (41), the cut-off frequency of the low pass Q filter is de-
termined. The multiplicative uncertainty ∆m is calculated using 

( ) / .m p n nG G G∆ = −  Here the plant pG  is taken different as 
Eq. (3) in order to add the effect of the unmodelled dynamics 
by considering Lm the motor armature inductance in the inves-
tigation of stability robustness. Therefore, the plant model Gp 
is taken as follows: 
 

( )
( )

2
.shm

p

m
m m

m

k
G s e

k
Js L s R

R

−=
 

+ + 
 

              (42) 

 
Also, time delay h is considered to reflect the other unmod-
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elled dynamics. Time delay h is selected as 1.5 times of sam-
pling time. The feedback motor angular speed is calculated 
based on encoder measurements. Since the angular speed is 
determined by taking differences of the angles between two 
sampling intervals, there is a delay of a one sampling time. 
Also, there is an effect of controller hardware dynamics, it is 
approximated as an extra delay corresponding to half a sam-
pling time [40].  
The uncertainty for km and J shown in Fig. 3 is divided into 

an equally spaced grid of values in both axis directions and the 
1/∆m plot shown in Fig. 15 is obtained. An envelope is drawn 
to determine the upper bound of the multiplicative uncertainty. 
Using these plots and considering stability robustness condi-
tions Eqs. (35) and (41), Q is selected as a first order low pass 
filter of 1/(Tqs+1) with the cut-off frequency of 40 rad/sec.  

 

5. Simulation results  

Simulations were performed to show the effectiveness of 
the parameter space based fixed robust PI speed controller and 
the designed add-on disturbance observer. Figs. 16 and 17 
show the step input response of desired angular velocity of 
100 rad/sec for four operating points shown in Fig. 3. A step 
disturbance was applied to the system at time = 2 sec for 
simulation shown in Fig. 16 and, a ramp disturbance was ap-
plied to the system at time = 2 sec for simulation shown in Fig. 
17. Results show that robust PI plus disturbance observer sys-
tem rejects step and ramp disturbance successfully and forces 
the uncertain system to act as nominal plant while satisfying 
multi-objective design requirements. 
 

6. Experiments  

6.1 Experimental set-up 

Fig. 18 shows the experimental setup. Also, schematic dia-
gram of the experimental setup is depicted in Fig. 19. The 
main part of the experimental setup is a 15 Watt motor of 
Maxon brand equipped with a quadrature encoder with the 
resolution of 4096 pulses per revolution. The encoder pulses 
are received by a 24-bit encoder counter integrated circuit.  
The angular speed of the motor for feedback is derived from 
encoder signal. A linear 15 V, 1.5 A power amplifier is used 
to drive the motor. Quanser Q2-usb board is used as control 

hardware. The control signal to the DC motor linear amplifier 
is sent from a 12 bit D/A convertor on Q2-usb board and the 
angular speed signal is received by a 12 bit A/D convertor on 
Q2-usb board. The control algorithms is prepared on Mat-
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Fig. 15. Stability robustness plot. 
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Fig. 16. Step response and step disturbance rejection simulation re-
sults. 
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Fig. 17. Step response and ramp disturbance rejection simulation re-
sults. 

 

 
 
Fig. 18. Experimental setup. 

 

 
 
Fig. 19. Schematic diagram of the experimental setup. 
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lab/Simulink environment and realized with a 2.27 GHz Intel 
Core i5 processor Laptop PC. The control algorithms are em-
bedded to Q2-usb board using Matlab real time windows tar-
get and Quanser QUARC software. The DC motor is con-
trolled at the sample rate of 1 kHz. 

 

6.2 Experimental results 

Three different experiments were conducted in order to test 
the proposed control scheme. Fig. 20 shows the trajectory 
tracking experiment results. The reference motor angular ve-
locity was changing from 100 rad/sec to 50 rad/sec in 2 secs 
with initial velocity of 100 rad/sec. The robust PI plus distur-
bance observer control system tracks the reference signal with 
less overshoot with respect to only robust PI control system. 
However, rise time of the robust PI plus DOB system is longer. 
When the disturbance observer added to the system, also an 
extra dynamics inserted to the system, this situation was arisen 
from this fact. Fig. 21 shows the step disturbance rejection test 
result. At time = 10 sec, the step disturbance was applied to 
the system. It can be seen that the robust PI plus DOB system 
attenuated the step disturbance better than only robust PI con-
trol system. Fig. 22 shows the ramp disturbance rejection test 
result. The ramp disturbance was injected to the system at 
time = 10 sec. The only robust PI control system could not 
attenuate the ramp disturbance but the robust PI plus DOB 
system dealt with the ramp disturbance successfully.  

 

7. Conclusions 

The parameter space approach based robust PI controller 

and add on disturbance observer design for the DC motor 
speed control has been presented here. The motor torque con-
stant and total moment of inertia of DC motor has been taken 
as uncertain parameters. Multi-objective design requirements 
such as D-stability, phase margin and mixed sensitivity (fre-
quency domain) bounds have been mapped into the controller 
parameter space to find the robust PI controller coefficients. In 
order to improve the tracking performance and disturbance 
rejection properties of the proposed control system, add on 
disturbance observer has been employed. The disturbance 
observer design procedure considering stability robustness of 
the overall system has been given in details. The proposed 
control system has been tested through simulations and ex-
periments successfully. 
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