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Abstract 
 
The present research focused on the optimization of machining parameters and their effects by dry-turning an incoloy 800H on the ba-

sis of Taguchi-based grey relational analysis. Surface roughness (Ra, Rq and Rz), cutting force (Fz), and cutting power (P) were mini-
mized, whereas Material removal rate (MRR) was maximized. An L27 orthogonal array was used in the experiments, which were con-
ducted in a computerized and numerical-controlled turning machine. Cutting speed, feed rate, and cut depth were set as controllable ma-
chining variables, and analysis of variance was performed to determine the contribution of each variable. We then developed regression 
models, which ultimately conformed to investigational and predicted values. The combinational parameters for the multiperformance 
optimization were V = 35 m/min, f = 0.06 mm/rev and a = 1 mm, which altogether correspond to approximately 48.98 % of the im-
provement. The chip morphology of the incoloy 800H was also studied and reported.  
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1. Introduction 

In the aerospace industry, about 45 %-50 % of gas-turbine 
engines are composed of superalloys [1], such as Incoloy 
800H, which is an austenitic Fe-Ni-Cr alloy (superalloy). 
Typical applications of incoloy 800H include the heat-
exchanging components of conventional power and petro-
chemical plants, reheaters in power plants, superheaters, hot 
ducts, steam generator tubes in nuclear power plants, fuel 
claddings, and pressure vessels where operating temperature 
often ranges from 550 °C to 700 °C [2]. Superalloys are com-
plicated materials for machining because of their rapid harden-
ing and massive strength properties even at high temperatures, 
similarity to chipped materials along a cutting boundary, and 
low thermal conductivity [3, 4]. Nonetheless, Fe-Ni-Cr alloys 
are widely explored in the manufacturing sector because of 
their relatively better properties at high temperature compared 
with those of titanium alloys [5], although the force required 
to cut superalloys are nearly twice of that required to cut alloy 
steels. Moreover, Incoloy 800H also hardens easily while 
machining and thus has poor machinability. In the past, selec-
tion of machining parameters for these hard superalloys are 

based on knowledge, skills, and experience of operators, apart 
from referring to standard handbooks. However, selected ma-
chining input parameters are usually not optimized, thereby 
leading to low production rates [6]. Moreover, the surface 
roughness of machined components mainly depends on the 
material properties, especially fatigue strength and resistance 
to wear and corrosion [7, 8]. 

Studies that focused on the machining parameters of In-
coloy 800H are extremely rare. Thus, in this work, the turning 
behavior and optimization of Incoloy 800H superalloy were 
studied through the use of uncoated carbide inserts. The main 
plots were determined, and Analysis of variance (ANOVA) 
was performed to identify the relation of machining variables 
with the responses for Ra, Rq, Rz, Fz, P and MRR. Taguchi-
based analysis with grey-based approach was used to optimize 
the selected process parameters through the conversion of 
multiple responses into a single response [9-12].  

 
2. Materials and methods 

An Incoloy 800H superalloy with 120 mm length and 25 
mm diameter was used for the experiments. Incoloy 800H 
(wt%) is chemically composed of 0.069 % C, 45.56 % Fe, 
31.59 % Ni, 20.42 % Cr, 0.76 % Mn, 0.57 % Ti, 0.5 % Al, 
0.42 % Cu, 0.13 % Si, 0.014 % P and 0.001 % S. Dry turning 
operations were performed in a computerized and numerical-
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controlled Leadwell turning machine with 4500 rpm capacity 
and 7.5 kW power. The experimental is shown in Fig. 1. An 
ISO-labeled PCLNL 1610 M12 tool holder and CNMA 
120408-THM (WIDIA-India) uncoated tungsten carbide in-
serts were applied with the following tool geometries: (i) 
Clearance angle = 5°, (ii) side rake angle = -6°, (iii) inclination 
angle = -6°, (iv) approach angle = 95°, (v) point angle = 80° 
and (vi) nose radius = 0.8 mm. For the experimental design, 
the first, second, and fifth columns of the L27 (313) standard 
Orthogonal array (OA) were set with the following measure-
ments: Cutting speed (V = A; 35, 35 and 55 m/min), feed rate 
(f = B; 0.02, 0.04 and 0.06 mm/rev), and cut depth (a = C; 0.5, 
0.75 and 1 mm) according to the linear graph. A Mitutoyo 
surftest (SJ-310; cutoff length = 0.8 mm, traverse length = 5 
mm) was used to measure the roughness of the machined sur-
faces. The cutting force was recorded by a piezoelectric dy-
namometer (Kistler type 9257B). Finally, power and MRR 
were determined by their standard formulas. The experimental 
results are shown in Table 1. 

 
3. Analysis of experimental data 

3.1 Signal-to-noise (S/N) analysis 

Taguchi with Grey relational analysis (GRA) can be used to 
determine the optimization of multiple performance character-
istics. Compared with conventional results, the smaller/higher 
and better quality attributes can be determined by Eqs. (1) and 
(2), respectively. 

 
S/N ratio (η) =-10xLog [1/n x((Y1)2+(Y2)2+--+ (Yn)2)]   (1) 
S/N ratio (η) =-10xLog [1/n x ((1/Y1)2+---+(1/Yn)2)]    (2) 
 

where Y1, Y2…Yn are the responses taken separately for the 
trail condition, which recur n times. The S/N ratios from the 
above equations and their mean values are shown in Table 2.  

 
3.2 Grey relational analysis  

GRAs are conducted to analyze the performance of uni-
dentifiable methods [10], while Grey relational grades (GRG) 

with weighting factors are established to obtain machining 
responses. The grey relations and their equivalent normalized 
data can be expressed as follows: 

 
For the Smaller-the-better (SB) condition, 
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For the Larger-the-better (LB) condition, 
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where ( )ix k  is the value after the grey relational generation, 
and min ( )iy k  and max ( )iy k  are the smallest and largest 
values of ( )iy k  for the k th performance. The GRG in the 
GRA explains the relational degree of the 27 sequences of 
[ ( )0x k  and ( )ix k , i =1,2,…27; k =1,2,….,27]. However, 
before completing the GRG, the Grey relational coefficient 

 
 
Fig. 1. Experimental setup. 

 

Table 1. Experimental results. 
 

Experimental results 
Ex. 
No. Ra 

(μm) 
Rq 

(μm) 
Rz 

(μm) 
Fz 
(N) 

Power 
(W) 

MRR 
(mm3/sec) 

1 1.29 1.75 9.52 171.9 6016.5 5.83 

2 1.29 1.77 9.07 181.1 6336.9 8.75 

3 1.36 1.77 8.81 193.6 6774.6 11.67 

4 1.42 1.88 10.71 175.9 6157.6 11.67 

5 1.45 1.88 10.42 184.2 6447 17.50 

6 1.48 1.89 9.99 195.4 6839 23.33 

7 1.59 1.99 11.70 179.4 6278 17.50 

8 1.62 2.01 11.44 186.4 6524 26.25 

9 1.61 2.02 10.92 197.5 6912.5 35.00 

10 1.26 1.70 7.98 167.5 7538 7.50 

11 1.29 1.73 7.69 176.9 7961 11.25 

12 1.27 1.70 7.21 183.9 8275.1 15.00 

13 1.34 1.87 8.99 165.7 7456.5 15.00 

14 1.42 1.90 8.69 178.1 8014.2 22.50 

15 1.44 1.88 8.51 184.7 8310.3 30.00 

16 1.48 2.03 10.37 169.4 7624.4 22.50 

17 1.56 1.99 9.88 178.6 8036.6 33.75 

18 1.55 2.01 9.56 182.7 8220.1 45.00 

19 1.19 1.69 6.52 154.9 8519.5 9.17 

20 1.21 1.72 6.24 159.0 8747.1 13.75 

21 1.24 1.71 5.75 172.6 9490.1 18.33 

22 1.29 1.86 7.66 155.6 8558.2 18.33 

23 1.34 1.86 7.41 159.9 8792.9 27.50 

24 1.35 1.87 7.18 175.5 9652.5 36.67 

25 1.46 2.00 9.02 151.8 8351 27.50 

26 1.51 2.01 8.73 163.0 8962.3 41.25 

27 1.51 1.98 8.36 171.1 9409.4 55.00 
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(GRC) should be obtained. The GRC ( )i kx can be expressed 
as 
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where 0( ) ( )oi x k xi kD = -  is the difference of the absolute 
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where n is the number of responses, in which the weights are 
assigned by the following state:  
 

1 .n

i
wi =å   (7)  

 
A large GRG indicates good multiple response characteris-

tics. In the present study, the ninth experiment obtained the 

Table 2. Mean values of the S/N ratio. 
 

S/N ratio for Ra 

Total S/N mean = -2.8891 (a) 

Level 1 Level 2 Level 3 

V -3.2310 -2.0467 -2.6850 

f -2.9029 -2.8642 -2.9475 

a -2.5334 -3.7564 -3.0347 

Optimal parameters: A3B1C1  

S/N ratio for Rq 

Total S/N mean = -5.4083 (b) 

Level 1 Level 2 Level 3 

V -5.4865 -4.7373 -5.3845 

f -5.4010 -5.4536 -5.4262 

a -5.3375 -6.0341 -5.4142 

Optimal parameters: A3B1C1  

S/N ratio for Rz 

Total S/N mean = -18.7782 (c) 

Level 1 Level 2 Level 3 

V -20.207 -17.546 -19.116 

f -18.800 -18.845 -18.800 

a -17.327 -19.943 -18.419 

Optimal parameters: A3B1C3  

S/N ratio for Fz 
Total S/N mean = -44.8234 (d) 

Level 1 Level 2 Level 3 

V -45.336 -44.766 -44.378 

f -44.923 -44.840 -44.803 

a -44.211 -44.864 -45.290 

Optimal parameters: A3B1C1  

S/N ratio for Power 

Total S/N mean = -77.7410 (e) 

Level 1 Level 2 Level 3 

V -76.217 -77.684 -77.296 

f -77.987 -77.758 -77.720 

a -79.019 -77.782 -78.207 

Optimal parameters: A1B1C1  

S/N ratio for MRR 

Total S/N mean = -25.7231 (f) 

Level 1 Level 2 Level 3 

V 23.6868 20.5354 22.542 

f 25.8697 26.5560 26.064 

a 27.6127 30.0778 28.562 

Optimal parameters: A3B3C3 

 
 

Table 3. Grey relational grade and rank. 
 

Ex. No. Grade Rank 

1 0.429 25 

2 0.454 23 

3 0.518 17 

4 0.531 15 

5 0.565 13 

6 0.629 9 

7 0.688 6 

8 0.749 3 

9 0.811 1 

10 0.416 26 

11 0.455 22 

12 0.479 21 

13 0.485 19 

14 0.556 14 

15 0.593 12 

16 0.771 2 

17 0.686 7 

18 0.730 4 

19 0.406 27 

20 0.432 24 

21 0.497 18 

22 0.481 20 

23 0.519 16 

24 0.610 10 

25 0.596 11 

26 0.678 8 

27 0.725 5 
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largest GRG value. The best optimum combinational parame-
ters were A1B3C3, as shown in Table 3.  

 
4. Results and discussions 

4.1 Effect of machining variables on surface roughness  

The values of the surface roughness parameters (Ra, Rq 
and Rz) were measured on three machined surface locations at 
each experimental run. The average values were then calcu-
lated. Surface roughness intensified as feed rate increased 
from 0.02 mm/rev to 0.06 mm/rev, further resulting in an in-
crease in MRR at definite speeds [11]. For optimal combina-
tional conditions, the values of Ra, Rq and Rz were 1.61, 2.02 
and 10.923 μm, respectively. Fig. 2(a) shows the 3D profile of 
the surface roughness. The profile was obtained using a high-
resolution white light interferometer and scanning electron 
microscopic image of the machined sample corresponding to 
an optimal condition. Fig. 3 shows the effect of surface rough-
ness at a low feed rate of 0.02 mm/rev. Furthermore, the sur-
face roughness value decreased when the cutting speed in-
creased. By contrast, the surface roughness value increased 
when the cut depth increased. The obtained surface roughness 
value in this study (1.35 µm) was higher than previously re-
ported values and was obtained at a low cutting speed 
(35 m/min) and high cut depth (1 mm). Furthermore, a low 
surface roughness of 1.18 µm was obtained at the highest 
cutting speed (55 m/min), lowest cut depth (0.5 mm), and low 
feed rate (0.02 mm/rev). These values can be attributed to the 

low amount of material ploughing and low feed rates. The 
thickness of uncut chips were small at low feed rates, and this 
condition can diminish ploughing and result in a good surface 
roughness. However, as the feed rate increased, the ploughing 
effect also increased, subsequently resulting in a poor surface 
finish. 

 
4.2 Effect of machining variables on cutting force (FZ) 

Cutting force gradually increased when the feed rate in-
creased, and this condition was attributed to the strain harden-
ing effect produced by severe plastic deformations during the 
metal cutting process. As the feed rate increased, the quantity 
of materials that were in contact with the cutting tool also 
increased. Furthermore, the value of cutting force increased at 
increased tool-work contact length. The optimal cutting force 
(Fz) was 197.50 N, a value obtained at f = 0.06 mm/rev, a = 1 
mm and V = 35 m/min. The value of the cutting force de-
creased when the cutting speed increased from 35 m/min to 55 
m/min because of thermal softening that occurred in the sam-
ple. However, the cut depth, along with the width of chips, 
increased, thereby increasing the cutting force. 

 
4.3 Effect of machining variables on cutting power (P) 

The consumed cutting power during machining is at the 
minimum for the low variable values. Cutting power was de-
termined by multiplying cutting force (Fz) with cutting veloc-
ity (V). Heat generation at the interface between the tool and 
work piece increased when the cut depth increased, implying a 
high MRR value. Thus, the system required additional power. 
The highest obtained power was 9652.5 W during the 24th 
experiment with V = 55 m/min, a =1 mm and Fz = 175.50 N. 

 
4.4 Effect of machining variables on MRR 

The production rate during machining mainly depends on 
its MRR  

 
MRR=V*f*a*1000/60 mm3/sec         (8) 
 

where MRR is computed by mm3/sec. The highest MRR was 
55 mm3/sec, which was obtained at the highest levels of inputs 
because of the high volume of materials removed. 

 
4.5 Regression equations 

MINITAB 16 software was used to develop linear regression 
models from the experimental outcome for the prediction of 
the responses. The following outcomes were obtained for the 
correlations and process variables: 

 
Ra=1.29316-0.00560556*V +6.88611*f +0.111778*a  (9)  
Rq=1.65042-0.00154297*V+6.94114*f +0.0117607*a  
 (10) 

 
            (a)                            (b) 
 
Fig. 2. (a) 3D surface profile; (b) SEM image. 

 

 
 
Fig. 3. Surface roughness at f = 0.02 for varying V and a. 
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Rz=13.932-0.142857*V+58.8935*f -1.37593*a   (11) 
Fz=195.67-1.12214*V+51.4361* f + 36.5864*a   (12) 
P=932.164+123.317*V+1831.96*f +1640.89*a   (13) 
MRR =-45 +0.5*V +562.5*f + 30*a.          (14) 
 
Figs. 4(a)-(d) show the experimental values compared with 

the predicted values. Table 4 presents the ANOVA for Ra, Rq, 
Rz, Fz, P and MRR based on the mean values of the S/N re-
sponse ratio. In addition, ANOVA was used to analyze the 
influence of the controllable factors on the responses at 5 % 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 4. (a) Experimental versus predicted values for Ra, Rq and Rz; (b) 
experimental versus predicted values for Fz; (c) experimental versus 
predicted values for P; (d) experimental versus predicted values for 
MRR. 

Table 4. ANOVA of the performance characteristics of the responses. 
 

(a) ANOVA analysis for Ra 

Source DF Adj SS Adj MS F-value P-value PC 
% 

V 2 0.0566 0.0283 73.39 0.000 13.4 

f 2 0.3424 0.1712 444.1 0.000 81.1 

a 2 0.0154 0.0077 19.92 0.000 3.63 

Error 20 0.0078 0.0004   1.83 

Total 26 0.4219    100 

(b) ANOVA analysis for Rq 

V 2 0.0043 0.0022 7.01 0.005 1.20 

f 2 0.3474 0.1738 566.9 0.000 96.9 

a 2 0.0003 0.0002 0.52 0.604 0.09 

Error 20 0.0062 0.0004   1.71 

Total 26 0.3582    100 

(c) ANOVA analysis for Rz 

V 2 36.787 18.393 1706.1 0.000 57.3 

f 2 24.975 12.488 1158.3 0.000 38.9 

a 2 2.133 1.066 98.91 0.000 3.33 

Error 20 0.216 0.011   0.33 

Total 26 64.110    100 

(d) ANOVA analysis for Fz 

V 2 2306.3 1153.1 216.59 0.000 58.4 

f 2 20.49 10.24 1.92 0.172 0.51 

a 2 1509.9 754.97 141.81 0.000 38.2 

Error 20 106.48 5.32   2.7 

Total 26 3943.2    100 

(e) ANOVA analysis for Power 

V 2 276844 138422 877.3 0.000 89.1 

f 2 28423 14212 0.90 0.422 0.09 

a 2 30393 151961 96.32 0.000 9.78 

Error 20 315546 15777   0.10 

Total 26 310677    100 

(f) ANOVA analysis for MRR 

V 2 450.00 225.00 15.92 0.000 11.1 

f 2 2278.1 1139.0 80.60 0.000 56.6 

a 2 1012.5 506.25 35.82 0.000 25.1 

Error 20 282.64 14.13   7.02 

Total 26 4023.2    100 
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significance level (i.e., 95 % confidence level based on F-
value and P-value). A P-value of < 0.05 means that the factors 
have high influence on the responses. 

 
4.6 Study of chip morphology 

The color and shape of the chips were examined with a digi-
tal camera. The characteristics of the chip-tool interface af-
fected by the uncoated carbide tools are shown in Figs. 5(a)-(j), 
which also correspond to experiment numbers 1, 5, 10, 15, 20, 
9, 23, 25, 19 and 27. Rubbing in the tool and chip interface 
was one of the major factors that affected chip morphology. 
Curled chips were produced with a large diameter due to high 
friction on the contact surfaces during the turning of the in-
coloy 800H.  

 
4.7 Confirmation experiments 

The confirmation experiments were conducted three times 
to verify the accuracy of the optimization at optimal levels. 
The results are presented in Table 5. The GRG improved by 
0.412 with percentage improvement of 48.98 %.  

 
5. Conclusions 

The optimum machining parameters obtained through the 
Taguchi method (i.e., based on responses and S/N ratio) for 
surface roughness (Ra, Rq and Rz), cutting force (Fz), power 
(P), and MRR were A3B1C1, A3B1C1, A3B1C3, A3B1C1, 
A1B1C1 and A3B3C3, respectively. 

Obtained through the Taguchi-based grey relational analysis, 
the optimum combinational parameter for the multiple re-
sponses was A1B3C3 (V = 35 m/min, f = 0.06 mm/rev and a 
= 1 mm). 

Regression models were developed for the responses, and 
the corresponding outcomes showed high conformity with the 
measurements for the predicted values, that is, R2 values for 
Ra, Rq, Rz, Fz, P and MRR at 97.65 %, 98.09 %, 99.57 %, 
96.15 %, 97.93 and 92.97, respectively. 

As indicated by the ANOVA results, the most significant 
variable for the multiple response optimization is feed rate, as 
opposed to cutting speed and cut depth. The percentage con-
tribution of feed rate was 81.20 %, which was noticeably 
higher compared with cutting speed (1.32 %), cut depth 
(9.15 %), and square term of feed rate (1.67 %). 

Furthermore, in relation to the total effect based on the 
GRG, the contributed interaction effect of the cutting 
speed/feed rate was 1.113 %; cutting speed/cut depth, 1.21 %; 
and feed rate/depth of cut, 0.38 %. For the MRR, the contrib-
uted interaction of cutting speed/feed rate was 1.86 %, cutting 
speed/cut depth of cut was 0.82 %, and feed rate/cut depth was 
4.19 %. For the cutting force, the contributed interaction effect 
of cutting speed/cut depth was 1.005 %. The interaction ef-
fects of all these factors (except feed rate/cut depth) were 
< 1.5 %, indicating nonsignificant relationship to total varia-
tion.  
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