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Abstract 
 
To improve the carrying capacity and reduce the weight of telescopic boom structure in a truck crane, a Collaborative optimization 

(CO) approach was applied to solve the problems of strength, stiffness and local stability in the telescopic boom structure. First, the com-
plex optimization problem of the telescopic boom structure was decomposed into two-level optimizations: the system level and two sub-
system levels for strength and local stability. Second, the underside curve of the boom’s cross-section was constructed by the Non-
uniform rational B-Splines (NURBS) curve. 3D parametric solid model and the parametric finite element analysis model for the strength 
and the local stability were then established. Third, the mathematical models of the strength and local stability for the subsystem levels, 
and the system level were optimized, respectively. The adaptive relaxation factor algorithm and the penalty function approach were ap-
plied to improve the efficiency of CO. Next, the CO process which integrates the ANSYS package with ISIGHT platform was imple-
mented. The optimal results show that the carrying capacity of the telescopic boom structure can be significantly improved and its weight 
efficiently is reduced. Finally, with the comparison of the stress values obtained from both the experimental test and the theoretical com-
putation, highly coincident results could be obtained to verify the reliability of CO of a telescopic boom.  
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1. Introduction 

As the telescopic boom is a key part of the wheel crane, a 
design for booms with light weight and high bearing capacity 
is important to guarantee the working performance of a wheel 
crane. Furthermore, the design optimization of a telescopic 
boom is an effective way to reduce its weight and improve its 
carrying capacity. The main parameters of a telescopic boom 
are the boom length, and the shape and the size of its cross-
section. The boom length can be determined by crane opera-
tion range; therefore, design optimization of a crane boom can 
be attributed to cross-section optimization [1]. Considering the 
telescopic boom as a complicated box-like structure welded 
with sheet steel plates, the design optimization method based 
on the Finite element analysis (FEA) is generally used. Der-
lukiewicz and Praybylek [2] built the FEA model of a tele-
scopic jib mounted on a mobile platform to calculate the 
maximum stress and deflection. Savković et al. [3] analyzed 
the local stress increases at the contact zone of box-like sec-
tion telescopic booms of truck cranes by the Finite element 
method (FEM). The simulated results by FEM were verified 
by experimental test, and this research work could give guide-
lines for the optimum design of box-like sections in telescopic 

booms. In the design of a telescopic boom, the local stability 
of thin-walled booms is an important factor to affect the carry-
ing capacity and safety of a crane structure. The absence of 
local stability could cause local buckling of boom structures. 
Rust and Schweizerhof [4] analyzed the load limit and the 
local buckling mode of the thin-walled telescopic boom with 
FEM. Yao et al. [5] investigated the buckling failure reason of 
all-terrain crane telescopic boom by FEA. The FEA results 
indicated that the boom strength met the design requirement, 
but the detailed local model incurred a stress wrinkle. The 
buckling of the telescopic boom was caused by the change of 
stress state from continuity to wrinkle. Therefore, the local 
stability of the thin-walled booms is a critical factor to opti-
mize the design of the telescopic boom section. Until now, the 
design optimization of a telescopic crane boom has made 
some progress. Milomir et al. [6] studied the optimal parame-
ters of pentagonal cross-section by using the Lagrange multi-
plier method and the differential evolution algorithm, respec-
tively. The results showed that the Lagrangian multiplier 
method could solve the boom optimization problem of initial 
point close to optimal solution successfully, while the range of 
available initial points of the differential evolution algorithm 
was wide. More solutions which satisfy given constrains could 
be obtained and the research results can provide some useful 
references for the optimization of the boom. Xu et al. [7] 
solved the optimal problem of the hexagonal cross-section of 
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the telescopic boom based on Particle swarm optimization 
(PSO). The optimization model was defined with the weight 
of the telescopic boom as the objective, the strength, stiffness 
of telescopic boom, the local stability of web plate as the con-
straint functions. The obtained optimal results showed that the 
PSO algorithm had several advantages in convergence and 
accuracy compared to the conventional algorithms. Wang et al. 
[8] proposed extended time-dependent Reliability-based de-
sign optimization (RBDO) for the telescopic boom by taking 
the strength degradation and the random total working time 
into account. The optimal design results showed the difference 
between considering the random total working time and with-
out consideration. Beo et al. [9] analyzed the design optimiza-
tion problem for the optimum shape of cross-section in the 
telescopic boom by using ANSYS with FEM. The effective-
ness of the optimization process was evaluated by comparing 
the calculated values of stresses and deformations with those 
obtained from experimental measurements. However, the 
above-mentioned studies [6, 8, 9] did not deal with the local 
stability of thin-walled structures in the telescopic boom, 
while the work [7] gave the local stability constraint expres-
sions of web plates in explicit form. Generally, for a polygonal 
(e.g., pentagonal or hexagonal cross-sections), the local stabil-
ity of the web plate as the constraint condition could be ex-
pressed explicitly in analytical form in the design optimization 
of a telescopic boom, but for a curved boom (e.g., an ovoid 
boom profile), the local stability of the thin-walled structures 
could be only described in the implicit form. The value of 
critical local buckling stress could be obtained by use of FEA. 
With the development of a truck crane trending to increasingly 
large load-carrying capacity and high-lifting height, it is a 
significant consideration in the design to increase the booms’ 
flexural and torsional modulus, and stability against deforma-
tion and to decrease the weight. Consequently, important ad-
vances have been made in boom design. Some new cross-
sectional profiles of the boom were developed from classic 
rectangle to pentagon, hexagon, nonagon, dodecagon until 
curved shape. This means that the lower web plate of the 
boom needs to be folded gradually until to the arc, corre-
sponding to the improvement of resistance to buckling capac-
ity of the web plate [10]. Therefore, the compressed side of 
the boom section using the curved shape can significantly 
improve the local anti-buckling capacity, which provides pos-
sibility to design a crane boom with high load-carrying capac-
ity and low weight. However, it is a complex optimization 
problem to consider the strength, stiffness and local stability 
of the telescopic boom with a curved profile simultaneously: 
These are the objectives and contributions of this paper. 

Collaborative optimization (CO) is a bi-level optimization 
approach that decomposes the original complex optimization 
problem into one system level and several subsystem level 
problems [11, 12]. Each subsystem optimization is independ-
ent, while the system level optimization is to coordinate dif-
ferent optimal solutions in each subsystem by introducing 
consistency constraints among the subsystem levels. The de-

composition of CO is quite similar to the division of engineer-
ing design. CO is a promising method that has been success-
fully used in many cases, such as satellite constellation, naval 
vessels optimization, light weight of vehicles, and internal 
combustion engine optimization [13-17]. However, the adop-
tion of consistency constraints in system optimization leads to 
dissatisfaction of the K-T condition and converging difficulty 
during optimization [18]. To overcome the drawbacks, many 
researchers improved the CO algorithms. Alexandrov et al. 
[19] raised a relaxation factor method, where the system level 
equality constraints were transformed into the inequality ones 
through a relaxation factor. Therefore, the optimization satis-
fies the K-T condition. Jeon et al. [20] proposed an algorithm 
in which the relaxation factor decreased in proportion to the 
optimization iterations, but the initial relaxation factor and the 
proportion coefficient were difficult to determine. Fang et al. 
[21] proposed the asymptotic relaxation method, in which the 
relaxation factor is determined according to the two stages of 
the strong and weak coupling constraints, respectively, to 
solve the optimization problem of the local optimal solution 
and the optimization accuracy problem. But the consistency of 
coupling was also difficult to define, which leads to the diffi-
culty of the appropriate relaxation factor. X. Li, H. Li et al. 
[22-27] developed a method to choose the relaxation factor 
value according to inconsistent information dynamic states 
between different subjects. This method could accelerate the 
speed of optimization convergence. But during the optimiza-
tion, the dynamic relaxation method still had problems in the 
relaxation factor oscillation. The inconsistency between the 
subsystems cannot be reduced gradually, which will increase 
the CO iteration times, and the efficiency will be low. 

We have introduced the application of the CO method into 
the telescopic boom design of the truck crane. First, the com-
plex problem of the telescopic boom optimization was de-
composed into one system level and the relatively tractable 
and independent subsystem level optimization problems. Sec-
ond, NURBS curve was used to construct the compressed side 
shape of the boom cross-section. The 3D parametric solid 
model of the telescopic boom, the strength, the stiffness and 
the local stability FEA model were then established, respec-
tively, with the ANSYS software. Third, the CO model of the 
telescopic boom was established and the Isight code integrated 
ANSYS FEA was used to implement the CO process and 
obtain the optimal solution. Finally, the physical model was 
made according to the optimized structure sizes of the boom 
and the stresses obtained from both measuring and theoretical 
calculation were compared. 

 
2. The idea of CO applied in the telescopic boom 

CO consists of a bi-level, namely, system level and subsys-
tem level optimization. Each subsystem level executes its own 
optimization and obtains the local optimal solutions, which 
satisfies its constraints and minimizes the discrepancy be-
tween the subsystem variables and the system level targets. 
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The system level is to minimize the system objective and co-
ordinate the optimal solutions of subsystems by using consis-
tency constraints. After several iterations between the system 
and the subsystems, the unified optimal solution is finally 
obtained. The formulation of standard CO is given as follows. 

The system level optimization: 
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where z is system design vector, xi is design vector for subsys-
tem i, *

ix is the optimal xi and *( )iJ z is the consistency con-
straint of system level. 

The subsystem level optimization: 
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where z* is the expected value of system design vector which 
is passed from the system level and held constant during the 
subsystem level optimization, and ci(xi) is the constraint func-
tion of the subsystem level. 

The main difficulty of design optimization for the telescopic 
boom with the consideration of the strength, stiffness and local 
stability simultaneously is that the whole optimization design 
process involves two types of analysis models and methods. 
Based on the strength and stiffness criteria, the cross-sectional 
dimensions of telescopic booms are optimized with the overall 
FEA model. And based on the local stability criterion, those 
are optimized with the local buckling FEA model. Further-
more, the former method is a static analysis, while the latter is 
a buckling eigenvalue analysis that needs the former analysis 
to obtain the cross-section stress value. Therefore, this is a 
complicated and comprehensive problem. Additionally, there 
is also a nested optimization. Local buckling analysis needs to 
run the optimization for half wavelength and the nested opti-
mization is consequently formed when the overall optimiza-
tion of the boom is done. To solve such a complicated system 
level optimization problem, the system can be decomposed 
into a number of tractable subsystems, and the consistency 
between subsystems is coordinated by the system level, which 
is the idea of CO. As the calculation model and analysis 
method of the strength stiffness and the local stability are dif-
ferent, these two parts are optimized, respectively.  

Based on the idea of CO, the optimization of a telescopic 
boom can be decomposed into a two-subsystem optimization: 
Subsystem 1 is the strength and stiffness optimization, and 
subsystem 2 is the boom local stability optimization. In the 
optimization process, subsystem 1 delivers stress state vari-
ables to the subsystem 2. In the optimization of subsystem 1, 
the increase of the carrying capacity is mainly taken into ac-
count. In subsystem 2 optimization, the critical stress of local 

buckling is mainly considered. After the two subsystems are 
optimized relatively independently, the full use of material 
carrying capacity of the telescopic boom and its self-weight 
minimization are achieved. The optimization results of the two 
subsystems are coordinated in the system level optimization 
solution. After several iterations, the unified optimal solution 
is obtained in the end. 

 
3. The establishment of telescopic boom analysis 

model 

The model of six-section telescopic boom in a certain truck 
crane is established as an example and then analyzed. Accord-
ing to the design method of telescopic boom, two working 
conditions are considered: Condition 1, a whole retraction 
working condition with a hoist weight of 20 t, a boom length 
of 6.5 m and an elevation angle of 65°; condition 2, a whole 
extension working condition with a hoist weight of 1.77 t, a 
boom length of 25 m and an elevation angle 49.5°. These per-
formance parameter values are provided by the manufacturer.  

 
3.1 The establishment of parametric solid model for tele-

scopic boom 

3.1.1 NURBS curve construction for the compressed side in 
the cross-section of the boom 

As the NURBS curve has a fairly good geometric design 
function, and different kinds of curve shapes can be easily 
achieved by modifying the control points and weights, it is 
possible to obtain an optimal cross-sectional shape in the op-
timization iterative process. So, the widely used cubic 
NURBS curve [28-30] was employed in this paper to con-
struct the shape for the boom's cross-sectional lower com-
pressed side. 

Considering that the height and width of a cross-section are 
usually determined according to th crane's overall structure 
during design, we can use a cubic NURBS curve to construct 
a curve shape for the crane boom compressed side with an 
assumption that the width b and height h of the boom cross-
section are fixed, as shown in Fig. 1. There are mainly four 
steps: (1) Calculating the node vector with the accumulated 

 
 
Fig. 1. Cross-section dimensions and the chosen data points. 
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chord length method according to the data points and their 
weights, then obtaining the basis functions; (2) inversely solv-
ing the weights of the control points; (3) inversely solving the 
control points; and (4) obtaining the NURBS curve function 
of the boom lower compressed side using basis functions, 
weights and control points. The detailed process is as follows. 

As shown in Fig. 1, three data points, 10 ,Q Q  and Q2, are 
taken at the compressed side of the boom cross-section, in 
which Q1 is located in the symmetric position of the cross-
section. Q0 and Q2 are located in the diameter line of the circu-
lar arc. The corresponding weights of Q0, Q1 and Q2 are taken 
as h1 = h2 = h3 = 1. The total chord length is [31] 
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Therefore, we get the node vector U = [0, 0, 0, 0, 0.5, 1, 1, 1, 

1], which is substituted into the Deboor-Cox formula to obtain 
the basis functions as 
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The h0 and h4 can be calculated, respectively, using 21,h h  

and h3, namely,  
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Then, inversely solving the weights wi (i = 0, 1, 2, 3, 4) by 

using following Eq. (6): 
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Using the known data points Q0, Q1 and Q2 and the above 

mentioned weights, inversely solving the control point 

( 0,1,2,3,4)iP i = from the following Eq. (7), as shown in Fig. 
2. 
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As Eq. (7) is not sufficient to solve five control points, two 

conditions need to be added. The tangent vector boundary 
conditions for the two endpoints are added here as 
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According to the obtained basis functions Ni,3(u), weights wi 

and control points Pi, the NURBS curve function of the 
boom’s sectional lower cover plate can be represented in Eq. 
(9) [29], as shown in Fig. 3. 
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Since NURBS curve construction for the compressed side 

in the cross-section of the boom was described above, by con-
tinuously moving the position of the data point Q0 (Q2), i.e., 
changing its vertical coordinate, the coordinate of control 

 
 
Fig. 2. Weights and control points. 
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points and corresponding weight factor are obtained in the 
boom cross-section optimization. Consequently, various 
NURBS curve cross-sectional shapes are constructed. Finally, 
the optimum cross-sectional shape that meets performance 
demands of the boom is obtained.  

 
3.1.2 The establishment of parametric solid model for tele-

scopic boom 
First, the mid-face parametric model for the base section is 

established by the above steps. Second, shapes and sizes of 
other telescopic sections' mid-surface can be determined ac-
cording to the space occupied by the telescopic mechanism 
and sliding pads clearance. To make the subsequent connec-
tion setting of different sections and sliding pads convenient 
and to ensure precision of mesh generation, the shell model of 
each section is established with a parametric segment. Besides, 
when building structure models for the base section rear, sup-
port of luffing cylinder and head of sixth section, the relation-
ship expressions between these structure sizes and cross-
sectional sizes should be built. As the head and rear structure 
of the boom, structure of support of luffing cylinder are 
changed and connection maintained with the boom when the 
cross-sectional size is changed in the optimization. The sliding 
pad model is established as a solid model by the curved sur-
face where inner and outer booms are in the same place. For 
two working conditions of the telescopic boom, the whole 
extension model is established first, and the whole retraction 
model of boom can then be then obtained by changing the 
overlap length of sections. 

 
3.2 The establishment of FEA model for telescopic boom 

3.2.1 Create FEA model for strength and stiffness 
An FEA model of the telescopic boom is created by using 

ANSYS Shell 63 element for booms and Solid 45 element for 
sliding pads, respectively. Shell 63 is an elastic element, 
which is defined by four nodes. It follows Kirchhoff’s hy-
pothesis, which is to assume that the normal of the mid-face 
remains perpendicular to it during bending of the plate. Shell 
63 has bending and membrane capabilities. Both in-plane and 

normal loads are permitted, which conforms to loads of the 
boom. The node Degrees of freedom (DOF) coupling tech-
nology is adopted to simulate the sliding pad contacted be-
tween the inner and outer segment of the boom. An identical 
size in mesh for the sliding pad, the inner and outer segment 
of the boom in contact zones is set, and therefore the positions 
of nodes generated in the contact zones coincide with them 
after mesh. So, the sliding pads, the inner and outer booms 
and in all the contact zones are connected together by using 
coincident nodes coupled once, where the normal DOF for the 
nodes are coupled, and the tangential DOF are released. At 
first, the hard key points in the loading position of the boom’s 
head should be created to apply conveniently loads acting on 
the booms. Then the hoisting load, wire rope tension and side 
load are applied at the hard key points. As for applying the 
booms’ weight and the sliding pads’ weight, the value of the 
gravitational acceleration can be only applied in the direction 
opposite to gravity. Three directions of translational DOF (UX, 
UY and UZ) and two directions of rotational DOF (ROTX 
and ROTY) are constrained at the base section rear end link-
age and the luffing cylinder linkage, respectively. The FEA 
model in the whole retraction condition as an example is 
shown in Fig. 4. On solving the FEA model, the maximum 
stress value and deformation value on the telescopic boom 
obtained are 343 MPa and 15.22 mm, respectively, as shown 
in Fig. 5. 

 
3.2.2 Create local stability FEA model 

The analytical method is adopted in the calculation of local 
stability of the boom with simple profile shape, such as rec-
tangle. The critical buckling stress can be calculated by means 
of establishing the FEA model when the boom with curve 
compressed side of web plate and lower cover plate is encoun-
tered. In the FEA of the local stability, the boom’ constituent 
web plate, upper and lower cover plate are all considered. It 
can solve the difficulty that the critical buckling stress of only 
a plate is analyzed with the analytical method; accordingly, 
constraint loads of other disassembled plates are highly diffi-
cult to determine. A segment length of the boom as buckling 
half wave is assumed to build the FEA model. Loads acting on 

 
 
Fig. 3. NURBS curve of the compressed side in the boom section. 

 

 
 
Fig. 4. FEA model of the telescopic boom in the whole retraction con-
dition. 
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both ends of the model can be applied, taking from the maxi-
mum stress distributed value of the boom which is extracted in 
Sec. 3.2.1. The constraints of two ends on the model are 
treated to be simply supported [32-34]. Because critical buck-
ling stress reaches the minimum value at the actual half wave-
length, the half wavelength is used as a parameter to search for 
the minimum critical buckling stress by optimization based on 
the aforementioned FEA. The FEA model is shown in Fig. 6. 
To be in accordance with the current specification [35], eigen-
value buckling analysis is performed to obtain the critical 
buckling stress and the buckling mode, shown in Fig. 7. 

The foregoing establishment of telescopic boom solid 
model, FEA model and analysis and calculation are all ful-
filled based on the ANSYS software. To invoke and re-
analyze the boom model during optimization process, the 
modeling and analysis process are transformed into ANSYS 
parametric design language (APDL) command stream text file. 

 
4. The establishment of CO mathematical model of 

telescopic boom 

According to the design method of a telescopic boom, two 
working conditions, including the whole retraction (base sec-
tion condition) and the whole extension, need to be considered. 

The shape and size of base section are determined by the op-
timization under the whole retraction condition, and the thick-
nesses of other sections are optimized in the whole extension. 
Note that when the shape and size of base section's mid-
surface are set, shapes and sizes of other telescopic sections 
can also be determined according to the telescopic mechanism 
space and sliding pad gap by considering the same profile 
shape of all sections. Therefore, only the shape and size pa-
rameters of the base section’s mid-surface can be defined in 
the following optimization. 

 
4.1 Design variables 

The design variables include the width and height of base 
section's mid-surface, the coordinates of both side data points 
and thickness of all sections' upper and lower cover plates. W1 
and H1 represent width and height of the base section, respec-
tively. The vertical coordinate of data point Q0 (Q2) is HQ1. R1 
is the thickness of base section upper cover plate, and A1 is the 
thickness difference of base section's upper and lower cover 
plates, so the thickness of the lower cover plate can be repre-
sented by (R1+A1). As the lower cover plate bears more pres-
sure stress, its thickness is usually no less than that of upper 
thickness. The number of telescopic sections discussed in this 
paper is six. For the other five sections, we set their cover 
plate thickness and thickness differences of sections' upper 
and lower cover plates as R2~R6 and A2~A6. We define the 
sections' thickness as integer design variables. 

 
4.2 Subsystem model 1 of strength and stiffness 

The objective of optimization in strength subsystem is to 
minimize the difference between the design variable of this 
subsystem and the expected value of system design variable 
under the constraint condition of stress, deflection and design 
variables. The mathematical optimization model for the 
strength and stiffness subsystem in the whole retraction work-
ing condition is described as follows: 

 
* 2 * 2 * 2

1 1 11 1 11 1 11

* 2 * 2
1 11 1 11

min ( ) ( ) ( )

             ( ) ( )
Q QJ R R A A H H

H H W W

= - + - + - +
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Fig. 5. The stresses distribution of the telescopic boom in the whole 
retraction condition. 

 
 

 
 
Fig. 6. FEA model on local stability analysis of the boom. 

 
 
Fig. 7. The local buckling mode of the boom. 
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where *

1R , *
1A , *

1QH , *
1H and *

1W  are the optimal solutions of 
system-level design variables, which are obtained by follow-
ing system level optimization and delivered to subsystems. R11, 
A11, HQ11, H11 and W11 are design variables of subsystem 1 that 
correspond to the system level R1, A1, HQ1, H1 and W1. R2 - R6 

and A2 - A6 are local design variables of subsystem 1. The 
cross-sectional dimensions of the boom are in millimeters. f is 
a deflection value of the boom. l is the total length of tele-
scopic boom in working condition and its dimension is in 
meters. se is the von Mises maximum equivalent stress with a 
unit as MPa.. The deflection and stress values are obtained by 
the FEA in Sec. 3.2.1. 

 
4.3 Subsystem model 2 of local stability 

The objective of local stability optimization is to minimize 
the difference between the design variable value of this sub-
system and the expected value for system design variable 
under the condition of meeting the constraint conditions of 
local critical stress and design variable boundary. The mathe-
matical optimization model of the local stability subsystem in 
the whole retraction working condition is shown as follows: 

 

( ) ( ) ( )
( ) ( )

22 2* * *
2 1 12 1 12 1 12

2 2* *
1 12 1 12

min

             

Q QJ R R A A H H

H H W W

= - + - + - +

- + -
 (11) 

12 12

12

12 12

. . 114 306,570 612,
370 404, 484,

[5,7], [0,2].

Q

cr

s t H H
W

R A
s

£ £ £ £

£ £ £

Î Î
 

 
where R12, A12, HQ12, H12 and W12 are design variables of sub-
system 2 that correspond to system level variables R1, A1, HQ1, 
H1 and W1. During the optimization of local stability subsys-
tem 2, the buckling critical stress value scr is obtained based 
on the finite element modeling and eigenvalue buckling analy-
sis described in Sec. 3.2.2. The applied load is the stress value 
on the dangerous section, which is obtained from the calcula-
tion of strength and stiffness subsystem and is passed to the 
local stability subsystem. As shown in Fig. 8, in the subsystem 
of strength and stiffness, the tensile or compressive stresses 
S1~S9 in the A~I points can be obtained through FEA and 
passed to the local stability subsystem to perform loading and 
calculating of the local critical buckling stress. 

 
4.4 System level model 

The objective of system optimization is to minimize the 
booms' total volume (self-weight) to satisfy the constraint 
condition of design variables consistency. The mathematical 

optimization model of this system in the whole retraction 
working condition is shown in Eq. (12): 

 
1 2minV V V= +                                  (12) 
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where V1 is the volume corresponding to the optimal solution 
that is derived from strength and stiffness subsystem, V2 is the 
volume corresponding to the optimal solution that is obtained 
from local stability subsystem. *

1J  and *
2J  are the consis-

tency constraint functions between the system level and the 
two subsystem level design variables, respectively. *

11R , *
11A , 

*
11QH , *

11H  and *
11W  are optimal solutions of design variables 

in the subsystem 1 optimization, and *
12R , *

12A , *
12QH , *

12H  
and *

12W  are optimal solutions of design variables in subsys-
tem 2 optimization. These optimal solutions are passed to 
system level. s is relaxation factor, which is specified as s1 and 
s2, respectively, based on the inconsistency between the sys-
tem level and subsystems at iterative process according to the 
following adaptive relaxation algorithm. At the accelerating 
convergence stage, a penalty function consisting of the system 
level consistency constraint can be added in the objective 
function V. 

After the base section's dimensions are determined by CO 
in the whole retraction working condition, the thicknesses of 
other telescopic sections still need to be calculated in the 
whole extension working condition. In the whole extension 
working condition of CO, the system design variables and 
corresponding design variables of the two subsystems are the 
upper cover plate thickness and the thickness difference be-
tween the upper and lower cover plates for the other telescopic 

 
 
Fig. 8. The extraction position for stress values in the boom section. 

 



3868 A. Ji et al. / Journal of Mechanical Science and Technology 31 (8) (2017) 3861~3873 
 

 

sections. The mathematical optimization models of the two 
subsystem levels and the system level are similar to Eqs. (10)-
(12), and the design variables need to be replaced in the three 
equations.  

 
5. The CO method of telescopic boom 

As mentioned in the Introduction and Sec. 2, for the con-
ventional CO, the compatibility between the subsystems is 
ensured by the equality constraints introduced into the system 
level optimization. However, the equality constraint can cause 
the system level optimization not to satisfy the K-T condition, 
and it can result in a hard convergence of optimization. Some 
CO improvements based on the relaxation factor method have 
been described in the introduction. However, an appropriate 
value of relaxation factor is difficult to determine. As the tele-
scopic boom has complex structures, the FEA is used for a 
performance analysis in each step of the iteration during opti-
mization, which brings large calculations. Thus, it is very ur-
gent to increase the efficiency of CO. Our previous study pro-
posed [36] the adaptive relaxation factor algorithm and penalty 
function approach based on the inconsistency between system 
level and subsystem level. In this algorithm, the relaxation 
factor is adjusted adaptively according to the CO process, and 
in the final stage of CO, the penalty function is introduced to 
the system level objective function. With these two ap-
proaches, the relaxation factor oscillation and CO efficiency 
can be improved. Therefore, the adaptive relaxation factor 
algorithm and the penalty function approach are adopted to 
solve the CO of telescopic boom. 

 
5.1 The adaptive relaxation factor algorithm  

Using s as the relaxation factor, similar to Eq. (1), the con-
sistency constraint between the subsystem i and the system is 
defined as  

 
2* *( , )*

i i iJ s= £z x z - x .                          (13) 

 
Letting z* denote the optimal solution vector obtained by the 

system optimization, then the value of * *( , )*
i iJ z x  indicates 

the optimal solution inconsistency between the subsystem 
level and the system level. Thus, the degree of the inconsis-
tency k for the two subsystems of telescopic boom can be 
expressed as 

 
2 2* * * * * *

1 1 2 2( , ) ( , )k J Jé ù é ù= +ë û ë ûz x z x .            (14) 

 
Considering that the difference between the subsystem op-

timal solution *
ix  and the system optimal solution z* is large 

at the preliminary optimization stage, a large value of the re-
laxation factor can then be chosen. The relaxation factor s1 at 
this stage is defined as 

2
1 , 0.5 1s kl l= ´ < < .                          (15) 

 
Since l is a constant less than 1, the inconsistency between 

the system level and the subsystem level becomes smaller 
during optimization. 

As the CO of telescopic boom proceeds, the inconsistency 
between system level and subsystem level gradually decreases, 
and relaxation factor s1 does the same. While 0.0005 £ s1 
£ 0.005, to avoid the situation that the oscillation of the relaxa-
tion factor leads to the increase of the iteration number and is 
difficult to converge in CO process, strictly decreasing func-
tion can be used to calculate the relaxation factor. Thus, the 
relaxation factor s2 at this stage is expressed as 

 

2 { } , 0.25i is k ia a b= ´ = + ,                    (16) 
 

where {ai} is a decreasing series whose value decreases with 
the number of iterations, and b is a constant used to control the 
initial value of s2. 

 
5.2 The penalty function approach 

After the above iteration process of CO, the relaxation fac-
tor can be decreased to a small enough value, and the optimal 
solutions of system level and two subsystems level are very 
close. At this time, the decreased speed of the inconsistency is 
slow, only relying on the adjustment of relaxation factor. It 
means that the convergence rate of CO slows down. To accel-
erate decreasing of the inconsistency and improving the con-
vergence efficiency, the system consistency constraint is 
added into the system objective function as the penalty func-
tion after s1 £ 0.0005. The penalty function ( )j z is given by  

 
2

* *

1

( ) ( , )i i
i

Jj t
=

= åz z x ,                             (17) 

 
where t is a penalty factor. Therefore, the system level objec-
tive function is changed from V to V+f(z). 

 
6. CO realization and optimization results analysis 

The optimization models of subsystem 1 for the telescopic 
boom's strength, stiffness, and subsystem 2 for local stability 
are established, respectively, based on FEA. Both subsystems 
perform their own optimization and obtain the respective op-
timal solutions. The system level coordinates the optimal solu-
tions of the subsystems and finally obtains the unified optimal 
solutions. The CO process of telescopic boom is illustrated in 
Fig. 9. 

Multidisciplinary design optimization ISIGHT code and in-
tegrated ANSYS finite element modeling analysis are used to 
implement CO process of the telescopic boom. In ISIGHT 
code, the CO workflow composed of multiple components is 
set up, which is shown in Fig. 10. In the model, the Simcode 
components are used to integrate the aforementioned ANSYS 
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APDL command stream files of FEA for the boom's paramet-
ric strength and local stability. Meanwhile, the objective func-
tion, constraint conditions, design variables transfer and calcu-
lation of relaxation factors are defined, respectively, with mul-
tiple calculator components. Considering that the telescopic 
boom's optimization problem includes real and integer design 
variables, the Multifunction optimization system tool (MOST) 
algorithm [37] is used to solve the optimization problems. 
MOST can handle optimization problems whose design vari-

ables are real and integer, and use Sequential quadratic pro-
gramming (SQP) and branch-and-bound to search for the op-
timal solutions. Due to the large amount of optimization cal-
culation, HPZ420 workstation is used as a tool. Finally, the 
system optimal solutions are obtained after several iterations. 
The iteration result of the minimum boom volume as the ob-
jective is shown in Fig. 11. Table 1 gives the comparisons of 
telescopic boom section dimensions before and after optimiza-
tion, while Table 2 gives the comparisons of the boom per-

system level optimization
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System variable values transfer

ANSYS input file of 
strength and stiffness 

ANSYS input file of 
buckling load

without interference
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system level 
optimization

optimization solution of subsystem 1 optimization solution of subsystem 2

nodes stress
S1-S9，

stress F1

NO

YES

existence of interference

NO

YES

 
 
Fig. 9. Architecture of CO for the telescopic boom. 
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Fig. 12. Measurement system for stresses on the telescopic boom. 

 

formance before and after optimization. 
As shown in Tables 1 and 2, the shape of the boom’s cross-

section becomes more reasonable after optimization. The 
boom's local buckling critical stress increases from 193 MPa 
to 428 MPa and its anti-local-buckling ability reaches the 
same level as the strength, and the maximum load-carrying 
stress on the boom increases from 356 MPa to 405 MPa. Be-
sides, the thickness of the other sections except for the base 
section is reduced by 1 mm, which indicates that it takes full   

 
 
 
 
 
 
 
 
 

 
 

 
advantage of the load-carrying capacity of the material. The 
total volume of the telescopic boom (self-weight) can be de-
creased by 11.8 % after optimization. 

 
7. Experimental tests 

To check the above optimization results, a physical model 
for testing was made according to the structure and dimen-
sions of the telescopic boom obtained by optimization. The 
critical cross-section of the telescopic boom was selected to 
measure the stress, and the results obtained by experimental 
testing were then compared with the theoretical calculations. 
The measuring devices included ASMD2-16 type dynamic 
strain gauge and DELL notebook computer, the experiment 

Table 1. Comparison of the optimal design values with the original design values. 
 

Design parameters H1 W1 R1 R2 R3 R4 R5 R6 A1~A6 

Original design value/mm 612 404 6 6 6 5 5 4 0 

Optimized value/mm 598 377 7 5 5 4 4 3 0 

 
Table 2. Comparison of the optimal boom properties with those of the original boom. 
 

Boom performance Maximum stress /MPa Deflection /mm Local buckling critical stress /MPa Boom volume /mm3 

Before optimization 356 104 193 0.2823×109 

After optimization 405 105 428 0.2490×109 

 

 
 
Fig. 10. Integration framework of components of CO in the telescopic boom. 

 

 
The number of iterations 

 
Fig. 11. CO iterative curve of the optimal objective. 
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setup is shown in Fig. 12. ASMD2-16 is a synchronized dy-
namic strain gauge with high performance to measure various 
static and dynamic strain of the linear elastic material. In the 
design and manufacturing of the instrument, the influence 
factors, such as temperature, humidity, vibration, and static, 
pulse, electromagnetic radiation, are fully considered. Thus, it 
has high precision, good linearity, small temperature shift in 
measurement, and can work safely for a long time. ASMD2-
16 can be widely used in complex structural strain testing. The 
main technical indexes of ASMD2-16 are: 16 channels sam-
pling rate up to 12 kS/s per channel, 0.5 με/0.1 μV resolution 
ratio, 1.5 με/0.2 μV temperature shift, 5.76 kHz 3 db cut-off 
frequency, and long wire compensation to remove measuring 
errors caused by wire resistance. Therefore, ASMD2-16 can 
meet the needs of boom testing. In the stress testing, data ac-
quisition and processing were conducted by the test software 
system. To compare the testing results with the optimization 
results, two working conditions of the whole retraction and the 
whole extension were employed. The position of the measur-
ing points was selected in the front of luffing cylinder support 
of the base section at the whole retraction working condition. 
At the whole extension working condition, the position of the 
measuring points on the base section was the same as the 
whole retraction working condition, the positions of the meas-
uring points on the other sections were selected in the vicinity 
of the overlap with the lower sliding pads, and the layout of 
three measuring points on the arc surface of the boom is 
shown in Fig. 13. Considering the impact of the environ-
mental temperature on the measured values of stresses, a tem-
perature compensating strain gauge was then installed in the 
non-load bearing area, shown in Fig. 14, and the "one to one" 

compensating mode was applied to the stress value of the 
measuring point. The comparison between the measured val-
ues and the calculation values of the telescopic boom is shown 

Table 3. Comparison of the values of measured stress with calculation values in the optimized boom. 
 

Working condition Section Test point Measured value  
/MPa 

Calculation value 
/MPa 

Relative deviation 
/% 

Whole retraction  
working condition Base section 

1 
2 
3 

-337 
-358 
-343 

-354 
-385 
-361 

5.04 
7.54 
5.25 

Base section 
1 
2 
3 

-286 
-305 
-294 

-270 
-284 
-275 

5.59 
6.89 
6.46 

Sec. 2  
1 
2 
3 

-293 
-281 
-305 

-278 
-313 
-283 

5.12 
11.39 
7.21 

Sec. 3  
1 
2 
3 

-251 
-308 
-264 

-273 
-295 
-284 

8.76 
4.22 
7.58 

Sec. 4  
1 
2 
3 

-238 
-278 
-245 

-257 
-268 
-263 

7.98 
3.60 
7.35 

Sec. 5 
1 
2 
3 

-246 
-283 
-255 

-257 
-273 
-261 

4.47 
3.53 
2.35 

Whole extension  
working condition 

Sec. 6 
1 
2 
3 

-218 
-232 
-212 

-204 
-256 
-228 

6.42 
10.34 
7.55 

 

 
 
Fig. 13. Layout of measuring points on the arc surface of the boom. 

 
 

 
 
Fig. 14. Temperature compensating strain gauge. 
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in Table 3. From Table 3, the maximum stress occurs at the 
measuring point 2, which is located at the lowest point of the 
lower arc surface for the base section at the whole retraction 
working condition. The calculation values and measured val-
ues reveal compliance. All of the stresses at the critical cross-
section do not exceed the allowable stress value, which indi-
cates that the telescopic boom structure after optimization is 
safe. By comparing the calculation values with the measuring 
values of stresses, the relative deviation of the both is less than 
10 %, except two measuring points, which indicates that the 
results of optimization with the results of the experimental 
testing are coincided. The main reason for the result deviation 
may be that there is inconsistency between the FEA model in 
optimization and the physical model. For example, when the 
physical model is made, it is difficult to construct the exact 
NURBS smooth curve for the boom cross-section, which can 
only be formed by subsection. In addition, in finite element 
modeling, the connection between the sliding pad and the 
boom is the ideal state without gap, but in fact they are loaded 
and a gap exists. Therefore, error  exists between load in the 
finite element model and the actual model of the boom. 

 
8. Conclusions 

The optimization design for a telescopic boom, including 
complicated comprehensive optimization problems such as 
strength, stiffness and local stability, is difficult to be solved 
with conventional optimization methods. Therefore, we de-
composed the complicated telescopic boom optimization 
problem into two more tractable subsystem-level optimization 
problems of strength and local stability with CO thought. By 
building the optimization models of system-level and subsys-
tem-level, the CO problem was solved and the uniform opti-
mal solution was obtained in this study. The comparison re-
sults between the measured stresses in the physical model and 
the theoretical calculation show that the optimized design of 
telescopic boom are reliable. 

In the future, we will investigate promoting the efficiency of 
the CO of telescopic boom with an approximation model. 
Because the FEA for the telescopic boom costs long time for 
each optimization iteration, the approximation model is con-
sidered as another solution to replace it. However, the accu-
racy of the approximation model depends on the number of 
sample points, so how to construct an efficient approximation 
model for the FEA is one of most important breakthroughs in 
the future work. 
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Nomenclature------------------------------------------------------------------------ 

b        : Width of the boom cross-section 
ci (xi)    : Constraint function of subsystem level 
d       : Total Chord length 
f       : Deflection value of the boom 
h       : Height of the boom cross-section 

*( )iJ z    : Consistency constraint of system level 
Pi       : Control point 
Q0, Q1, Q2  : Data points 
s       : Relaxation factor 
U      : Node vector 
xi       : Design vector for subsystem i 

*
ix   : Optimal xi 

z  : System design vector 
z*       : Expected value of system design vector 
wi       : Weights 
se          : Von Mises maximum equivalent stress 
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