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Abstract 
 
In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cable-

suspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion 
were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion 
are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the dif-
ferential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain 
range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance 
for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in 
the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, 
cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also use-
ful to investigate the accuracy and reliability of instruments in future.  
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1. Introduction 

Cable-driven parallel mechanism used to drive end-effector 
is composed of winches, platform, cable and base platform. In 
this mechanism, the platform is hung by suspension cables. It 
will be a wide use on surface or under water work and the 
hanging goods. Due to the small moving mass, less expensive, 
low friction and large workspace, cable-driven parallel 
mechanisms have been used widely in different applications, 
such as obstacle avoidances [1, 2], mobile cranes [3, 4], eleva-
tors [5, 6], vibration isolator [7], service robotics [8] and con-
struction shaft hoisting systems [9], etc. 

Motion control topologies of the cable-driven parallel ro-
bots are generally divided into two categories: The full con-
strained cable-driven mechanism [10, 11] and cable suspended 
mechanism [12-15]. Cable-driven parallel mechanism (n-
DOF) should have at least n+1 cables to completely restrain 
the moving platform [16, 17] shown in Fig. 1(a). The moving 
platform of full constrained cable-driven mechanism can ob-
tain high velocities and accelerations in reachable workspace 
by quickly winding up the cables. However, cable suspended 

mechanism (Fig. 1(b)) need own gravity to keep its stability 
[17, 18], which introduces many new challenges in the study 
of suspended mechanism compared to that of the full con-
strained cable-driven mechanism. In Refs. [18, 19], they used 
nonlinear feed forward control laws in the cable length coor-
dinates and proposed optimal tension distribution algorithm to 
reduce energy usage by the actuators. The spring and damper 
has been adopted to be installed in the radial direction of the 
pendulum between the payload and the crane cable for reduc-
ing the crane payload sway motion [20]. Dynamic feasible 
workspace and trajectory planning algorithm of cable- 
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Fig. 1. Full constrained cable-driven mechanism and cable suspended 
mechanism. 

  



3158 G. Cao et al. / Journal of Mechanical Science and Technology 31 (7) (2017) 3157~3170 
 

 

suspended mechanism are also studied in Refs. [21, 22].  
Due to the fact that time-varying velocity can result in vi-

brations of the translating media, the longitudinal vibration 
during working has immense consequences for performance 
of the suspended mechanisms. For cable’s high slender ratio, 
some researches are focus on cables simplified as length-
variant distributed-parameter components, such as strings, 
rods and beams. Liu et al. [23] put up with some theoretical 
tools in researching on longitudinal vibration on FAST. Lon-
gitudinal vibration of an elevator system model with homoge-
neous and inhomogeneous boundary conditions is discussed to 
study the nature frequency of the elevator [24].  

The previous researches focused on the dynamics of one ca-
ble with simple boundary conditions. Cable suspended mecha-
nism has many cables with complex boundary conditions. 
Based on linear boundary condition and a set of independent 
generalized coordinates, equations of motion applied a spatial 
discretization and reduction method can be converted to a sys-
tem of ordinary differential equations to calculate dynamic 
responses [25, 26]. The reduction method needs independent 
generalized coordinates to eliminate redundant constraints [27]. 
A new vector of independent generalized coordinate should be 
selected and integration restarted when the independent gener-
alized coordinates are changed. When the geometric matching 
conditions were nonlinear, the reduction method is difficult to 
select a set of independent generalized coordinates. 

As is well-known, in practice the reliability of equipment 
may be affected by severe shaking. Swing condition is a very 
complex condition that has become a hidden problem affect-
ing the safety operation of cranes and elevators [28]. Swing 
and heaving conditions often occur on many transport plat-
forms such as sinking platforms in the mining industry, ma-
rine ships when sailing, etc. However, the analysis of swing 
and heaving condition has not been well-studied in cable sus-
pended mechanisms. Wang et al. [29] have proposed a novel 
mechanical structure with low power but high load capacity to 
realize swing environment. They have analyzed its static char-
acteristic based on vector closure conditions. Compared with 
it, drum driver has been adopted as a new driving system in 
paper, which has an advantage of swing motion in a large 
scale. In addition, the tension in the suspension cables should 
be properly allocated to meet the safety and performance re-
quirements. Hence, it is necessary to evaluate the design by 
calculating the dynamic responses of the platform and the 
cables. Asynchronous motion velocities and different frequen-
cies will cause imbalances in cable tension. Nonlinear dy-
namic behaviors, such as no-smooth phenomenon, will appear 
at certain range of asynchronous motion velocities and special 
frequency.  

 
2. Description of IRCSHS 

The Incompletely restrained cable-suspended swinging and 
heaving system (IRCSHS) is designed and shown in Fig. 2, 
which composed of two drums, sheaves, cables, base frame,  

suspended platform and heaving system. The cables are 
winded on the drums respectively, which is shown in Fig. 2. 
The IRCSHS is equivalent to the suspended platform hang 
with four suspension cables. The four connected points of the 
suspension cable are symmetrical distribution around the sus-
pended platform. The cables are fixed on the drums by a 
pressing plate respectively, and the drums simultaneously 
control the suspended platform posture by changing the cable 
length with a periodic motion. The IRCSHS uses suspension 
cables instead of conventional links, which brings the advan-
tage of the simple structure and low power consumption but at 
the same time introduces a more complex dynamic behavior.  

In order to master the dynamic characteristics of IRCSHS, 
the substructure to identify the physical parameters of the ith 
and (i+2)th suspension system is proposed and shown in Fig. 
3(a). It assumes that the upper end of each suspension cable is 
fixed to the drum, while the lower end is attracted to the sus-
pended platform. The longitudinal vibration along the z axial 
transport motion caused by inevitable elasticity of each cable  
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Fig. 2. The model of IRCSHS. 
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Fig. 3. The model of the ith suspension system model. 
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is depicted in Fig. 3(b). And the Cartesian reference frame 
O XYZ- is originated at the centroid of the base platform; the 
Cartesian reference frame bO xyz-  is set at the centroid of 
suspended platform; the coordinate of the lower ends is 
( ), ,i i ix y z  with respect to bO xyz- ; the coordinate of the up-
per ends is ( ), ,i i iX Y Z  with respect to O XYZ- . 

The operation of IRCSHS is described as follows: The in-
puts are the drums displacements and heaving displacement of 
hydraulic cylinder, and the outputs are the posture of the sus-
pended platform. Each independently controllable drum of the 
IRCSHS manipulates the suspended platform in space by a 
spatially arranged cable. When one drum works independently, 
the swinging motion of suspended platform is formed along a 
single coordinate axis.  

Firstly, equations of motion of IRCSHS are derived from 
the assumed modes method and Lagrange equations of the 
first kind, which are a set of Differential algebraic equations 
(DAEs). The Lagrange’s multipliers are adopted to reveal the 
interaction forces of constrained dynamical systems. Secondly, 
the resulting spatially discretized equations are converted to 
the classical Newton-Euler equations of motion applying lin-
ear complementary theory [30]. A time discretization scheme 
[31] is especially suited for the system with unilateral geomet-
ric and kinematic constraints. Lastly, the dynamic responses, 
such as non-smooth phenomenon, are discussed. The suspen-
sion cables and the platform components are connected to-
gether at the same time, which imposes restrictions on their 
relative motion, and the operation of large rotations or violent 
exercise would introduce geometric and tensional nonlinear 
phenomena. The number of bearing cable would be dynami-
cally changed and determined by its tensioned or loosened 
condition during this operation. In this paper, the dynamic 
behaviors of IRCSHS with the nonlinear geometric matching 
conditions, asynchronous motion velocities and different 
swing frequencies are systematically investigated. 

 
3. Theoretical model of IRCSHS 

3.1 Spatial discretization 

The flexible suspension system can be simplified as an axi-
ally, moving string with time-varying length and a rigid body 
mass at its lower end, which is shown in Fig. 3. For the plat-
form mass is much larger than the suspension cable and the 
length of each suspension cable is relatively short, the lateral 
vibration of the suspension cables and the influence of the 
frictional force are ignored. The IRCSHS can be modeled as 
four cables with varying length and the sheaves can be set as 
lumped-parameters on cables. The kinetic energy is given by 
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where ( , )iT z t  is the static tensions in the cables at position z 
due to the gravitational acceleration g and given as ( , )iT z t =  

( ) ( )( )( ) , ( 1 ~ 4).i i ti tiz g l t l z h z l ir × × - - × - =  in which, ( )tih z l-  
is the unit step function. Each cable has the same E and A. The 
strain ie  can be approximately expressed as /i iu ze = ¶ ¶ . 

The upper geometric boundary conditions of the suspension 
cables are obtained as 

 
(0, ) 0 .iu t =                                     (4) 

 
The lower geometric matching conditions at the interface 

between the suspension cable and the suspended platform are 
described as  

 

( ) ( )( ) ( ) ( ) ( )2 2 2,i i i i x y zg l t u l t t t t t= + - D + D + D   (5) 

 
where  

 
T T T( ), ( ), ( ) , , ( ), ( ), ( )x y z c i i i i i it t t x y z X t Y t Z té ùD D D = + -é ù é ùë û ë ûë û r R

 
 

in which, ( )( ),Y ( ), ( )i i iX t t Z t  is the coordinate of the upper 
ends; the rotation matrix R can be obtained from basic rotation 
in term of the roll-pitch-yaw，which can be expressed as 
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where c( )×  and s( )×  represents shorthand writings for sine 
and cosine functions, respectively.  

Based on the separation of variables method, the longitudi-
nal displacement iu  cab be expressed as 
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where n represents the number of included modes; a new in-
dependent variable = / , ( 0 ~ )i iz l z lx =  is introduced and the 
time-variant domain [0, l] for z is converted to a fixed domain 
[0, 1] for x . The ,i kU should satisfy the homogeneous 
boundary conditions of Eq. (3), and it can be expressed as 
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Substituting the Eqs. (1)-(3) and (5) into the Lagrange equa-

tions of the first kind [32] 
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yields the equations of motion 
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where 3I denotes a 3-by-3 identity matrix, 
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3.2 Solving method 

As described in Eq. (8), the results should meet constrained 
condition on interface between cables and suspended platform 
simultaneously. Therefore, the geometric boundary constraints 
are used to impose design constraints on system responses in a 
dynamic system, and the equation of motion can be rewritten 
as 

 
( ) T, , .qt- - =Mq Q q q G λ 0&& &                      (13) 

 
Taking the time derivative of the constrained condition, the 

Eq. (4) could be expressed as 
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The linear complementarity formulation on velocity level 

can be written as  
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where, the parameter Λ  is shown in the Appendix.  

Hence, the equation of motion can be converted to differen-
tial equation, which is rewritten as  
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in which, MM , MQ  and qMG  are the relative matrices of 
the mass, force vector and the Jacobian matrix of the con-
straint equations at midpoint of time interval, respectively. Aq&  
and Eq&  are generalized velocity at two-sided-point of time 
interval, respectively.  

Thus, the generalized velocity Eq&  of the time of the next 
step can be expressed as 

 
( )1 1 d .E M q M M M At- -= + +q M G Λ M Q q& &                (17) 

 
The fixed-step discrete method computes the time of the 

next calculation step by adding a fixed step size to the current 
time and the mid-time over the time interval. The preceding 
process is repeated starting from the initial conditions of the 
generalized velocity updated by the solution at the end of time 
intervals. The accuracy and the length of time of the resulting 
calculation depend on the size of the steps dt  taken by the 
calculation: The smaller the step size, the more accurate the 
results are, but the longer time the calculation takes. A more 
detailed description of derivation process is provided in Ap-
pendix. 

 
4. Applications 

4.1 Parameters  

The parameters for the IRCSHS are listed as follows: Ic = 
diag(1.4,1.4,0.8)×104 kg·m2, ρ = 0.9753 kg·m-1, mc = 1.2 ×104 
kg, E = 1.2×1011 Pa, A = 2.01×10-4 m2. The initial length of 
each suspension cable is specified at 7.19 m, and the distance 
between each cable attachment point and the origin of 

bO xyz- is 2.07 m. 

4.2 Dynamic response of IRCSHS 

Swing movement profile about displacement and accelera-
tion curves of the suspension cables are presented in Fig. 4, 
and heaving movement profile is plotted in Fig. 5. The dis-
placements are sine functions specified at 0.1 Hz, and the jerk 
is a constant at the first few seconds.  

The results of calculation simulation in posture, cable tension 
and longitudinal vibration are shown in Figs. 6-8, respectively. 
The posture of the suspended platform, cable tensions and dis-
placements of low ends of suspension cables are presented, 
indicating that all results are in a reasonable range. From Figs. 
6-8, the angles and displacements of the suspended platform 
represent approximately sinusoidal variation with a sinusoidal 
excitation. Extra displacements along x axes and y axes are 
irregular, which mainly comes from the geometrically nonlin-
ear performance of suspension cable and non-linear coupled 
multidimensional freedom of suspended platform. Thus, it is 
might difficult to achieve the control objectives simultaneously, 
because the dynamic behaviors of IRCSHS are affected by 
many factors, such as the frequency of motion, non-
synchronous driving velocities, etc. Under-constrained system 
is usually challenging to achieve these objectives at the same 
time, for this reason, the effect of different frequencies and 
velocities of motion will be analyzed as follows. 

 
4.3 Responses of asynchronous motion velocities 

Drum manufacturing error, friction and abrasion wear of 
groove or irregular cable arrangement can be considered as 
some source of asynchronous motion velocities of upper ends 
of cables in real practical problem, and they may play an espe-
cially important role in the tension and longitudinal vibration 
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Fig. 4. Swing movement profile. 
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of short cables. In order to master the dynamic characteristic 
with asynchronous motion velocities, the motion law of the 
first three cables is considered to be the same as before, and 
the velocity of 4th cable on 2nd drum is set as 1.035, 1.05, 
1.10 times that of the formers.  

Considering that non-smooth phenomena might be caused 
by kinematic constraints or physical effects, such as cable 
tension with unilateral properties, geometrical path length of 
four cables for final solution at the end of a successful step is 
used to judge the tension cable number for the following 
step：The governing equations of tension-to-loose cable with 
free vibration can be removed from the total system; otherwise, 
the governing equations of loose-to-tension cable can be rein-
tegrated in the total system.  

The results of IRCSHS with asynchronous motion veloci-
ties about 1.035, 1.05, 1.10 times of other cables are shown in 
Figs. 8-10. As can be seen from Fig. 10, the tension of 1th 
cable becomes zero around the time of 10 s, 30 s and 50 s; the 
4th cable tension is similar to the former in different time 

segments, which is in turn significantly effect to abrupt change 
of displacement and angle about Z axis, as it is illustrated in 
Figs. 9(e) and (f). The asynchronous motion velocities in two 
drums can lead to no-smooth results which are caused by the 
unilateral constraint during operation. The parametric study 
indicates that the time zones of no-smooth phenomenon and 
the cable tensions increase with the ratio of asynchronous 
motion velocities. The simulated response of different asyn-
chronous motion velocities as shown in different line styles in 
Figs. 9(a)-(d) are almost the same. 

 
4.4 Responses of different swing frequencies 

With same heaving motion, the cable tension and system 
stability are heavily influenced by swing excitation frequency, 
which is one of the critical factors that affect the dynamic 
performance of IRCSHS. Swing frequencies are varied from 
low to high, system response of cable tension; longitudinal 
vibration and posture are shown in Fig. 12. The spectrum am-
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Fig. 6. Posture of the suspended platform. 
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plitude at a specific swing frequency is a finite number of 
points. From an overall perspective, swing frequency 
increases continuously, cable tension and longitudinal vibra-
tion also increase gradually in Figs. 12(a) and (b) from low to 
high. When fs less than 0.104 Hz, the system response is peri-
odic oscillations with roughly same amplitude. In the parame-
ter region of 0.104 Hz 0.1857 Hzsf£ £ , the width of ampli-

tude area is basically the same. In the interval of 
0.1857 Hz < 0.2053 Hzsf £ , the excitations frequency is 
nearly to the natural frequency of translational degree of free-
dom in x-axis and y-axis from power spectral analysis of the 
posture in Fig. 13(a). For this reason, it will bring resonance 
on translational degree of freedom of x-axis and y-axis. Trans-
lational displacement is becoming increasingly and cable will  
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Fig. 7. Cable tensions of low ends of cables. 
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Fig. 8. Longitudinal vibration of low ends of cables. 
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Fig. 9. Posture with different velocities. 
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Fig. 10. The tension with different velocities. 
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sometimes be loose. The results show that the no-smooth phe-
nomenon will happen in the circle of Fig. 12(a). Moreover, as 
swing frequency changes continuously, the system would 
soon return to stability when 0.2053 Hz sf< .  

The performance of time characteristics of IRCSHS with 
0.1857 Hzsf £ is similar and shown in Figs. 6-8. System 

response is a steady period motion at low frequency, and the 
no-smooth phenomenon does not happen. When the swing 
frequency equals to 0.223 Hz which is greater than 0.2053 Hz, 
the time history, phase trajectory and power spectral analysis 
of the posture on the responses of the IRCSHS are shown in 
Fig. 13(a). The posture of suspended platform is stable peri-
odic motion on phase trajectory which exhibits a closed curve. 
It can readily be observed that previous five degree of free-
doms of power spectral analysis contains the excitation fre-
quency, and the natural frequency of the vibration system on 
translational degree of freedom of x-axis and y-axis is 
0.186 Hz. However, the response motion of rotational free-
dom γ is period-doubling-frequency motion. If the swing fre-
quency was 0.191 Hz which is close to the natural frequency, 
the amplitude of translational degree of freedom gets larger 
and larger on x-axis and y-axis, which leads to instability of 
the system. 

 
5. Experimental IRCSHS 

To verify dynamic model accuracy compared with the real 
double-drum driving swing simulation experimental system. 
In laboratory, a prototype of the IRCSHS is built for experi-
mental tests (Fig. 14). The prototype is a small modeling ex-

periment, which is used to verify the theoretical analysis of the 
IRCSHS, and the parameters of the prototype model are 
shown in Table 1.  

The implementation of the digital controller and data acqui-
sition which are processed on Pewin32PRO2 and Labview are 
shown in Fig. 15, which includes a number of enhancements, 
such as new driven approach and control method. The control 
hardware includes UMAC, Panasonnic servo motor, 
HCM365B electronic compass, a host PC and other auxiliary 
accessories. The control input signal is accomplished by 
UMPAC before it is converted by driver MADHT and sent to 
the Panasonnic servo motor for control. The posture signals as 
signals to the controller after being converted by a HCM365B 
modular.  

Experimental results and theoretical calculation are shown 
in Fig. 16, from which it can be noticed that simulation results, 
with consideration of parameter uncertainties and external 
disturbances, can match experimental results satisfactorily. 
From power spectrum analysis, frequency components of the 
swing angle are basically the same, which is useful for testing 
the efficiency of the proposed analytical approach. 

 
6. Conclusions 

The IRCSHS is designed for simulating swing situations 
and heaving motion in a new way. The nonlinear vibrations of 
the IRCSHS with flexible suspended cables are investigated 
under different frequencies and asynchronous motion veloci-
ties. The AMM and Lagrange equations of the first kind are 
combined to establish the equations of motion and a linear  
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Fig. 11. Longitudinal vibration with different velocities. 
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complementarity problem is adopted for solution, which are 
for working out several challenging problems in the IRCSHS, 
including the constraint force and the displacement of the 
suspended platform.  

Finally, the effects of various parameters, such as asynchro-
nous motion velocities on two drums and different swing fre-
quencies are discussed. The cable tension difference and asyn-
chronous motion velocities of systems can become larger at 
specific frequency and lead to no-smooth phenomenon. The 

Table 1. Parameters of the prototype model.  
   

Parameter Description Value 

M Mass of suspended platform 3.2 kg 

A Cross section area of cable 4.93 mm2 

E Young’s modulus 1.2×1011 Pa 

g Gravity acceleration 9.81 m/s2 

ρ Cable density 0.005 kg/m 

0sl  Initial length of suspended portion 0.198 m 

il  Full length of suspended cable 0.72 m 

s Amplitude displacement 0.024 m 

T Period of motion 10 s 

 
 

 
 

 
 

 
 
Fig. 12. System response with different swing frequencies. 

 

 
(a) 

 

 
(b) 

 
Fig. 13. Phase trajectory and power spectral analysis of the posture 
with different frequencies: (a) fs = 0.223 Hz; (b) fs = 0.191 Hz.  
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parametric study indicates that the asynchronous motion ve-
locities have a great influence on the cable tension, cable dis-
placement of end point and displacement of the suspended 
platform about z-axis. The results indicate that the system has 
both small longitudinal vibration response and position control 
capacity in low frequency. Based on spectrum amplitude 
analysis, translation freedom has a low natural frequency; in 
contrast, the swing excitation frequency has little influence on 
the stability of swing motion. This work can be guidance of 
selection for the working frequency of the swing motion. 
Simulation and experimental results demonstrate that the pro-

posed mechanical structure yields a satisfactory performance. 
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Nomenclature------------------------------------------------------------------------ 

nt : The number of the sheave of ith suspension cable 
ijm  : The equivalent mass of sheave of the jth sheave 

mc : The mass of the suspended platform 
zv  : The heaving motion velocity 
r  : The unit mass of suspension cable 
( )d ×  : The Dirac delta function 

α : Rotation yaw angle 
β : Rotation pitch angle 
γ : Rotation roll angle 

til  : The displacement of the tn th sheave 
E : Young’s modulus  
A : Cross-sectional area 

ie  : Cable strain 
lji : The displacement of the jth sheave in the ith suspension 

system 
li(t) : The displacement of each suspension cable 

( )iv t  : Axial translational velocity 
( )ia t  : Axial translational acceleration 

n : The number of included modes 

 

 
(a) 

 
 

 
(b) 

 
Fig. 14. Prototype of the IRCSWs2: (a) Front view; (b) top view. 
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Fig. 15. Block schematic representation of IRCSHS experimental 
system. 

 

 
 
Fig. 16. Experimental result and theoretical calculation. 
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,i kq  : Generalized coordinates 
,i kU  : The trial function 

g  : A vector of geometric matching conditions 
M  : The relative matrices of the mass 
Q  : Force vector 

qG  : The Jacobian matrix of the constraint equations 
λ  : Lagrangian multiplier 
Ic : The inertia tensor matrix of the suspended platform 

cr&  : The linear displacement vectors 
ω  : The angular displacement vectors  

 
References 

[1] J. Moon and J. V. R. Prasad, Minimum-time approach to 
obstacle avoidance constrained by envelope protection for 
autonomous UAVs, Mechatronics, 21 (5) (2011) 861-875. 

[2] G. S. Chyan and S. G. Ponnambalam, Obstacle avoidance 
control of redundant robots using variants of particle 
swarm optimization, Robotics and Computer-Integrated 
Manufacturing, 28 (2) (2012) 147-153. 

[3] J. Klosinski, Swing-free stop control of the slewing motion 
of a mobile crane, Control Engineering Practice, 13 (4) 
(2005) 451-460. 

[4] M. Heikkila and M. Linjama, Displacement control of a 
mobile crane using a digital hydraulic power management 
system, Mechatronics, 23 (4) (2013) 452-461. 

[5] H. Taplak, S. Erkaya, S. Yildirim and I. Uzmay, The use of 
neural network predictors for analyzing the elevator vibra-
tions, Arabian Journal Forence and Engineering, 39 (2) 
(2014) 1157-1170. 

[6] L. Q. Shi, Y. Z. Liu, S. Y. Jin and Z. M. Cao, Numerical 
simulation of unsteady turbulent flow induced by two-
dimensional elevator car and counter weight system, Jour-
nal of Hydrodynamics, 19 (6) (2007) 720-725. 

[7] P. S. Balaji et al., Experimental investigation on the hys-
teresis behavior of the wire rope isolators, Journal of Me-
chanical Science and Technology, 29 (4) (2015) 1527-
1536. 

[8] J. P. Merlet, Kinematics of the wire-driven parallel robot 
MARIONET using linear actuators, IEEE International 
Conference on Robotics and Automation 2008, Pasadena, 
USA (2008) 3857-3862. 

[9] X.-G. Shao, Z.-C. Zhu, Q.-G. Wang, P. C. Y. Chen, B. Zi 
and G.-H. Cao, Non-smooth dynamical analysis and ex-
perimental validation of the cable-suspended parallel ma-
nipulator, Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering 
Science, 226 (10) (2012) 2456-2466. 

[10] A. Trevisani, P. Gallina and R. L. Williams II, Cable-
direct-driven robot (CDDR) with passive SCARA support: 
Theory and simulation, Journal of Intelligent and Robotic 
Systems, 46 (1) (2006) 73-94. 

[11] M. A. Khosravi and H. D. Taghirad, Robust PID control 
of fully-constrained cable driven parallel robots, Mecha-
tronics, 24 (2) (2014) 87-97. 

[12] S. Krut, N. Ramdani, M. Gouttefarde, O. Company and F. 
Pierrot, A parallel cable-driven crane for Scara-motions, 
ASME 2008 International Design Engineering Technical 
Conferences and Computers and Information in Engineer-
ing Conference, American Society of Mechanical Engi-
neers, Brooklyn, USA (2008) 101-108. 

[13] K. Kozak, Q. Zhou and J. S. Wang, Static analysis of 
cable-driven manipulators with non-negligible cable mass, 
IEEE Transactions on Robotics, 22 (3) (2006) 425-433. 

[14] M. H. Korayem and M. Bamdad, Dynamic load-carrying 
capacity of cable-suspended parallel manipulators, Interna-
tional Journal of Advanced Manufacturing Technology, 44 
(7) (2009) 829-840. 

[15] S. W. Hwang et al., Trajectory generation to suppress 
oscillations in under-constrained cable-driven parallel ro-
bots, Journal of Mechanical Science and Technology, 30 
(12) (2016) 5689-5697. 

[16] A. Trevisani, Underconstrained planar cable-direct-driven 
robots: A trajectory planning method ensuring positive and 
bounded cable tensions, Mechatronics, 20 (1) (2010) 113-
127. 

[17] M. Carricato and J. P. Merlet, Stability analysis of under-
constrained cable-driven parallel robots, IEEE Transac-
tions on Robotics, 29 (6) (2013) 288-296. 

[18] M. Carricato, Inverse geometrico-static problem of un-
derconstrained cable-driven parallel robots with three ca-
bles, Journal of Mechanisms and Robotics, 5 (3) (2013) 
1885-1886. 

[19] S. Q. Fang, D. Franitza, M. Torlo, F. Bekes and M. Hiller, 
Motion control of a tendon-based parallel manipulator us-
ing optimal tension distribution, IEEE/ASME Transactions 
on Mechatronics, 9 (3) (2004) 561-568. 

[20] L. D. Viet, Crane sway reduction using Coriolis force 
produced by radial spring and damper, Journal of Me-
chanical Science and Technology, 29 (3) (2015) 973-979. 

[21] E. Stump and V. Kumar, Workspaces of cable-actuated 
parallel manipulators, Journal of Mechanical Design, 128 
(1) (2006) 159-167. 

[22] C. B. Pham, S. H. Yeo, G. L. Yang, M. S. Kurbanhusen 
and I. M. Chen, Force-closure workspace analysis of cable-
driven parallel mechanisms, Mechanism and Machine 
Theory, 41 (1) (2006) 53-69. 

[23] Z. H. Liu, X. Q. Tang, Z. F. Shao, L. P. Wang and L. W. 
Tang, Research on longitudinal vibration characteristic of 
the six-cable-driven parallel manipulator in FAST, Ad-
vances in Mechanical Engineering, 5 (5) (2013) 547416-
547416. 

[24] R. M. Chi and H. T. Shu, Longitudinal vibration of a hoist 
rope coupled with the vertical vibration of an elevator car, 
Journal of Sound and Vibration, 148 (1) (1991) 154-159. 

[25] H. Ren and W. D. Zhu, An accurate spatial discretization 
and substructure method with application to moving eleva-
tor cable-car systems-part II: Application, Journal of Vi-
bration and Acoustics, 135 (5) (2013) 051037. 

[26] W. D. Zhu and H. Ren, An accurate spatial discretization 



 G. Cao et al. / Journal of Mechanical Science and Technology 31 (7) (2017) 3157~3170 3169 
 

  

and substructure method with application to moving eleva-
tor cable-car systems-part I: Methodology, Journal of Vi-
bration and Acoustics, 135 (5) (2013) 051036. 

[27] T. W. Park and E. J. Haug, A hybrid numerical integra-
tion method for machine dynamic simulation, Journal of 
Mechanical Design, 108 (2) (1986) 211-216. 

[28] P. Williams, Dynamic multibody modeling for tethered 
space elevators, 58th International Astronautical Congress 
2007, International Astronautical Federation, Hyderabad, 
India (2007) 7372-7392. 

[29] N. Wang, G. Cao, Z. Zhu and Y. Wang, Design and tra-
jectory analysis of incompletely restrained cable-
suspension swing system driven by two cables, Interna-
tional Journal of Advanced Robotic Systems, 12 (1) (2015) 
1-13. 

[30] P. Flores, R. Leine and C. Glocker, Modeling and analy-
sis of planar rigid multibody systems with translational 
clearance joints based on the non-smooth dynamics ap-
proach, Multibody System Dynamics, 23 (2) (2009) 165-
190. 

[31] S. Ebrahimi and P. Eberhard, A linear complementarity 
formulation on position level for frictionless impact of pla-
nar deformable bodies, Zamm Journal of Applied Mathe-
matics and Mechanics Zeitschrift Für Angewandte Mathe-
matik Und Mechanik, 86 (10) (2006) 807-816. 

[32] C. Lanczos, The variational principles of mechanics, 
Dover Publications, New York, USA (1986). 

[33] C. Gosselin and M. Grenier, On the determination of the 
force distribution in overconstrained cable-driven parallel 
mechanisms, Meccanica, 46 (1) (2011) 3-15. 

 
Appendix 

Introduce the tension of the cables into the equations of 
governing Eq. (8), the non-smooth dynamics equation can be 
derived as follow: 

 
0 .q =Mq - Q - G λ&&            (A.1) 

 
Multiplied by time step dt , Eq. (A.1) can be expressed as 
 

d d d 0 .qt t t- - =Mq Q G λ&&         (A.2) 

 
Substituting =d / dtq q&& &  and dtL = λ  into Eq. (A.2), and 

it can obtain 
 

d d d 0 .
d qt t
t

- - L =
qM Q G
&

        (A.3) 

 
Hence, 
 

d d 0 .qt- - L =M q Q G&           (A.4) 
 
Take the total derivative of the constrained condition: 

d ( , ) .
d q t

q t q
t

= = +
gg G G& &          (A.5) 

 
Take the generalized coordinates derivative and the time de-

rivative of the constrained condition in Eq. (4): 
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           (A.6) 

( ) ( ) ( ) ( )2 2 2

, .i
t i i x y z

g v t t t t
t t

¶ ¶
= = - D + D + D

¶ ¶
G    (A.7) 

 
So the linear complementarity formulation the equation on 

velocity level can be written as 
 
0 0 .£ ^ ³g Λ&             (A.8) 
 
At time d / 2M At t t= + , the displacement of state vector is 
 

d / 2 .M A A t= +q q q&         (A.9) 
 
The differential equation of the system can be written as fol-

low: 
 

( ) d d 0 .M E A M qMt t- - - =M q q Q G λ& &             (A.10) 
 
At the time At  and Et  
 

T
A qM A tM= +g G q G& &                             (A.11) 

T
E qM E tM= +g G q G& &                             (A.12) 

( )T
A E qM E A- = -q q G g g& & & &                      (A.13) 

1 T 1( ) ( d )T
EE qM M qM qM M M AAt- -= + +g G M G Λ G M Q g& &     (A.14) 

1 1 d .E M qM M M At- -= + +q M G Λ M Q q& &                 (A.15) 
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