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Abstract 
 
In this study, a robot manipulator is modelled as a cantilever beam, which moves in an axial direction, has a lumped mass at the end, 

and is supported by intermediate springs. Considering the tip mass and intermediate springs in the modeling, we derive the equations of 
motion in which the rigid-body motion is coupled with the flexible motions, and then analyze the transverse vibrations of the beam. Fur-
thermore, we study the tip mass effects on the natural frequencies and the corresponding mode shapes. The natural frequency loci veering 
is analyzed for variations in the tip mass and the spring position/stiffness. In addition, we investigate the exchange and localization of 
modes around these veering regions as well as the parameter effects on the mode shapes. Using a Short-time Fourier transform (STFT), 
the relationship between the dynamic characteristics and dynamic responses are described. It is found that the dynamic characteristics of 
the beam are dependent on the veering distance. It is also shown via dynamic responses that the mode exchanges occur when a veering 
distance is close.  
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1. Introduction 

A robot manipulator moving in the axial direction can be 
modelled as an axially moving beam which is used in various 
industrial fields. These applications need dynamic analyses 
because the systems require high accuracy of positioning after 
moving. More realistic studies for dynamic models have been 
conducted for exact predictions of dynamic behavior and con-
trol.  

Previous studies of axially moving beams related to this 
study can be classified into two categories. The first category 
includes studies of deploying or retracting beams, such as 
deployable space appendages, robot manipulators, and ma-
chine tools [1-14]. The second category includes axially mov-
ing beams with hinged end conditions, such as conveyor belts 
and band-saw blades [15-24]. These papers are described in 
more detail as follows. 

Some studies in the first category examined the dynamic 
behavior when deploying or retracting a beam. Wang and Wei 
[1] analyzed the transverse vibration in a robot arm, modeled 
as a moving slender beam. They found that deploying and 
retracting motions show the effects of destabilizing and stabi-
lizing on the transverse beam vibrations, respectively. Styli-
anou and Tabarrok [2] obtained a numerical solution for 
transverse displacement using a finite element analysis. In 

their paper, the dynamic response of the beam was investi-
gated using various velocity profiles of the deploying and 
retracting motions. Wang et al. [3] analyzed the vibration of 
an axially translating beam featuring time-variant velocity. 
This study shows that the beam acceleration in the axial direc-
tion does not affect the stabilization of the transverse vibration. 
Matsuzaki et al. [4] compared a finite element method simula-
tion and experimental results for bending oscillation when 
deploying or retrieving a beam. In Al-Bedoor and Khulief [5], 
an approximate analytical solution was presented for the 
transverse displacement of a flexible beam moving axially 
under various boundary conditions. Al-Bedoor and Khulief [6] 
also studied the transverse vibration of an axially translating 
beam with rotational motion. They considered the dynamic 
coupling terms between translation motion, rotation motion, 
and elastic deformation, and accounted for the stiffening effect 
of beam rotation. Zhu and Chung [7] found the beat phe-
nomenon from lateral vibration of a deploying beam with spin. 
Fung et al. [8] derived the equations of motion for an axially 
moving beam using the Timoshenko beam theory, and Chang 
et al. [9] investigated the vibration and stability of an axially 
translating beam, based on the Rayleigh beam theory. Fur-
thermore, Wang et al. [10] studied the dynamic response of an 
axially moving viscoelastic beam with varying length and 
axial velocity. Park et al. [11] obtained the governing vibration 
equations for a deploying or retracting beam using the von 
Karman strain theory. Longitudinal and transverse vibrations 
were analyzed regarding Young’s modulus and axial moving 
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velocity/acceleration of the beam. Park et al. [12] also com-
pared the governing equations and dynamic response derived 
from the Eulerian and Lagrangian descriptions. They proposed 
that the Lagrangian description should be selected for a de-
ploying beam model because the Lagrangian equations are 
simpler than the Eulerian equations. 

Studies for more targeted, specific applications have also 
been carried out. Duan et al. [13] studied the transverse vibra-
tion in a crane jib, modeled by an axially moving nested canti-
lever beam. Kim and Chung [14] considered a takeout robot, 
modeled by an axially moving flexible beam from a translat-
ing hub, and described vibration reduction for transverse vi-
brations. 

The second category consists of studies on the dynamic re-
sponses and characteristics of axially moving beams with 
hinged end conditions. Ozkaya and Pakdemirli [15] presented 
the approximate solutions for a beam with harmonically vary-
ing velocity and exponentially decaying velocity. Yang et al. 
[16] derived a closed-form approximate solution to obtain the 
natural frequency of an axially moving beam. With both high 
moving speed and large bending stiffness, the solution ob-
tained was valid and accurate. Rezaee and Lotfan [17] ana-
lyzed the natural frequency, complex mode shape, and re-
sponse for an axially moving nanoscale beam considering the 
non-local theory. Additionally, the effects of intermediate 
support on the dynamic behaviors of an axially moving beam 
have been investigated. Pierre et al. [18] obtained the theoreti-
cal and experimental vibration mode of a disordered two-span 
beam with torsional spring. This paper showed that a small 
deviation in span lengths from an ideal value caused dramatic 
changes in the dynamic characteristics of a two-span beam. 
Pierre [19] analyzed the effects on disorder in vibration mode 
of periodic structures. They found that the natural frequency 
loci veering and strong localization of mode shape occurred 
with small structural irregularities. Lust et al. [20] investigated 
the influence of various effects on mode localization in mul-
tispan beams. They found that span length imperfections and 
transverse support stiffness are significant parameters for 
mode localization. Al-Jawi et al. [21] studied normal mode 
localization on stationary and axially moving disordered dual-
span beams. The localization became stronger as the span 
axial tension increased in the stationary case, and as the trans-
port speed increased in the axially moving case. Moreover, 
many studies related to the dynamic response and stability of 
moving beams with intermediate springs were published. 
Ghayesh [22] derived the governing equations of non-linear 
transverse vibration on an axially moving beam supported by 
an intermediate spring. The stability of the system was ana-
lyzed using amplitude-frequency response and bifurcation 
diagrams. Ghayesh et al. [23] investigated the stability of the 
coupled longitudinal and transverse vibrations with various 
parameters. They proposed that the spring location and stiff-
ness were dominant factors with respect to the dynamics of 
the system. Jaiswal and Iyengar [24] studied the dynamic re-
sponse of a beam resting on an elastic foundation under a 

moving force. 
Recently, a robot manipulator, modeled as an axially mov-

ing beam with spring supports, was studied by Park and 
Chung [25]. They observed the natural frequency loci veering 
of the beam with variation in the position/stiffness of springs, 
and investigated the characteristics of the mode shape in those 
veering regions. They also presented a reduction condition for 
the transverse vibration of the beam using mode localization. 
However, a robot manipulator generally translates the payload 
using the end effector of the robot arm, so many researchers 
have also considered a tip mass when modeling a payload [1, 
6, 8, 13, 14]. As described in previous studies, the dynamic 
characteristics and dynamic behavior of a system are changed 
by the tip mass. To predict and control the dynamic analysis 
of a system, we should analyze the effects of a tip mass on a 
moving beam which is supported by springs. 

This study investigates the effects of a tip mass, as well as 
spring position and spring constant, on the dynamic character-
istics and the dynamic behavior of a moving finite-length 
beam with a tip mass and intermediate springs. The tip mass 
effect is considered in the equations for coupled rigid-
body/flexible motions and the corresponding boundary condi-
tions. After the equations of motion are transformed to weak 
forms, the weak forms are discretized using the Galerkin 
method. The natural frequencies and mode shapes of the beam 
are investigated by solving the eigenvalue problem. The dy-
namic responses of the axially moving beam with a tip mass 
are obtained using a generalized-alpha time integration 
method [26]. Using the Short-time Fourier transform (STFT), 
we describe the cause-and-effect relationship between the 
dynamic characteristics and dynamic behavior.  

 
2. Equations of motion 

A robot manipulator with a planar motion can be modeled 
by a moving beam with a tip mass which is supported by roll-
ers, as shown in Fig. 1. If the manipulator has a three-
dimensional motion in the space, it may exhibit more compli-
cated dynamics than the manipulator with a planar motion. 
For this reason, the analysis of this study is restricted to a ma-
nipulator with a planar motion. A total length, cross-sectional 
area, area moment of inertia, Young’s modulus and mass den-
sity are denoted by L, A, I, E and r, respectively. The moving 
speed of the beam is given by V(t). A tip mass with mass M is 
attached to the right end of the beam. A dynamic model of the 
finite-length beam is shown in Fig. 2, where the tip mass is 
supposed to be a point mass, and rollers are modeled by the 
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Fig. 1. Schematic of an axially moving robot manipulator. 
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springs k without a damper. In this study, it is assumed that the 
moving beam is modeled as an Euler-Bernoulli beam, and the 
springs deform only in the vertical direction. The distance 
from the tip mass to the midpoint between the two springs is 
xs(t), and the gap between the two springs, is a. The horizontal 
and vertical displacements for the center of gravity G of the 
beam are X(t) and Y(t), respectively, and the angular dis-
placement for the rigid motion of the beam is q(t). The beam 
has a distributed transverse force per unit length which is de-
noted by p(x, t). The beam position due to only rigid-body 
motion is described by the dashed line, and the deformed 
beam due to both flexible and rigid-body motions is described 
as the solid line (Fig. 2). In this figure, the X-Y frame is an 
inertial reference frame, and the x-y frame is a body-fixed 
reference frame, which is attached to the beam. The transverse 
deflection of the beam is expressed by v(x, t) in the x-y frame, 
and the longitudinal deflection is assumed to be small and 
negligible.  

The position vector of a point at a distance x away from the 
beam gravity center G can be written as 

 
( ) ( )cos sin sin cosX x v Y x vq q q q= + - + + +r I J   (1) 

 
where I is a unit vector in the X direction and J are a unit vec-
tor in the Y direction. The position vector for the tip mass, 
which is attached at the right end of the beam, is given by 

 

/2cos | sin
2M x L

LX vq q=

æ ö= + -ç ÷
è ø

r I  

/2sin | cos
2 x L

LY vq q=

æ ö+ + +ç ÷
è ø

J   (2) 

 
where /2|x Lv =  is a transverse deflection at x = L/2. Similarly, 
the position vectors for the attached point of the springs on the 
beam are given by 

 

/2cos | sin
2 nn n x L x

LX x vq q= -

é ùæ ö= + - -ê úç ÷
è øë û

r I  

/2sin | cos for 1,2
2 nn x L x

LY x v nq q= -

é ùæ ö+ + - + =ê úç ÷
è øë û

J   (3) 

where xn is the distance from the tip mass to the nth spring, as 
shown in Fig. 2, and /2|

nx L xv = -  is the transverse deflection of 
the beam at the nth spring position. The speed in the horizontal 
direction for the center of gravity G is the same as the axially 
moving speed: i.e., ( ) ( ).X t V t=&  The velocity vectors for a 
point on the beam and the tip mass, denoted by v and vM, re-
spectively, are obtained by differentiation of the position vec-
tor with respect to time, as follows: 
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The kinetic energy can be obtained from the velocity vec-

tors and can be written as 
 

/2

/2

1 1d .
2 2

L

M ML
T A x Mr
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= × + ×ò v v v v   (6) 

 
The linear equations of motion of the axially moving beam 

with a tip mass supported by springs can be derived using a 
similar derivation process to that described in Ref. [25]. The 
difference between this study and Ref. [25] is considering 
structural damping of the beam, which is denoted by cd.   

To generalize the discussion, dimensionless equations of 
motion are required and the following dimensionless parame-
ters are defined: 
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Using the dimensionless parameters and dropping the aster-

isks, the dimensionless equations are derived and can be writ-
ten as: 
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Fig. 2. Axially moving beam with a tip mass supported by springs. 
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where d(x) is a Dirac delta function. The dimensionless 
boundary conditions are 
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Eqs. (8) and (9) represent the rigid-body motion for Y and q, 

respectively. Eq. (10) is the flexible motion for the transverse 
deflection v. These three equations are coupled with each 
other. Compared with Ref. [25], these equations have new 
terms, corresponding to the tip mass. The third term in Eq. (8) 
and the fourth term in Eq. (9) represent the inertia force 
caused by the tip mass, and the second equation in Eq. (12) is 
the boundary condition in which the inertia force of the tip 
mass is equal to the shear force at the beam’s right end. 

 
3. Discretized equations 

The Galerkin method is utilized to discretize the equations 
of motion. Before using the Galerkin method, the weak forms 
are derived from the partial differential equations and bound-
ary conditions. Trial and weighting functions are required to 
derive the weak forms. The trial functions are denoted by Y, q 
and v, and the corresponding weighting functions are denoted 
by Y , q  and v , respectively. Y  and q  are functions 
for the time and v  is a function for the position and time. 
The weak forms are obtained by multiplying Eqs. (8)-(10) by 
the corresponding weighting functions, and integrating the 
resulting equation over the beam domain. The following weak 
form for v considers the natural boundary condition of the 
shear force. 
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The trial and weighting functions for transverse motion can 

be approximated by linear combinations of basis functions, 
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where Vj are the basis functions, Tj are unknown functions of 
time, iT  are arbitrary functions of time, and J is the number 
of the functions. Note that the comparison functions satisfy 
both the essential and natural boundary conditions while the 
admissible functions satisfy only the essential boundary condi-
tion. It is difficult to select the comparison functions satisfying 
the natural boundary condition for the shear force at the beam 
end. Thus, the admissible functions, which are easier to select 
than the comparison functions, are used as the basis functions 
in this study. It is reasonable to use the admissible functions 
because the natural boundary conditions have already been 
applied during derivation of the weak form for transverse mo-
tion. In this study, the mode functions for the transverse vibra-
tion of a beam with free-free boundary conditions are selected 
as the basis function and written as 
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where x ranges from -1/2 to 1/2, and bj is the jth root of the 
following frequency equation: 

 
cosh cos 1 .j jb b× =   (18) 

 
The discretized equations are obtained by substituting the 

trial and weighting functions of Eq. (16) into Eqs. (13)-(15). 
The discretized equations for Y, q and v are expressed as 
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The discretized equations are expressed by a matrix-vector 

equation, as follows: 
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where 
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4. Natural frequencies 

Convergence tests for the natural frequency of the stationary 
beam are performed to determine a suitable number of basis 

functions for computation. Convergence tests can be per-
formed for two cases - the tip mass does not exist and does 
exist - because the characteristics of the basis function and 
mass matrix change with the tip mass. When the tip mass does 
not exist, convergence tests are carried out according to Park 
and Chung [25], where it was shown that 25 basis functions 
are suitable. In this study, when the tip mass exists, conver-
gence tests are carried out for the dimensionless spring posi-
tion, xs = 0.025 and 0.5. For convenience, the dimensionless 
natural frequency is defined as 4 /n n AL EIl w r=  where wn 
is the natural frequency. Note that structural damping is ne-
glected, i.e., cd = 0, when analyzing the natural frequencies 
and mode shapes.  

In Tables 1 and 2, the convergence characteristics of the 
natural frequencies are shown for xs = 0.025 and 0.5, when M 
= 0.4, k = 30 × 103, a = 0.05 and p = 0. As shown in Tables 1 
and 2, the natural frequencies converge to J = 25. Thus, 25 
basis functions are suitable for computation regardless of the 
tip mass value. These values are applied in further computa-
tions in this paper.  

The natural frequencies for a stationary beam with a tip 

Table 1. Natural frequency convergence characteristics when the sta-
tionary beam has M = 0.4, k = 30 × 103, a = 0.05 and xs = 0.025. 
 

Dimensionless natural frequencies (ln)  Number of 
basis functions 

(J) l1 l2 l3 l4 l5 l6 

1 1.4607 35.986 43.507 - - - 

2 1.4479 7.9112 38.330 43.507 - - 

3 1.4471 7.4820 12.542 40.494 59.176 - 

4 1.4459 7.4276 12.496 28.342 41.581 59.345 

5 1.4426 7.4261 12.428 27.060 35.328 42.413 

6 1.4423 7.4141 12.420 26.852 35.253 42.347 

7 1.4423 7.3933 12.343 26.850 35.038 42.085 

8 1.4422 7.3892 12.340 26.785 35.021 42.061 

9 1.4418 7.3890 12.333 26.646 34.786 42.056 

10 1.4418 7.3872 12.331 26.618 34.779 42.047 

11 1.4418 7.3835 12.318 26.618 34.743 42.003 

12 1.4418 7.3835 12.318 26.618 34.743 42.003 

13 1.4418 7.3831 12.314 26.610 34.709 41.994 

14 1.4418 7.3831 12.314 26.610 34.709 41.994 

15 1.4417 7.3829 12.312 26.606 34.689 41.989 

16 1.4417 7.3829 12.312 26.606 34.689 41.989 

17 1.4417 7.3828 12.310 26.604 34.677 41.987 

18 1.4417 7.3828 12.310 26.604 34.677 41.987 

19 1.4417 7.3827 12.309 26.602 34.669 41.985 

20 1.4417 7.3827 12.309 26.602 34.669 41.985 

21 1.4417 7.3826 12.309 26.601 34.663 41.983 

22 1.4417 7.3826 12.309 26.601 34.663 41.983 

23 1.4417 7.3825 12.308 26.599 34.656 41.982 

24 1.4417 7.3825 12.308 26.599 34.656 41.982 

25 1.4417 7.3825 12.308 26.599 34.656 41.982 
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mass supported by springs are investigated for variation in the 
spring position/constant and tip mass. When the value of the 
dimensionless spring constant is fixed at k = 30 × 103, and the 
dimensionless spring gap is given by a = 0.05, the natural 
frequency of the beam for the variation of the tip mass M and 
spring position xs is analyzed. With three values of the dimen-
sionless tip mass, M = 0, 0.2 and 0.4, the lowest four natural 
frequencies versus the spring position are shown in Fig. 3. In 
this figure, the solid, dashed and dotted lines stand for the 
natural frequencies for M = 0, 0.2 and 0.4, respectively. The 
solid line for M = 0 (i.e., the tip mass does not exist) are sym-
metric with respect to the spring position xs = 0.5, while the 
dashed and dotted lines for M = 0.2 and 0.4 are not symmetric 
with respect to xs = 0.5, and these lines will be further away 
from symmetric as the M value increases.  

The natural frequency loci veering is analyzed for the natu-
ral frequencies when the spring is at a specific position (Fig. 
3). Because the low mode of the beam is dominant in the be-
havior of the axially moving beam, the analysis focuses on the 
natural frequencies for the two lowest modes. Region A, 
shown in Fig. 3, which represents the veering of the first and 

second natural frequencies, is magnified to show the veering 
phenomenon clearly, and plotted in Fig. 4. In this figure, it is 
observed for M = 0, 0.2 and 0.4 that the natural frequencies 
veer at dimensionless spring positions xs = 0.5, 0.4335 and 
0.3993, respectively, and at these veering positions, the veer-
ing distance (gap between the two natural frequencies) de-
creases with the tip mass. By comparing the values of tip mass 
and the corresponding spring positions for veering, when the 
tip mass value increases, the value of the spring position for 
veering decreases (i.e., the spring position for veering shifts 
towards the tip mass position). To generalize the discussion of 
the shift effect, the effect of the tip mass on the veering posi-
tion is presented in Fig. 5, where the veering positions for the 
tip mass M = 0, 0.2 and 0.4 correspond to those shown in Fig. 
4, and the veering positions for the tip mass M = 0.6, 0.8 and 
1.0 are computed similarly. As shown in this figure, as the 
value of M increases, the veering position shifts towards the 
tip mass position, and converges to a constant value.  

It is valuable to investigate the characteristics of the veering 
phenomenon with variation in the spring constant k and the 
spring position xs when M = 0.2 and a = 0.05. For three values 
of the dimensionless spring constant k = 3 × 103, k = 30 × 103 

Table 2. Natural frequency convergence characteristics when the sta-
tionary beam has M = 0.4, k = 30 × 103, a = 0.05 and xs = 0.5. 
 

Dimensionless natural frequencies (ln)  Number of 
basis functions 

(J) l1 l2 l3 l4 l5 l6 

1 1.2894 3.0227 58.675 - - - 

2 1.0867 2.2744 13.016 59.373 - - 

3 1.0867 2.2653 11.240 14.508 81.065 - 

4 1.0625 2.1848 10.191 13.893 35.133 81.285 

5 1.0613 2.1833 10.191 13.799 33.038 38.645 

6 1.0432 2.1535 10.127 13.648 31.353 38.394 

7 1.0432 2.1533 10.088 13.611 31.348 38.199 

8 1.0365 2.1376 9.9604 13.562 31.316 38.023 

9 1.0364 2.1375 9.9601 13.557 31.177 37.898 

10 1.0310 2.1289 9.9357 13.520 30.921 37.863 

11 1.0280 2.1289 9.9306 13.516 30.917 37.850 

12 1.0280 2.1234 9.9036 13.497 30.854 37.816 

13 1.0260 2.1234 9.9033 13.496 30.852 37.808 

14 1.0260 2.1198 9.8858 13.484 30.812 37.787 

15 1.0247 2.1198 9.8857 13.484 30.812 37.785 

16 1.0247 2.1175 9.8742 13.476 30.786 37.771 

17 1.0238 2.1175 9.8742 13.476 30.785 37.771 

18 1.0238 2.1159 9.8664 13.471 30.768 37.762 

19 1.0232 2.1159 9.8664 13.471 30.768 37.762 

20 1.0232 2.1149 9.8613 13.468 30.757 37.756 

21 1.0232 2.1149 9.8613 13.468 30.757 37.756 

22 1.0226 2.1139 9.8558 13.465 30.744 37.752 

23 1.0226 2.1139 9.8558 13.465 30.744 37.752 

24 1.0225 2.1137 9.8553 13.464 30.743 37.749 

25 1.0225 2.1137 9.8553 13.464 30.743 37.749 
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Fig. 3. Natural frequencies of a beam with a tip mass for variation in 
the spring position: M = 0 (solid line), M = 0.2 (dashed line), and M = 
0.4 (dotted line). 
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Fig. 4. Magnified plot of region A in Fig. 3: M = 0 (solid line), M = 0.2 
(dashed line), and M = 0.4 (dotted line). 
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and k = 300 × 103, the dimensionless natural frequencies ver-
sus the dimensionless spring position are shown in Fig. 6. In 
this figure, the solid, dashed, and dotted lines stand for the 
natural frequencies when k = 3 × 103, k = 30 × 103 and k = 300 
× 103, respectively. It can be seen that as the spring constant 
increases, the veering distance decreases, while the veering 
positions hardly change.  

The natural frequencies of first and second modes with 
variation of the tip mass M and the spring constant k are ana-
lyzed for a specific spring position xs, where veering of the 
first and second natural frequencies is observed. When the 
dimensionless spring position xs = 0.5, the two lowest natural 
frequencies versus the spring constant are illustrated in Fig. 7. 
As shown in Fig. 7(a), when M = 0, by magnifying the circle 
region, it is seen that the lines of two natural frequencies do 
not cross but veer for a specific spring constant, while the 
lines of the two natural frequencies for M = 0.2 or 0.4, shown 
in Figs. 7(b) and (c), do not veer. When we decrease the 
spring position xs to 0.4335, the first and second natural fre-
quencies for the spring constant, when M = 0, 0.2 and 0.4, are 
plotted in Figs. 8(a)-(c), respectively. As shown in Fig. 8, the 
natural frequency loci veering occurs for a beam with a tip 

mass M = 0.2 and spring position xs = 0.4335, whereas the 
veering does not occur for M = 0 or 0.4. Similarly, for spring 
position xs = 0.3993, the plots of natural frequencies versus the 
spring constant with a tip mass M = 0, 0.2 and 0.4 are plotted 
in Figs. 9(a)-(c), respectively. In this figure, the veering occurs 
in Fig. 9(c) for the specific spring constant when xs = 0.3993 
and M = 0.4.  

The first and second natural frequencies for the variation of 
the tip mass are plotted in Fig. 10, when the dimensionless 
spring constant is k = 30 × 103 and the dimensionless gap of 
the two springs is a = 0.05. Figs. 10(a)-(c) are plotted for the 
dimensionless spring position xs = 0.5, 0.4335 and 0.3993, 
respectively. It can be seen that the two natural frequencies are 
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Fig. 5. Spring position at which the first and second natural frequencies 
veer for variation in the tip mass. 
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Fig. 6. Natural frequencies of a beam when M = 0.2 and a =0.05: k = 3 
× 103 (solid line), k = 30 × 103 (dashed line), and k = 300 × 103 (dotted 
line). 

 
 

 
 
Fig. 7. Two lowest natural frequencies versus the spring constant when 
xs = 0.5: (a) M = 0; (b) M = 0.2; (c) M = 0.4. 
 

 
 
Fig. 8. Two lowest natural frequencies versus the spring constant when 
xs = 0.4335: (a) M = 0; (b) M = 0.2; (c) M = 0.4. 

 

 
 
Fig. 9. First and second natural frequencies for variation in the spring 
constant when xs = 0.3993: (a) M = 0; (b) M = 0.2; (c) M = 0.4. 
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close for M = 0 and xs = 0.5 in Fig. 10(a), M = 0.2 and xs = 
0.4335 in Fig. 10(b), and M = 0.4 and xs = 0.3993 in Fig. 10(c), 
respectively. Consequently, the natural frequency veering is 
influenced by the spring position, spring constant, and tip 
mass. 

 
5. Mode shapes 

The first and second mode shapes around the veering region 
are analyzed next. First, the veering observed in Fig. 9(c) is 
magnified in Fig. 11, which represents the natural frequencies 
versus the spring constant. In this figure, the solid line repre-
sents the first dimensionless natural frequency and the dashed 
line is the second dimensionless natural frequency, and the 
mode shapes are plotted for the dimensionless spring constant 
k = 50 × 103, 100.6 × 103 and 150 × 103. In the mode shapes, 
the large solid circle represents the tip mass and the two small 
hollow circles on the beam represent the springs. Based on the 
spring positions, the beam can be divided into left and right 
spans. For the spring constant k = 100.6 × 103, it is observed 
that the two lowest natural frequencies are close, and one span 
has a large deflection while the other span has almost zero 
deflection; this indicates that the localization phenomenon of 
mode shapes occurs. In contrast, for k = 50 × 103 and 150 × 
103, both spans of the mode shapes have large deflections. 

Another observation is that the first mode shape for k = 50 × 
103 is similar to the second mode shape for k = 150 × 103, 
while the second mode shape for k = 50 × 103 is the similar to 
the first mode shape for k = 150 × 103. This corresponds to the 
mode exchange phenomenon.  

Next, the effects of the tip mass on the first and second 
mode shapes around the veering region are analyzed for the 
specific dimensionless spring constant k = 100.6 × 103, which 
cause the mode localization shown in Fig. 11. When xs = 
0.3993 and a = 0.05, the first and second dimensionless natu-
ral frequencies for the variation in the dimensionless tip mass 
and the mode shapes corresponding to M = 0.2, 0.4 and 0.6 are 
plotted in Fig. 12, where the solid and dashed lines represent 
the first and second natural frequencies, respectively, and the 
size of the solid circle on the beam’s right end is illustrated in 
proportion to the tip mass value. In this figure, at the point of 
M = 0.4, the lines of the natural frequencies of the first and 
second modes might appear to cross; however, in fact, they 
are extremely close at this point; therefore, these lines veer 
with each other rather than cross. Similar to the case shown in 
Fig. 11, the mode shapes exchange due to the veering and the 
mode shapes are localized. Mode localization occurs for M = 
0.2, 0.4 and 0.6, which means that the mode localization here 
is not affected by the tip mass, for the specific spring constant 
value k = 100.6 × 103. 

For k = 100.6 × 103, M = 0.4 and a = 0.05, the natural fre-
quencies and mode shapes of the first and second modes when 
the spring position varies are plotted in Fig. 13. In this figure, 
around xs = 0.3993, the two lowest natural frequencies veer 
and the corresponding mode shapes exchange, similar to Fig. 
12. Note that for the specific spring constant k = 100.6 × 103, 
the mode localization occurs for the dimensionless spring 
position xs = 0.34, 0.3993 and 0.46; thus, the mode localiza-
tion is not affected by the spring position. 

Finally, when the tip mass and gap between the two springs 
are fixed at M = 0.4 and a = 0.05, we reduce the spring con-
stant value and investigate its effect on the natural frequencies 
and mode shapes. Another two cases for dimensionless spring 
constant values are considered: Fig. 14 is for k = 30 × 103 and 
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Fig. 10. First and second natural frequencies for variation in the tip 
mass when k = 30 × 103: (a) xs = 0.5; (b) xs = 0.4335; (c) xs = 0.3993. 

 

 
 
Fig. 11. First and second mode shapes around the veering region for 
variation in the spring constant when M = 0.4, xs = 0.3993, and a = 0.05. 

 

 
 
Fig. 12. First and second mode shapes around the veering region for 
variation in the tip mass when k = 100.6 × 103, xs = 0.3993, and a = 0.05. 
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Fig. 15 is for k = 3 × 103. Comparing the dimensionless natu-
ral frequencies shown in Figs. 13-15, it is observed that the 
natural frequencies are reduced and this is reasonable because 
the overall stiffness of the system decreases. Another observa-
tion is that the veering distance around xs = 0.3993 in Figs. 13 
and 14 increases as the spring constant value decreases, while 
in Fig. 15, the first and second natural frequencies become 
further away due to the small spring constant; thus, no veering 
phenomenon occurs in Fig. 15. Due to the disappearance of 
veering, the mode shapes do not exchange in Fig. 15. It is 
observed in Fig. 14 that as the spring constant decreases for k 
= 30 × 103, the mode localization becomes weak at xs = 0.34 
and 0.46, while mode localization does not occur at xs = 
0.3993. In Fig. 15, because the spring constant becomes rather 
small, mode localization also does not occur. Consequently, 
mode localization and mode exchange are closely related to 
the natural frequency veering.  

 
6. Time responses 

The dynamic responses for the transverse vibration at the two 
ends of the beam are analyzed next. Consider the motion of the 
axially moving beam in Fig. 16. The beam is initially located on 
the left side of the spring position, as shown in Fig. 16(a), and it 

translates to the right with constant speed V = 0.01, and then is 
located on the right side of the spring position, as shown in Fig. 
16(b). It is assumed that the dimensionless initial and final 
spring position are given by xs = 0.025 and 0.975, respectively, 
and the dimensionless spring gap is a = 0.05. In addition, a di-
mensionless impulsive load, which is given by pd(t) with p = -1, 
is applied to the beam when the beam is at the initial position.  

Consider the dynamic responses of the beam for M = 0.4, k 
= 100.6 × 103, cd = 0 and a = 0.05. The dynamic responses of 
the dimensionless transverse displacements are presented in 
Fig. 17, where the horizontal axis represents the dimensionless 
spring position that can be transformed to dimensionless time. 
The transverse displacement in this figure is computed by the 
horizontal component of the position vector given by Eq. (1). 
The transverse displacements at the left and right ends (i.e., at 
x = -1/2 and 1/2) are plotted in Figs. 17(a) and (b), respec-
tively. As the beam translates to the right, the vibration ampli-
tude and period of the left end decrease, as shown in Fig. 17(a), 
while in Fig. 17(b), vibration hardly occurs at the right end 
(i.e., tip mass position). 

Using the STFT, the frequency spectra are obtained by the 
dynamic response at the interval between the vertical solid 
lines (i.e., the dimensionless spring position 0.30 < xs < 0.35) 
and the interval between the vertical dashed lines (i.e., the 
dimensionless spring position 0.45 < xs < 0.50), as shown in 
Fig. 17, and the frequency spectra are plotted in Fig. 18. Figs. 
18(a) and (b) represent the frequency spectra for the dynamic 
response at the left and right ends, and the solid and dashed 
lines are the frequency spectra for the dynamic response cor-
responding to the spring positions 0.30 < xs < 0.35 and 0.45 < 

 
 
Fig. 13. First and second mode shapes around the veering region for varia-
tion in the spring position when M = 0.4, k = 100.6 × 103, and a = 0.05. 
 

 
 
Fig. 14. First and second mode shapes around the veering region for 
variation in the spring position when M = 0.4, k = 30 × 103, and a = 0.05. 
 

 

 
 
Fig. 15. First and second mode shapes for variation in the spring posi-
tion when M = 0.4, k = 3 × 103, and a = 0.05. 
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Fig. 16. Motion of a beam with a tip mass moving in the axial direc-
tion: (a) Initial position; (b) final position. 
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xs < 0.50, respectively. Comparing Figs. 18(a) and (b), it is 
observed that the peaks in Fig. 18(a) are much larger than the 
peaks in Fig. 18(b). This is because the vibration amplitude at 
the tip mass position is rather smaller than the vibration ampli-
tude at the left end. It can be seen in Fig. 18(a) that the fre-
quency spectrum for 0.30 < xs < 0.35 has a peak at the dimen-
sionless frequency of 1.2209 and the spectrum for 0.45 < xs < 
0.50 has a peak at the dimensionless frequency of 2.1977. 
These peak frequencies are very close to the dimensionless 
natural frequencies of 1.2341 and 2.0382 for points A and B 

shown in Fig. 13, where points A and B represent the dimen-
sionless natural frequencies at the midpoints of intervals for 
0.30 < xs < 0.35 and 0.45 < xs < 0.50, respectively. This means 
that the beam vibrates by a mode shape corresponding to the 
first natural frequency, l1, when the spring position is 0.30 < 
xs < 0.35, and it vibrates by a mode shape corresponding to the 
second natural frequency, l2, when the spring position be-
comes 0.45 < xs < 0.50. This is because the first mode shape in 
the region 0.30 < xs < 0.35 exchanges to the second mode 
shape in the region 0.45 < xs < 0.50, along the shaded thick 
line in Fig. 13.  

When the dimensionless tip mass and dimensionless gap 
between the two springs are fixed at M = 0.4, cd = 0 and a = 
0.05, and the dimensionless spring constant is reduced to k = 
30 × 103, the transverse displacements at the right and left 
ends of the beam are computed and presented in Fig. 19, 
where Figs. 19(a) and (b) represent the transverse displace-
ments of the beam at the left and right ends, respectively. As 
shown in these figures, the vibration amplitudes at both ends 
change significantly near the dimensionless spring position xs 
= 0.3993. This spring position corresponds to the veering posi-
tion, where the first and second natural frequencies are closest 
in Fig. 14. It can also be seen that the transverse displacement 
at the right end in Fig. 19(b) differs from that in Fig. 18(b).  

The frequency spectra for the dynamic responses in Fig. 19 
are presented in Fig. 20. In Fig. 20(a), the frequency spectrum 
for 0.30 < xs < 0.35 has a peak at the dimensionless frequency 
of 1.2209, which is close to the dimensionless first natural 
frequency l1 = 1.1616 for point A in Fig. 14, while the fre-
quency spectrum for 0.45 < xs < 0.50 has two dimensionless 
peak frequencies of 0.9768 and 2.1977; these peak frequencies 
are close to the dimensionless natural frequencies l1 = 1.1024 
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Fig. 17. Dynamic responses of the transverse displacements versus the 
spring position when M = 0.4, k = 100.6 × 103, cd = 0, and a = 0.05: (a) 
at the left end (i.e., at x = -0.5); (b) at the right end (i.e., at x = 0.5). 
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Fig. 18. Frequency spectra of the dynamic responses, shown in Fig. 17, 
during the intervals of 0.30 < xs < 0.35 and 0.45 < xs < 0.50: (a) At the 
left end (i.e., at x = -0.5); (b) at the right end (i.e., at x = 0.5). 
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Fig. 19. Dynamic responses of the transverse displacements versus the 
spring position when M = 0.4, k = 30 × 103, cd = 0, and a = 0.05: (a) At 
the left end (i.e., at x = -0.5); (b) at the right end (i.e., at x = 0.5). 
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and l2 = 1.9216, which correspond to points B and C, shown 
in Fig. 14. As described by the shaded arrow curves in Fig. 14, 
this indicates that the vibration with the first natural frequency 
l1 is transformed to vibrations with the first and second natu-
ral frequencies l1 and l2 while the beam moves from the posi-
tion xs = 0.3 to the position xs = 0.5.  

In Fig. 20(b), the frequency spectra for the displacement at 
the tip mass position are shown. The dimensionless peak fre-
quencies are 1.2209 for 0.30 < xs < 0.35 and 0.9768 for 0.45 < 
xs < 0.50. These peak frequencies are similar to the first di-
mensionless natural frequencies corresponding to points A 
and B in Fig. 14. By comparing the frequency spectra for 0.45 
< xs < 0.50 at the left (Fig. 20(a)) and right ends (Fig. 20(b)), 
two peak frequencies are observed in Fig. 20(a) while Fig. 
20(b) shows only one peak frequency. This can be explained 
similarly to Fig. 14. In Fig. 14, the mode shapes for the natural 
frequencies are near points B and C; the first mode shape near 
point B has a large deflection in the tip mass position, while 
the second mode shape near point C does not have a deflec-
tion in the tip mass position. Thus, only the first mode can be 
represented in the dynamic response at the tip mass position. 

We further reduce the dimensionless spring constant to k = 
3 × 103 and observe the displacements at the two ends of the 
beam. The dynamic responses at the left and right ends of the 
beam are plotted in Fig. 21. The vibration period in Fig. 21 is 
larger than those in Figs. 17 and 19. Additionally, it can be 
seen that the amplitude at the left end decreases gradually, 
while the amplitude at the tip mass position increases gradu-
ally. 

To investigate the vibration frequencies for 0.30 < xs < 0.35 
and 0.45 < xs < 0.50, the frequency spectra of the dynamic 
response (in Fig. 21) are plotted in Fig. 22. In this figure, it 
can be seen that the dimensionless peak frequencies at the left 

and right ends are 0.7326 and they are almost the same. How-
ever, in fact, these peak frequencies differ and the observation 
occurs due to a resolution problem with the STFT. These peak 
frequencies are close, compared with the natural frequencies 
for points A and B in Fig. 15, which are 0.6878 and 0.6476, 
respectively. Since the first and second natural frequencies are 
far from each other in Fig. 15, the corresponding modes do not 
interact with each other. Thus, the first mode shape remains as 
the beam translates to the right. 

To observe the effect of structural damping, the dynamic re-
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Fig. 20. Frequency spectra of the dynamic responses, shown in Fig. 19, 
during the intervals of 0.30 < xs < 0.35 and 0.45 < xs < 0.50: (a) At the 
left end (i.e., at x = -0.5); (b) at the right end (i.e., at x = 0.5). 
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Fig. 21. Dynamic responses of the transverse displacements versus the 
spring position when M = 0.4, k = 3 × 103, cd = 0, and a = 0.05: (a) At 
the left end (i.e., at x = -0.5); (b) at the right end (i.e., at x = 0.5). 
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Fig. 22. Frequency spectra of the dynamic responses, shown in Fig. 21, 
during the intervals of 0.30 < xs < 0.35 and 0.45 < xs < 0.50: (a) At the 
left end (i.e., at x = -0.5); (b) at the right end (i.e., at x = 0.5). 
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sponses of the transverse displacements are examined when 
the beam possesses structural damping. Fig. 23 shows the 
dynamic responses of the transverse displacements versus the 
dimensionless spring position when M = 0.4, k = 30 × 103, cd 
= 0.5 and a = 0.05. The physical parameters used to plot Figs. 
19 and 23 are the same except the structural damping coeffi-
cient: cd = 0 for Fig. 19 and cd = 0.5 for Fig. 23. Comparing 
Figs. 19 and 23, there is no change in the spring position (xs = 
0.3993) where the vibration amplitudes change significantly. 
However, the vibration amplitudes when cd = 0.5 (Fig. 23) are 
considerably reduced comparing to the amplitudes when cd = 
0 (Fig. 19). Therefore, it may be concluded that the structural 
damping influences only the magnitude of vibration. 

Finally, it is valuable to show the values of the veering natu-
ral frequencies and positioning accuracy of a manipulator with 
real (or dimensional) system parameters. For this purpose, the 
following dimensional parameters, which were also adopted in 
Refs. [5, 9, 11], are used: L = 1 m, A = 1.4661×10-3 m2, I = 
1.1073×10-8 m4, E = 6.8335×1010 N/m2, r = 2738.6 kg/m3, cd 
= 0, a = 0.05 m, M = 1.6060 kg and xs = 0.3993 m. These val-
ues correspond to the dimensionless parameters of M = 0.4, cd 
= 0, a = 0.05 and xs = 0.3993. The three dimensional spring 
constants of k = 7.61×107, 2.27×107 and 2.27×106 N/m can be 
transformed to the dimensionless constants of k = 100.6×103, 
30×103 and 3×103, respectively, which are used in the above 
discussions. 

At the veering position of xs = 0.3993 m, the dimensional 
veering frequencies when k = 7.61×107 N/m2 are w1 = 3.402 
Hz and w2 = 3.414 Hz (Fig. 13), the veering frequencies when 
k = 2.27×107 N/m are w1 = 3.015 Hz and w2 = 3.407 Hz (Fig. 
14), and the frequencies when k = 2.27×106 N/m are w1 = 
1.544 Hz and w2 = 3.385 Hz (Fig. 15). The maximum residual 

vibration amplitudes of the tip mass, which represent the posi-
tion accuracy of a manipulator, are 0.006 m for k = 7.61×107 
N/m (Fig. 17(b)), 0.061 m for k = 2.27×107 (Fig. 19(b)), and 
0.162 m for k = 2.27×106 (Fig. 21(b)). The dimensional veer-
ing frequencies and maximum residual vibration amplitudes 
for the three spring constants are presented in Table 3. 

 
7. Conclusions 

In this study, the vibrations of a moving beam with a tip 
mass are analyzed when the beam is supported by springs. 
Considering the tip mass effect, the coupled rigid-body and 
flexible equations of motion were derived. The equations of 
motion were transformed into the weak forms, and then dis-
cretized equations were obtained using the Galerkin method. 
The dynamic characteristics and responses were investigated 
with variation in the spring position/constant, and tip mass. 

The results of this paper may be summarized as follows: 
(1) The natural frequency loci veering was analyzed, and it 

was found that the occurrence and characteristics of the veer-
ing are affected by the spring position, spring constant, and tip 
mass value.  

(2) The mode localization and mode exchange are closely 
related to the natural frequency veering. In particular, for a 
specific spring constant, where the two lowest natural fre-
quencies are close around the veering region, mode exchange 
and localization occur regardless of the tip mass and spring 
position values. 

(3) Transverse displacements are influenced by the veering 
distance of the natural frequencies for the spring constant. As 
the veering distances become closer, the vibration of the axi-
ally moving beam in the first mode exchanges to the second 
mode, whereas as the veering distances become further apart, 
the axially moving beam vibrates only in the first mode. 
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