
 
 

 
Journal of Mechanical Science and Technology 31 (5) (2017) 2423~2431 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-017-0440-6 

 

 

 
Topology optimization based on spline-based meshfree method  

using topological derivatives† 
Junyoung Hur1, Pilseong Kang2 and Sung-Kie Youn1,* 

1Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea 
2Center for Space Optics, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea    

 
(Manuscript Received November 8, 2016; Revised December 29, 2016; Accepted January 5, 2017)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis 

through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing 
the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective 
boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method 
for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topologi-
cal derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological 
derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. 
The presented approach is validated through several compliance minimization problems.  
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1. Introduction 

From the pioneering work of Bendsøe and Kikuchi [1] to-
pology optimization becomes an innovative design technique 
in many engineering fields. One of the advantages of topology 
optimization is that creation of holes (new topology) leads to 
flexible design changes which were rather limited in shape and 
size optimizations. The most popular approach in topology 
optimization is the density based method. It imposes density 
values between 0 and 1 to each cell (finite element) and inter-
mediate density values are prohibited by penalization [2]. One 
of the other approaches in topology optimization is level-set 
based method [3, 4] by using the implicit the level-set function.  

The above approaches on topology optimization have im-
plicit boundary representation between solid and void regions. 
Therefore, additional post-processing efforts for converting 
the optimization result into a CAD design is required. To rem-
edy this problem, the topology optimizations with explicit 
boundary have been proposed through an integration of shape 
optimization and hole creation process [5, 6]. Furthermore, 
Moving morphable component (MMC) method has been pro-
posed by controlling location, orientation and shape of struc-
tural members [7].  

As an alternative of design optimization based on conven-
tional finite element method, Isogeometric analysis (IGA) [8] 
were applied in structural optimization by integrating design 
and analysis through spline basis functions. Shape optimiza-
tion methods were proposed [9, 10], and they are extended 
geometrically nonlinear structures [11]. Furthermore, topology 
optimization were proposed [12] by using trimming technique 
in CAD system [13, 14]. One of the advantages of the topol-
ogy optimization with trimming technique is that the explicit 
boundary can be represented effectively with spline surfaces 
and curves. Therefore, design dependent load problems can be 
easily treated and additional post processing of an optimal 
design to obtain a CAD file is not required.  

However, the topology optimization with trimming tech-
nique has a drawback in obtaining shape sensitivity of bound-
ary trimming curves. Since the mathematical relation between 
a spline surface and trimming curves does not exist, the shape 
sensitivity analysis on a trimming curve requires semi-analytic 
approach to obtain the relationship between trimming curves 
and spline surface. It requires a cumbersome process in the 
sensitivity analysis and additional computational efforts. In 
this research, an alternative method is proposed for updating 
the shape of trimming curves by using the topological deriva-
tive. Topological derivative is related to the creation of small 
hole within the design domain and it is applied in several re-
searches on the topology optimization. Céa et al. [15] removed 
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finite elements based on the topological derivatives. Lee et al. 
[16] utilized topological derivative to create new holes during 
the shape optimization process. Furthermore, topological de-
rivative is incorporated into the level-set based method [17] 
and the density based method [18].  

The contents of this paper are organized as follows. In Sec. 
2, Preliminaries on B-splines, Non-uniform rational B-spline 
(NURBS) and IGA will be briefly reviewed. The explanations 
on trimming technique and Spline-based meshfree method 
(SBMFM) will be given with the detection and integration 
schemes of trimmed elements. In Sec. 3, the proposed optimi-
zation approach will be given. In Sec. 4, numerical examples 
on topology optimization will be shown, then conclusions and 
future works will be presented in the last section. 

 
2. Preliminaries 

2.1 B-splines and Isogemetric analysis 

B-spline basis functions are defined from a knot vector, 
which defines the segment of a curve or surface: 

 
{ }0 1 1, ,..., , ,n p n pu u u u+ - +=U                             (1) 

 
where p is the degree of basis functions and n is the number of 
control points. The whole interval 0 , n pu u +é ùë û  is called a patch, 
and the sub-interval )1,i iu u +éë  is called i-th knot span, which 
defines the segment or an element in the parametric space. 
The p-th order B-spline basis functions are defined in recur-
sive way as follows: 
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with i = 1,…,n+p+1. Then, the B-spline curve is expressed as a 
linear combination of the basis functions and the control points: 
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where control points iP  define the shape of curve. Similarly, 
a B-spline surface is defined by the bi-variate tensor products 
form of two parameters as shown in Eq. (4). 
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NURBS is defined by imposing weights on control points 

and constructing rational form of basis functions. NURBS is 
able to express circles or conics exactly. Mathematical forms 
of a NURBS curve and surface are shown in Eqs. (5) and (6). 
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IGA utilizes NURBS basis function in geometric represen-

tation and finite element analysis. Instead of using nodes and 
elements in finite element model, IGA uses the geometric 
information (knot vectors, weights and control points) from 
the standard CAD formats. Number of degree of freedom is 
easily controlled by the knot-insertion algorithm [19] which is 
widely used in CAD. One of the main advantages of IGA is 
that the exact geometry is represented by using spline basis. 
Moreover, its accuracy [20] and higher robustness under mesh 
distortion [21] have been reported.  

 
2.2 Trimmed surface analysis and spline-based meshfree 

method 

Rather than tensor-products form of NURBS surface used 
in IGA, CAD system uses trimming technique to represent 
complex geometry. Fig. 1 demonstrates an example of model-
ling process using spline basis. If the desired geometry is a 
simple trapezoidal surface with one inner hole, additional 
remodeling is required in the IGA. This remodeling includes 
dividing the surface into several tensor-product NURBS 
patches. On the other hand, trimming technique does not re-
quire any dividing process since trimming curves are utilized 
to cut off the unnecessary regions. 

To utilize the trimming technique into IGA, Trimmed sur-
face analysis (TSA) [13] has been proposed. In this following, 
main features of TSA will be briefly introduced. In TSA, Ini-
tial graphic exchange specification (IGES) format is used to 
export trimming information from CAD and the followings 
demonstrate contents of IGES file. 
·Untrimmed surface information: It contains knot vectors, 

the degree and control point information of the NURBS 
surface before trimming operation is applied.  
·Trimming curve information in the parametric and physi-

cal spaces: It contains knot vectors, the degree and con-
trol point information of trimming curves which are rep-
resented in the parametric and physical spaces. Note that 
the trimming curves in the parametric and physical 
spaces are defined independently. 
·Direction of a trimming curve is counter-clockwise. Void 

region is the right side of the increasing direction of knot 
values while the material region is the left side. Based on 
the directional property of a trimming curve, a searching 
scheme is applied whether a certain point is in the mate-
rial region or not. 

 
After the searching scheme is applied, the elements in the 

analysis domain are categorized and classified into three 
groups depending on the number of vertex located in void 
region. Fig. 2 illustrates three types of trimmed element where 
type A has one void vertex, type B and C have two and three 
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void vertices. These types are decomposed into normal trian-
gular cells and triangular cells with one NURBS curve. If an 
element cannot be classified into one of these three types, 
further quadtree refinement is applied. For the numerical inte-
gration of the normal triangular and the non-trimmed (rectan-
gular) elements, the conventional IGA integration scheme can 
be employed. On the other hand, the triangular cells with 
NURBS curve uses the NURBS-enhanced integration scheme 
[22]. 

Based on TSA, Kim and Youn [23] proposed SBMFM. The 
conceptual sketch of SBMFM is illustrated in Fig. 3. The con-
cept of SBMFM is to represent the analysis domain with 
trimming curves only and the NURBS surface acts as a back-
ground mesh. SBMFM provides the flexibility in geometry 
representation of complex topology with explicit boundary. 

Also, robustness in nonlinear analysis is guaranteed since it 
does not suffer mesh distortion problem. 

 
3. Topology optimization using SBMFM 

3.1 Topological derivative based approach 

As shown in Fig. 4, let ( ),B rx  be a small circular hole of 
radius r centered at ÎWx . The topological derivative of a 
response function Y  with respect to the small perturbation 
( ),B rx  is defined as follows: 
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where ( )f r  is the positive function having the same order 
with spatial dimension (2 or 3). When a circular domain is 
perturbed in the two-dimensional space with its radius r, it is 
shown that 

 
( ) 2.f r rp=                                   (8) 

 
For the case of compliance and 2-D elasticity problems, it is 

shown that the topological derivative is related to the strain 
energy density [24, 25] which is expressed as follows: 
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where n  is the Poisson’s ratio, σ  and ε  are stress and 
strain vector. 

From the definition of the topological derivative described 
in Eq. (7), topological asymptotic expansion [26] is defined 
as: 

 
( )( ) ( ) ( ) ( ) ( )( )\ ,B r f r f ro¢Y W = Y W + Y +x x     (10) 

 
where ( )( )f ro  is the higher order term of r. 

Consider the perturbation is occurred on the boundary as 

 
 
Fig. 1. An example of modelling process in IGA and TSA. 

 

 
 
Fig. 2. Classification and decomposition of trimmed elements. 

 

 
 
Fig. 3. Schematic representation of SBMFM. 

 
 

 
 
Fig. 4. Definition of topological derivative with infinitesimal perturbation. 

 

 
 
Fig. 5. Perturbation of infinitesimal domain at the boundary. 
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shown in Fig. 5, then the function ( )f r  is defined as: 
 

21( ) ,
2

f r rp=                                 (11) 

 
which is the same as the area of the half-circle with radius r. 
In this case, the topological derivative can be considered as the 
singular limit of the shape derivative. 

From the asymptotic expansion written in Eq. (10), take the 
derivative this equation with respect to r and neglect 

( )( )f ro  , then Eq. (10) becomes as follows: 
 

( )( ) ( ) ( )\ , .
df rd B r

dr dr
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Eq. (12) implies that the sensitivity of the response function 

with respect to the perturbation at the boundary with radius r. 
In this work, Eq. (12) is applied to obtain the sensitivity of 
trimming curves. 

 
3.2 Boundary evolution scheme 

Based on the topological asymptotic expansion described in 
the previous section, design update is performed from the 
topological derivatives which are calculated at trimming 
curves. Fig. 6 illustrates boundary update scheme. Let k

iP  be 
i-th control point (blue squares on Fig. 6) at k-th iteration. 
Then sampling points (red circles on Fig. 6) are located on this 
trimming curve which are denotes as k

ix ’s and they are des-
ignated as design variables. The sensitivities of sampling 
points are obtained based on Eq. (12), and the optimizer re-
turns the radius k

ir ’s of each sampling point.  
The location of i-th sampling point at next iteration 1k

i
+x  is 

updated based on the k
ir  and its normal vector k

in . Using the 
updated positions of the sampling points, the shape of the 
trimming curve is evolved by updating the location of control 
points 1k

i
+P ’s using the least-square fitting algorithm [19]. 

 
3.3 Verification of shape evolution 

In this subsection, the relationship between topological de-
rivative and evolution of trimming curve is validated. Fig. 7 
illustrates problem definition of the validation model. A short 
cantilever beam problem with aspect ratio of 8:5 is considered 
with downward point load. Young’s modulus and Poisson’s 
ratio are equal to be 210 GPa and 0.3, respectably. As shown 
in the Fig. 8, finite difference method is applied by perturbing 
certain sampling points on trimming curves and evolve trim-
ming curve by fitting method. Based on Eq. (7), following 
criteria is computed: 
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( )( ) ( )
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where meas  indicates the area of the domain. Eq. (13) is 

compared with the analytic value of topological derivative of 
compliance. The validation is performed with following vari-
ables. 
·Discretization level of background mesh: 11by 8, 20 by 

15, 33 by 24 background meshes with quadratic B-spline 
basis function. 
·Discretization level of trimming curve: 4, 10, 18 control 

 
 
Fig. 6. Illustration of boundary evolution scheme. 

 

 
 
Fig. 7. The model for validation of topological derivative. 

 

 
 
Fig. 8. Perturbation scheme of validation model. 
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points per each trimming curve. The basis function of 
trimming curve is quadratic. 
·Perturbation of sampling points: 0.01, 0.001 and 0.0001 

in the parametric space. 
 
Fig. 9 illustrates the influence of background mesh with 10 

control points per each trimming curve and perturbation of 
0.001. The x and y coordinates of this figure indicate location 
of sampling points at upper side of trimming curve and rela-
tive agreement between analytic topological derivative and Eq. 
(13). There exist higher disagreement at the corner of curves. 
But they are decreasing with increasing level of discretization. 
Fig. 10 illustrates the influence of trimming curve discretiza-
tion with 33 by 24 background mesh and perturbation of 0.001. 
It is shown that significant errors are appeared when trimming 
curve has insufficient discretization since topological deriva-
tive based approach in this work is related to the creation of 
half circle on boundary. Fig. 11 shows the influence of pertur-
bation with 33 by 24 background mesh and 10 control points 
per each curve. It is shown that excessive level of perturbation 
leads to the significant error in curve evolution.  

Through validation process, it is shown that level of trim-
ming curve discretization and perturbation of sampling point 
are important factors in the accuracy of proposed method. 
Based on these results, degree of freedom and move limit of 

trimming curves are determined to maintain a certain level of 
accuracy. 

 
3.4 Creation of new hole 

To determine the creation of a new holes (topological 
changes), seed points are created inside of the domain as 
shown in Fig. 12. Then obtained topological derivatives at the 
seed points (black circles on Fig. 12) are compared with the 
topological derivatives at the boundary sampling points. In 
this work, the minimum topological derivative of the seed 
points ( )min

seed
¢Y  and the sampling points ( )min

samp
¢Y  are 

compared. If the following relation is satisfied, 
 

( ) ( )min min ,
seed samp

¢ ¢Y < Y                           (14) 
 

a new NURBS trimming curve is inserted at the seed point 
having minimum topological derivative.  

 
3.5 Optimization formulation and procedures 

In this work, compliance minimization problem with vol-
ume constraint is concerned. The mathematical form of the 
optimization problem is stated as following: 
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Fig. 9. Validation result w.r.t discretization level of background mesh. 

 

 
 
Fig. 10. Validation result w.r.t discretization level of trimming curves. 

 

 
 
Fig. 11. Validation result w.r.t perturbation level of sampling points. 

 

 
 
Fig. 12. Creation of new trimming curve. 
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where r  denotes the radii of sampling points, u  is the dis-
placement field, b  is the body force, t  is the traction  at 
the region tG  and reqV  represents upper limit of the volume 
constraint. 

The overall process of this work is summarized in Fig. 13. 
Before trimming curves are evolved, topological changes are 
judged by comparing the topological derivatives of the sam-
pling points on the trimming curves and of the interior seed 
points. Then shapes of the trimming curves are optimized 
using the Method of moving asymptotes [27] within the inner 
loop. After inner loop is converged, the convergence is also 
checked whether the outer convergence is satisfied or not. In 
this work, the convergence criterion is based on the changes in 
the objective function at the current iteration ( kY ) and the 
previous one ( 1k-Y ) based on the following criterion:  

 
1

1 ,
k k

k e
-

-

Y -Y
<

Y
                           (16) 

 
where e  indicates the measure of convergence. The value of 
e  at the inner and outer loops are 210-  and 410- , respec-
tively. 

 
4. Numerical examples 

In this section, several compliance minimization problems 
are presented to validate the effectiveness of the proposed 
approach. Plane stress with linear elastic behavior is assumed. 
Young’s modulus and Poisson’s ratio are equal to be 210 GPa 
and 0.3, respectably.  

 
4.1 Short cantilever beam with fixed design space 

Fig. 14 illustrates the problem definition of the short canti-
lever beam problem with a downward point load. The upper 
limit of the volume fraction is 60 % of the initial value. The 
right side of Fig 14 shows the initial domain in the parametric 

space with the background mesh and 4 trimming curves. The 
background mesh is discretized with 20 by 15 elements by 
using quadratic NURBS basis functions. Trimming curves 
consist with quadratic B-spline curves with 10 control points 
and 20 sampling points for each curve. 

The optimization is converged at 172th iteration. Fig. 15 il-
lustrates the history of design change in physical spaces. As 
shown in this figure, boundary evolution of the existing trim-
ming curves and creation of new curves at certain steps can be 
found. Furthermore, if two adjacent curves become too close 
to each other, these curves are merged into a single curve to 
prevent the interference between the trimming curves [12, 24] 
as shown in Fig. 16. Fig. 17 illustrates the convergence histo-
ries of the objective function (compliance) and the constraint 
(volume) which are normalized with their initial values. 

 
4.2 Short cantilever beam with extendable design space 

In the second case, the extendable design space problem is 
considered. Trimming curves are able to be extended in the y 
direction without any restriction. Fig. 18 illustrates the design 
changes in the physical spaces. At a certain stage, if a trim-
ming curve reaches to the limit of the parametric space, the 
background mesh is adaptively extended which is proposed in 
the geometric nonlinear analysis with SBMFM [23] As shown 
in Fig. 19, the background NURBS surface in the physical 
space is extended with additional control points. After that, 
trimming curves at the parametric space are relocated using 
the point inversion and fitting algorithms [23] since the para-

 
Fig. 13. Optimization procedures. 

 

 
 
Fig. 14. Problem definition of short cantilever beam problem with 
fixed design space. 

 

 
 
Fig. 15. History of design change in physical space of short cantilever 
beam problem with fixed design space. 
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metric space are always defined in the 0,1 0,1´é ù é ùë û ë û . Fig. 20 
illustrates the convergence histories of the problem. Due to the 
flexibility in the design space, the normalized objective func-
tion value at the converged design (0.876) is smaller than the 
fixed design space case (1.28) with the same volume fraction. 

 
4.3 Bridge beam problem 

Fig. 21 illustrates the problem definition of a bridge beam 
problem with aspect ratio of 2:1. Due to its symmetry, a half 
of the domain is considered as shown in the right side of Fig. 
21. In this problem, 22 by 22 elements are involved with 
quadratic basis functions and 4 trimming curves are used with 
10 control points and 20 sampling points for each curve. The 
volume constraint of this problem is set to be 30 % of the ini-
tial value. Fig 22 shows the design change in the physical 
spaces. Fig. 23 illustrates the convergence histories of the 
compliance and the volume. It is shown that optimal design is 
converged to the truss structure to maintain the downward 

loading. 

 
5. Conclusions 

In this research, the topology optimization with explicit 

 
Fig. 16. Merging of trimming curves during the optimization process. 
 

 
 
Fig. 17. Convergence histories of short cantilever beam problem with 
fixed design space. 

 

 
Fig. 18. History of design change in physical space of short cantilever 
beam problem with extendable design space. 

 

 
 
Fig. 19. An example of domain extension at 57th iteration. 

 

 
 
Fig. 20. Convergence histories of short cantilever beam problem with 
extendable design space. 
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boundary representation is incorporated into the SBMFM 
framework. Topological derivative is applied to describe the 
sensitivity of trimming curves, then these curves are updated 
by using the curve fitting algorithm. The relationship between 
topological derivatives and update of trimming curve is veri-
fied numerically. Topological change is achieved by inserting 
new trimming curve which is determined by comparing the 
topological derivatives at the boundaries and the inside 
evaluation points of the design domain. Proposed approach is 
validated through several numerical examples. It is shown that 
the inserting and merging of trimming curves describe topo-
logical changes appropriately while explicit and smooth 
boundary representation of SBMFM is maintained. Further-

more, the extendable design space problem is easily treated by 
adaptive extension of the NURBS background mesh. 

Compared with the previous work [12], one of the advan-
tages of using SBMFM is that relocation of the non-design 
control points during the optimization is neglected. Proposed 
method alternates sensitivity analysis and update of trimming 
curves. By using analytic sensitivity formulation using topo-
logical derivatives, additional computational costs and cum-
bersome process of previous work are reduced. Furthermore, 
proposed method provides possibilities on extending our work 
to the 3-dimensional applications. 

Beyond the compliance minimization problem, this study 
will be applied to a variety of applications such as material 
design and compliant design problems. Also, this work can be 
applied to the design dependent load problem. By using 
SBMFM, it will have great advantage in treating loaded 
boundaries. 
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