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Abstract 
 
An immersed-boundary method is proposed for the analysis of conjugate problems of convective heat transfer in conducting solids. In-

side the solid body, momentum forcing is applied to set the velocity to zero. A thermal conductivity ratio and a heat capacity ratio, be-
tween the solid body and the fluid, are introduced so that the energy equation is reduced to the heat diffusion equation. At the solid fluid 
interface, an effective conductivity is introduced to satisfy the heat flux continuity. The effective thermal conductivity is obtained by 
considering the heat balance at the interface or by using a harmonic mean formulation. The method is first validated against the analytic 
solution to the heat transfer problem in a fully developed laminar channel flow with conducting solid walls. Then it is applied to a lami-
nar channel flow with a heated, block-shaped obstacle to show its validity for geometry with sharp edges. Finally the validation for a 
curvilinear solid body is accomplished with a laminar flow through arrayed cylinders.  
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1. Introduction 

In engineering problems involving convective heat transfer, 
flows are usually in the turbulent regime. For turbulent con-
vection, because turbulent heat flux is dominant over thermal 
diffusion, most previous studies have not considered heat con-
duction inside solid walls or in obstacles in the flow path [1]. 
However, heat transfer in the laminar regime is influenced by 
thermal boundary conditions such as isothermal wall or iso-
heat flux wall. Moreover, in the turbulent regime where large 
variations in local heat transfer occur, the temperature distri-
bution inside a solid body strongly affects convective heat 
transfer characteristics [2]. Then heat transfer characteristics 
can substantially be changed from the case with an isothermal 
or iso-heat flux wall.  

A large number of previous works on convective heat trans-
fer are focused on the development of heat transfer enhance-
ment devices such as turbulence promoters, serpentine pas-
sages, impinging jets and so forth. Local heat transfer in those 
devices is spatially varied. Large variations in local heat trans-
fer generate conduction inside a solid wall, so that the heat 
transfer is affected. In addition, recent research interest is 
moving to heat transfer in micro-structures, where flows are 
usually in the laminar regime. Thus, conduction in the solid 
wall should be considered as well as convection in the flow 

for more accurate evaluation of heat transfer rates in practical 
applications. 

Previous numerical studies on conjugate heat transfer were 
mainly carried out for laminar flow [3-7], or considered only a 
steady-state formulation of the governing equations [8]. Vari-
ous numerical procedures have been used for conjugate heat 
transfer analysis. One of the numerical methods is the domain 
decomposition procedure [6]. In this procedure, the solid re-
gion is decomposed from the fluid region, each region is cal-
culated separately, and then the boundary values at the solid 
fluid interface are matched to satisfy the boundary conditions. 
This approach has good accuracy for the prediction of conju-
gate heat transfer. It has problems, however, such as slow 
convergence and difficulty in applying this approach to com-
plex geometry or three-dimensional flow paths. What is worse 
is that it causes low accuracy in heat transfer prediction when 
the solid body has a sharp edge, like a rectangular rib. 

To overcome these disadvantages, a unitary computational 
domain has been used in some previous studies [4, 5, 7]. This 
approach sets the velocity inside a solid body to zero by im-
posing high artificial viscosity and satisfies the continuity of 
the heat flux at the solid fluid interface using the harmonic 
mean or the concept of effective conductivity. This approach 
does not need the iteration for matching boundary conditions 
between the solid region and the fluid region. Therefore, it can 
be more easily applied to complex geometry as well as to 
three-dimensional problems and also can improve the slow 
convergence. In spite of these advantages, this approach has 
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an accuracy problem when the velocity gradient is very large 
at the solid fluid interface. This is a result of the artificial ma-
nipulation which does not set the velocity at the solid fluid 
interface to zero.  

Another approach using a unitary computational domain is 
finite element formulation [3]. In this formulation, the Ga-
lerkin method of weighted residuals is used to discretize the 
non-linear system of governing equations and boundary con-
ditions. The computational domain is divided into a set of 
non-overlapping regions, termed elements, in which the de-
pendent variables are approximated with interpolation func-
tions in terms of the local normalized element coordinates. 
Substitution of the approximations into the system of govern-
ing equations and boundary conditions yields a residual for the 
conservation equations. These residuals are reduced to zero in 
a weighted sense over each element volume by making them 
orthogonal to the interpolation functions. The discrete repre-
sentation for the entire computational domain is obtained 
through an assembly of those elemental equations. This pro-
cedure can easily satisfy the change in boundary conditions at 
the solid fluid interface and can also improve the slow conver-
gence. In addition, it can be easily applied to complex geome-
try and three-dimensional problems. However, the procedure 
needs a determination of the proper weight function for inter-
polation and domain of influence, which considerably affect 
the accuracy of the solution. 

Some previous studies conducted simulations for heat trans-
fer analysis based on the immersed-boundary method [9]. Kim 
and Choi [10] have suggested the immersed-boundary method 
for convective heat transfer analysis when the solid wall has 
iso-thermal or iso-heat flux conditions. Kang et al. [11] pre-
sented a novel immersed-boundary method for multi-material 
heat transfer problems. In this method, two approximated 
boundaries facing each other across the solid fluid interface 
are constructed to build connections between points on the 
two approximated boundaries. 

In this paper, we propose a numerical technique based on 
the immersed-boundary method to analyze the conjugate heat 
transfer problem. In the immersed-boundary method, a solid 
body in the flow field is considered as a kind of momentum 
forcing in the Navier-Stokes equations rather than the real 
body, and thus, the flow over a complex geometry can be 
easily handled with orthogonal (Cartesian) grids which gener-
ally do not coincide with the solid surface [9]. On the other 
hand, by applying the immersed-boundary method to the con-
jugate heat transfer problem, we can deal with both the fluid 
region and the solid region in a unitary computational domain. 
In general, momentum forcing is imposed not only on the 
solid fluid interface but also inside solid body to ensure the 
stability of the method at a high Reynolds number. This pro-
cedure sets the velocity in the solid region to zero so that the 
energy equation is reduced to the heat diffusion equation by 
assigning thermal conductivity to the solid region. In the case 
of complex geometry, some cells in the computational domain 
span the solid and fluid regions because the solid fluid inter-

face does not generally coincide with the grids. We resolve 
such cells by introducing an effective thermal conductivity [4, 
5, 7] and by modifying convection terms. 

The immersed boundary method proposed by Kang et al. 
[11] applies heat source to have the targeted value of tempera-
ture at the nodal points near the solid-fluid interface. The tem-
perature is obtained by mapping and interpolation to satisfy 
the heat flux continuity. The procedure is parallel to that of the 
momentum forcing. But the interpolation factor for the tem-
perature should be different from that for the velocity to con-
sider fluxes at both sides of the interface separately. This 
mismatch can affect the boundness of temperature depending 
on the mesh refinement. On the other hand, the present nu-
merical procedure of treating the energy equation is not ex-
actly parallel to that of the momentum forcing. However, the 
stability is less affected by the mesh refinement. 

In this study, three different laminar flow problems are sim-
ulated to verify the accuracy of our method. We first validate 
the method against the analytic solution of the heat transfer 
problem in a fully developed laminar channel flow with con-
ducting solid walls and observe the accuracy depending on the 
mesh refinement. Next we conducted numerical simulations 
for a laminar channel flow with a heated rectangular obstacle 
and a laminar flow through an array of cylinders to compare 
our simulation results to previously published data [3, 6] in 
order to confirm accuracy of our heat transfer prediction near 
the sharp corner of the solid body and the validity of the solu-
tion for the curvilinear solid body in a Cartesian grid system. 

 
2. Numerical method 

2.1 Governing equation 

In this study, we use the incompressible Navier-Stokes 
equation and the energy equation. The dimensionless continu-
ity and momentum equations can be expressed as 
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where xi are the Cartesian coordinates, ui are the correspond-
ing velocity components, p is the pressure and Re is the Rey-
nolds number. To satisfy the no-slip condition at the solid 
fluid interface, we apply both momentum forcing (fi) and mass 
source/sink (ms) on the solid surface. Momentum forcing is 
imposed inside the solid body to set the velocity to zero. The 
modified continuity and momentum equations are expressed 
as  

 

0i

i

u ms
x

¶
- =

¶
 (3) 

21 .
Re

i ji i
i

j i j j

u uu p u f
t x x x x

¶¶ ¶ ¶
+ = - + +

¶ ¶ ¶ ¶ ¶
 (4) 



 J. C. Song et al. / Journal of Mechanical Science and Technology 31 (5) (2017) 2287~2294 2289 
 

  

The method of determining momentum forcing (fi) and 
mass source/sink (ms) is fully described in Kim et al. [9]. 

In the case of a thermal field, the dimensionless energy 
equation can be expressed as 
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where q  is the dimensionless temperature and Pr is the Prandtl 
number. No-slip condition on the solid surface and zero veloc-
ity inside the solid body are satisfied by introducing momen-
tum forcing and mass source/sink so that the energy equation 
inside the solid body is reduced to the heat diffusion equation. 

Considering thermal property variation and energy balance 
across the solid fluid interface, Eq. (5) can be written as 
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The difference in thermal properties between the solid and 

the fluid is reflected in the energy equation by introducing the 
heat capacity ratio C* and the thermal conductivity ratio K*. 

Those are set to unity in the fluid region and become 
p f p s( ) / ( )c cr r and ks / kf inside the solid body, where ( )f and 

( )s indicate the properties of the fluid and the solid. Heat ca-
pacity at the cell including the interface is evaluated as the 
weighted volume average over the cell. Thermal conductivity 
at the cell face, however, needs an additional treatment to 
satisfy the heat flux continuity at the interface. The procedure 
is given in Sec. 2.2. In Eq. (6), w is a convective correction 
factor. w is used to take into account conduction at the solid 
fluid interface independently. Its value is zero in the cells at 
the interface and solid region, while it becomes unity for other 
cells. x is a kind of heat source/sink, which is introduced to 
compensate for error generated by neglecting the convection 
effect at the interface. Its definition is given in Sec. 2.3. 

 
2.2 Effective thermal conductivity 

When we apply the immersed-boundary method to a conju-
gate heat transfer problem, the conduction inside the solid 
body is solved by imposing momentum forcing inside the 
solid body. Momentum forcing sets the velocity to zero so that 
the energy equation becomes the heat diffusion equation. The 
remaining issues are continuity of temperature and conserva-
tion of energy at the solid fluid interface. In this study, we 
introduce the concept of effective thermal conductivity to 
satisfy the continuity of temperature and conservation of en-
ergy at the interface. Effective thermal conductivity is deter-
mined according to the arrangement of the solid fluid interface 
and the direction of heat flux at the interface as shown in Fig. 
1. When the heat flux crosses the interface (see Fig. 1(a)), i.e. 
the phase at neighboring cell centers are different, the effec-
tive conductivity (ke) at the interface is defined as  

f s
int e .T Tk
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At the interface, the temperature and heat flux should be 

continuous. It follows that  
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Canceling out the interface temperature in Eqs. (8) and (9), 

and plugging in Eq. (7), the effective thermal conductivity can 
be expressed as [7]  
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On the other hand, when the heat flux does not cross the in-

terface as shown in Fig. 1(b), i.e. the phase at the cell center 
does not change for the neighboring cell, the effective conduc-
tivity is determined from a weighted average value as given 
by Eq. (11). 
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A general case is illustrated in Fig. 1(c). 

 
2.3 Convection in cells including the interface 

When the cell face coincides with the solid fluid interface, 
there is no convection in the cell inside the solid body faced 

 
 
Fig. 1. Heat flux at the solid-fluid interface for (a) heat flux normal to 
the cell face; (b) heat flux parallel to the cell face; (c) general geome-
try. 
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with the interface so that x , as a kind of heat source/sink, 
becomes zero. However, if the cell face does not coincide with 
the interface, we should consider the convection to get more 
accurate result. Convection in the cells including the interface 
is treated by imposing heat source/sink to satisfy the energy 
conservation, which is similar to how the mass source/sink 
satisfies the mass conservation at the interface [9]. In the ca-
pacity of heat source/sink, x  is defined as  

 

f f ,

1
i

i

n
V
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In the study, we determine enthalpy flux through interpola-

tion (see Fig. 2) using the fluid area ( f , jnD ) in the cell to get 
higher accuracy, differing from Kim et al. [9]. The interpola-
tion relation is given by 

 
f W NW W SW( ) 0.25( ) 0.5( ) 0.25( ) .u u u uq q q q= + +   (13) 

 
The treatment improves numerical stability for a coarse grid. 
 

3. Code verification 

3.1 Laminar channel flow with conducting solid wall 

The proposed numerical method is validated against the 
conjugate heat transfer in a laminar channel flow (see Fig. 3) 
by comparing it with the analytic solution. For a fully devel-
oped flow with iso-heat flux boundary condition, the axial 
temperature gradient becomes constant. Thus, temperature can 
be decomposed as 
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So that Eq. (5) can be modified as [10] 
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In the solid region, Eq. (15) becomes 
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The boundary conditions to Eqs. (15) and (16) are given by  
 

int , 0f
f u

y
yd

d

q
q q

=
=

¶
= =

¶
    (17) 

1
s int s w ,  

y y
T T T T

d d d= = +
= = .      (18) 

 
The analytic solutions to Eqs. (15) and (16) can easily be 

obtained by substituting conditions at the interface given by 
Eqs. (8) and (9) as follows. 
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Simulations are performed for thermal conductivity ratios 

of 10 and 100 when the 1 /d d = 1.0 and Re = 1000. The 
simulation conditions and grid information are listed in Table 
1. Fig. 4 shows local temperature distributions. As can be seen 
in Fig. 4, the present numerical solutions faithfully follow the 
analytic solutions for both thermal conductivity ratios. Fig. 5 
shows the variation of errors in temperature with mesh re-
finement. It is verified that the present numerical method has 
second-order accuracy in space. 

 
3.2 Laminar channel flow with a heated obstacle 

We conducted numerical simulations for a laminar channel 
flow with a heated rectangular obstacle as shown in Fig. 6 to 
see the effect of the thermal conductivity ratio of solid to fluid 
as well as to validate the accuracy of the present numerical 
method. Our results are compared to Young and Vafai’s data 
[3] obtained by the finite element formulation. In this formula-

 
Fig. 2. Interpolation points to evaluate the convective correction term. 

 

 
 
Fig. 3. Channel with a conducting wall. 

 

Table 1. Simulation conditions and mesh refinement for channel flow 
with a conducting wall. 
 

Mesh refinement Simulation 
conditions Number of grid Grid spacing (Dy/d) 

Re 1000 256 7.81 ´ 10-3 

Pr 0.71 128 1.56 ´ 10-2 

d1/ d 1.0 64 3.13 ´ 10-2 

ks/kf 10, 100 32 6.25 ´ 10-2 
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tion, the Galerkin method of weighted residuals of the finite 
element formulation is used to discretize the nonlinear system 
of governing equations and boundary conditions. The contin-
uum domain is divided into a set of non overlap regions, 
termed elements, and the dependent variables within each 
element are approximated using interpolation functions in 
terms of the local normalized element coordinates. 

In this simulation, the dimensionless temperature is defined as 

"
w f/

iT T
q H k

q -
º .        (21) 

 
Simulation conditions are listed in Table 2. At the channel 

inlet, flow is fully developed and temperature is constant ( iq  
= 0), and at the channel outlet, zero streamwise gradients are 
prescribed. Both the upper and lower channel walls are insu-
lated except at the obstacle location. The base of the solid 

      
                                       (a)                                             (b) 
 
Fig. 4. Temperature profiles in the channel with a conducting wall in comparison to the analytic solution: (a) ks/kf = 10; (b) ks/kf = 100. 

 

      
                                      (a)                                              (b) 
 
Fig. 5. Numerical accuracy in temperature with mesh refinement: (a) ks/kf = 10; (b) ks/kf = 100. 

 

      
                            (a)                                                             (b) 
 
Fig. 6. Channel with a heated obstacle: (a) Computational domain and boundary conditions; (b) grid system. 
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obstacle receives the iso-heat-flux ( "
wq ). Simulations are per-

formed for thermal conductivity ratios of 10 and 100. We use 
128 ´ 96 meshes in the streamwise direction (x) and wall-
normal direction (y). A non uniform grid system is used in 
both directions (Fig. 6(b)).  

Fig. 7 shows the temperature contour in the case of 
s f/k k = 10 which is similar to that predicted by Young and 

Vafai [3]. A comparison of the maximum temperature with 
that predicted by Young and Vafai is within ~0.6 %. Fig. 8 
shows the local Nusselt number distributions along the obsta-
cle surface. The convective heat transfer coefficient and the  

Nusselt number are defined as 
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As can be seen in Fig. 7, our predictions coincide almost 
exactly with Young and Vafai’s [3] for both thermal conductiv-
ity ratios. 

 
3.3 Flow over a cylinder array 

In order to verify that the present method can predict conju-
gate heat transfer for curved geometry such as a cylindrical 
body, we conducted numerical simulations for laminar flow 
over a cylinder array with volumetric heating as shown in Fig. 
9. Simulation results are compared to Wang and Georgiadis’s 
data obtained by domain decomposition procedure [6]. In the 
procedure, the solid region is decomposed from the fluid re-
gion, each region is calculated separately and then the bound-
ary values at the solid fluid interface are matched to satisfy the 
boundary conditions. The governing equations are solved for 
curvilinear coordinates, as shown in Fig. 10(b). We simulate 
the conjugate heat transfer on Cartesian coordinates (Fig. 
10(a)). Simulation conditions are listed in Table 3. Four 
boundaries (inlet, outlet, top and bottom) have periodic 
boundary conditions.  

Uniform volumetric heat ( sq ) is generated inside the cylin-
drical solid body. In this simulation, the temperature is de-
composed into a linear component and a periodic component 
as shown in Eq. (14) in order to satisfy the periodic condition 
in the streamwise direction. The temperature in dimensionless 
form is defined as 
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Table 2. Simulation conditions for channel flow with a heated obstacle. 
 

e/d 0.5 

Li/d 4 

Lo/d 16 

Re 1000 

Pr 0.71 

ks/kf 10, 100 

 

 
(a) 

 

 
(b) 

 
Fig. 7. Temperature contours in the case of ks/kf = 10: (a) This study; 
(b) Young and Vafai [3]. 

 

               (a)                           (b) 
 
Fig. 8. Local Nusselt number distributions: (a) k

s
/k

f
 = 10; (b) k

s
/k

f
 = 

100. 

  

 
 
Fig. 9. Laminar flow across a cylindrical fin array with internal heating. 

 

 
               (a)                            (b) 
 
Fig. 10. Grid system for the periodic computational domain: (a) Carte-
sian coordinates used in this study; (b) polar coordinates used by Wang 
and Georgiadis [6]. 
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Fig. 11 shows the streamlines together with the numerical 
results of Wang and Georgiadis [6]. In Fig. 11(a), flow recir-
culation is observed and flow parallels the streamwise direc-
tion near / 1y D » ± . These characteristics are similar to those 
of Wang and Georgiadis (Fig. 11(b)). Temperature contours 
are shown in Fig. 12. Fig. 12(a) shows that the temperature 
inside the cylindrical solid body is almost uniform and most of 
the change in temperature occurs in the fluid region near the 
solid body. In addition, the fluid absorbs heat from the solid 
body so that the temperature increases in the streamwise direc-
tion. This thermal field predicted by our numerical method is 
also almost identical to that of Wang and Georgiadis (Fig. 
12(b)). 

The effect of convection can be quantified by examining the 
distribution of the local temperature gradient. The dimensional 
temperature gradient presented by and Wang and Georgiadis 
[6] is related to the dimensionless temperature gradient pre-
dicted by the present method as follows.      

 
s
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Fig. 13 shows the dimensionless local temperature gradient 

compared to that of Wang and Georgiadis [6]. As seen in Fig. 
13, the present result coincides almost exactly with that of 
Wang and Georgiadis [6]. Finally we compare the average 
Nusselt number to Wang and Georgiadis’s data, where the 
heat transfer coefficient h is defined by the following relation. 

 

( )
2

s
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Table 3. Simulation conditions for cross-flow over a cylinder array 
with internal heating. 
 

Lx/D 2 

Ly/D 2 

Re 100 

ks/kf 1, 100 

 

 
               (a)                             (b) 
 
Fig. 11. Streamlines of the periodic flow at Re = 100: (a) This study; 
(b) Wang and Georgiadis [6]. 

 

 
(a) 

 

 
(b) 

 
Fig. 12. Temperature contours for K

s
= 100 at Re = 100: (a) k

s
/k

f
 = 1: 

Contours from -0.02 to 0.17 by increment of 0.01; (b) k
s
/k

f
 = 100: 

Contours from -0.02 to 0.08 by increment of 0.005. 
 
 

 
 
Fig. 13. Distribution of the local temperature gradient on the surface of 
a cylinder: (a) k

s
/k

f
 = 1; (b) k

s
/k

f
 = 100. 
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and the average Nusselt number is given by 
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s
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f max minf max min

1Nu .
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The values of the averaged Nusselt numbers are listed in 

Table 4. The results show good agreement within 5 %.  

 
4. Conclusions 

In this study, an immersed-boundary method for conjugate 
heat transfer analysis is proposed. Momentum forcing is ap-
plied inside the solid wall to set the velocity to zero. A thermal 
conductivity ratio and heat capacity ratio between the solid 
body and the fluid are introduced so that the energy equation 
is reduced to the heat diffusion equation. At the solid fluid 
interface, heat flux continuity is satisfied by introducing effec-
tive thermal conductivity and a convective correction factor. 

Our method has been validated for three different conjugate 
heat transfer problems, i.e., a channel flow with conducting 
solid wall, a channel flow with a heated, rectangular obstacle, 
and a flow through a conducting cylinder array. The simula-
tion results agree well with the analytic solution and previous 
numerical results, proving the accuracy of the present numeri-
cal method. Each result verifies the accurate heat transfer pre-
diction near the sharp corner of the solid body and on a curvi-
linear surface in a Cartesian grid system. The method will be 
applied to engineering problems with turbulent flows as a 
future work.   
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Table 4. Average Nusselt numbers on the surface of the cylinder. 
 

Nuavg ks/kf 
Present Ref. [6] 

% error 

1 1.608 1.543 4.19 

100 3.106 3.171 2.05 

 
 


