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Abstract 
 
Time-varying mesh stiffness (TVMS) and the dynamic coupling between the helical gears have a great influence on the vibration char-

acteristics of a helical gear rotor system. Considering the effects of TVMS and adopting two coupling models (lateral-torsional coupling 
model and lateral-torsional-axial-swing coupling model), the dynamic behavior of a helical gear system was studied. First, an analytical 
model was used to analyze TVMS of a helical gear pair where the helical tooth is simulated by many spur tooth slices along the direction 
of the tooth width and the mesh stiffness of each slice is calculated using the energy method. Then, considering the effects of the TVMS 
excitation, the finite element model of a helical gear rotor system was established. Gear mesh was simulated by the above-mentioned two 
coupling models to investigate the effects of coupling forms on the system vibration characteristics. The strain energy was used to distin-
guish the dominant mode and dominant shaft of a gear system in natural characteristics analysis. The results show that the full coupling 
model can analyze accurately the vibration characteristics of the system and the axial and swing motions cannot be ignored in vibration 
analysis. Finally, the effects of helix angle on TVMS and vibration responses of a helical gear system were also studied.  
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1. Introduction 

Helical gear pairs are widely used to transmit power and 
motion; their mechanical behavior and working performance 
have a great influence on the whole machine. Some factors, 
such as Time-varying mesh stiffness (TVMS) and lateral-
torsional coupled vibration, will affect the vibration character-
istics of gear systems. At present, there are many studies on 
these two aspects. Many works for calculating TVMS and 
Loaded transmission error (LTE) have been performed [1-4]. 
Wan et al. [1] obtained the TVMS of a helical gear pair by 
potential energy method, and verified the simulated results by 
comparing the results obtained from the Finite element (FE) 
method and ISO standard. By simplifying the helical gear as 
many spur gear slices along the gear width direction, Wang 
and Zhang [2] developed a model for calculating TVMS and 
stress of a helical gear pair. Gu et al. [3] presented some ana-
lytical formulae for TVMS calculation of solid spurs and heli-
cal gears. Hedlund and Lehtovaara [4] presented a method to 
calculate TVMS of helical gear pairs. In their model, the com-
bined stiffness for tooth and foundation is determined using 

linear FE approach, and the contact stiffness is obtained by 
Hertzian contact formulas. 

Besides the time-varying mesh characteristics due to tooth 
engagement, the vibration behaviors caused by TVMS and the 
vibration coupling of helical gear pairs have also been widely 
considered [5-15]. Kahraman [5] presented a mathematical 
model of a helical gear system with an invariable mesh stiff-
ness, which considers the coupling of lateral, torsional, axial 
and swing motions caused by gear engagement. For the cou-
pling effects of transverse, torsional and axial vibrations due 
to gear meshing, Choi et al. [6] investigated the vibration re-
sponses of a geared rotor system in a 28-MW turbo set. Kubur 
et al. [7, 8] presented a dynamic model for simulating the dy-
namic behavior of a helical gear rotor system with multiple 
shafts. In their model, the shafts are modeled using FE method 
and the helical gear pairs are modeled using a lumped mass 
model. Based on Kubur’s model, Zhang et al. [9] proposed a 
general FE model of helical gear systems. Their model ac-
counts for the effects of geometric eccentricity, gear meshing, 
bearing flexibility, and shaft flexibility. Kang and Kahraman 
[10] proposed a mathematical model of a double-helical gear 
system in which the time-invariant mesh stiffness of gear pairs 
is considered, and analyzed the vibration characteristics of the 
system by the theoretical simulation and experiment. Kang 
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and Kahraman [11] proposed an improved method for meas-
uring the acceleration responses of geared rotor systems in 
lateral, torsional and axial directions. Velex et al. [12] devel-
oped a dynamic model of gear rotor systems in which the gear 
pair is simulated using a lumped-parameter method and the 
shafts are simulated using two-node shaft elements with con-
centrated stiffness and mass elements. Nishino [13] analyzed 
the dynamic responses of a helical geared system under three 
types of excitation using an integrated excitation model. In his 
model, the gear tooth engagement and moving load are simu-
lated by the multiple springs and mesh excitation forces, re-
spectively. Eritenel and Park [14] simulated gear engagement 
using multiple parallel stiffness along the contact lines, and 
studied the nonlinear vibrations of gear pairs considering the 
effects of partial contact loss. Chen et al. [15] analyzed the 
vibration characteristics of a double-helical geared rotor sys-
tem where the shafts are modeled using Timoshenko beams, 
and the gears are simulated using rigid lumped masses. Abbes 
et al. [16] presented a sub-structure model of a gearbox where 
the shafts connected with a gear pair are considered as one 
sub-structure and the housing is regarded as another sub-
structure, and analyzed the effects of Transmission error (TE) 
on the vibration behavior of the gearbox system. On the basis 
of the dynamic contact theory, Wu et al. [17] studied the dy-
namic responses of a helical gear system considering the ef-
fects of tooth profile modification, and the simulation results 
are also verified by experimental results. 

The above literature analysis shows that the time-invariant 
mesh stiffness is mostly used to analyze the linear vibration 
responses of the helical gear systems [5-10, 15], or some sim-
plified TVMS such as a rectangular waveform is used [16]. To 
accurately predict the dynamic responses of helical gear sys-
tems, an accurate dynamic model connecting the gear parame-
ters such as helix angle and normal module with the system 
vibration is essential. This model can accurately quantify the 
effects of helix angle on the TVMS and mesh stiffness matrix 
due to the lateral-torsional-axial-swing coupling vibration. In 
this study, we propose an accurate dynamic modeling for a 
helical gear rotor system with TVMS based on our previous 
work [9]. Moreover, the effects of lateral-torsional coupling 
and lateral-torsional-axial-swing coupling on natural frequen-
cies are also quantified using modal strain energy, and their 
effects on the system dynamic responses are also evaluated. 
Finally, the effects of helix angle on TVMS and vibration 
responses of a helical gear system are also discussed. 

 
2. TVMS calculation of a helical gear pair 

Contact lines of a helical gear are diagonal of the gear axes 
(see Fig. 1). So the stiffness of a helical tooth is changing 
along the contact lines. In addition, the length of the contact 
lines will vary with the changing mesh positions. Therefore, it 
is more difficult to calculate the mesh stiffness of helical gear 
pairs than that of spur gear pairs. 

Based on sliced tooth theory, the helical gear pair is simu-

lated by many spur gear slices along the gear width direction. 
For the spur gear slice, the face-width is relatively small. 
Based on our earlier work [2], mesh stiffness and load sharing 
factor can be expressed as: 
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where N represents the number of sliced tooth pairs under 
engagement. ki is the mesh stiffness of the ith sliced tooth pair. 
To obtain the mesh stiffness and load sharing factor, it is nec-
essary to identify which sliced tooth pairs are in mesh and the 
mesh stiffness of each sliced tooth pair ki. 

 
2.1 Determination of the sliced tooth pairs in mesh 

The instantaneous pressure angle of each sliced tooth in 
mesh varies with the gear rotation. The instantaneous pressure 
angle of the sliced tooth i can be written as: 
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where φ1,n and φ2,n (n = 1, 2 represent the pinion and gear, 
respectively) of the sliced tooth i can be written as: 
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where z1 and z2 denote the tooth numbers of the pinion and 
gear. Detailed parameters can be found in Ref. [2]. 

If a sliced tooth pair is in mesh, the instantaneous pressure 
angle must be greater than the minimum pressure angle τb and 
less than the maximum pressure angle τe (see Fig. 2). τb and τe 
can be calculated as: 

 
 
Fig. 1. Schematic of a three-dimensional helical gear. 
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2.2 Mesh stiffness of a sliced tooth pair 

In this section, a spur gear pair is used to replace the sliced 
tooth pair. So the sliced tooth is considered as a non-uniform 
cantilever beam as shown in Fig. 3 and mesh stiffness of a 
sliced tooth pair can be calculated by the potential energy 
method. The total energy stored in the gear pair includes bend-
ing energy, shear energy, axial compressive energy, gear 
foundation energy and Hertzian contact energy. So the mesh 
stiffness of a sliced tooth pair can be expressed as [2, 19, 20]: 
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where kb, ks, ka, kf and kh denote bending stiffness, shear stiff-
ness, axial compressive stiffness, gear foundation stiffness and 
Hertzian contact stiffness, respectively. Subscripts 1 and 2 
represent the pinion and the gear, respectively. Bending stiff-
ness, shear stiffness, axial compressive stiffness, gear founda-
tion stiffness and Hertzian contact stiffness can be calculated 

as [2]: 
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where Δl is the width of the sliced tooth pair and other pa-
rameters are given in Ref. [2]. 

Two helical gear pairs with different helix angles are used 
to calculate TVMS, where the gear pair 1 consists of gears 1 
and 2, and the gear pair 2 consists of gears 3 and 4. These gear 
parameters are listed as follows: the tooth numbers of gears 1, 
2, 3 and 4 are 52, 72, 22 and 79, respectively. The gear widths 
of four gears are all 20 mm. TVMS of the helical gear pairs 1 
and 2 under different helix angles βij = 0°, 5°, 10°, 15°, 20° are 
shown in Fig. 4. For the gear pair 1, the fluctuation of TVMS 
decreases with the increasing helix angle except for βij = 15°, 
as shown in Fig. 4(a). This is because of the fluctuation value 
of mesh stiffness decreases when the transverse contact ratio 
or the face contact ratio is close to an integer. As shown in 
Table 1, the face contact ratio εβ = 0.9415 at βij = 15° is closer 
to an integer than εβ = 1.2442 at βij = 20°.  

Therefore, the fluctuation of TVMS at βij = 15° is smaller 
than that at βij = 20°. For the gear pair 2, the fluctuation of 
TVMS always decreases with the increasing helix angle (see 
Fig. 4(b)). This is because that the face contact ratio always 
increases with the increasing helix angle, as shown in Table 1.  

 
 
Fig. 2. Engagement schematic of a gear pair. 

 
 

 
 
Fig. 3. Cantilever beam model of a tooth. 
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3. Dynamic models of geared rotor systems 

3.1 Proposed FE model of geared rotor systems 

A three-dimensional (3D) mathematical model of a geared 
rotor system is established (see Fig. 5), which was presented 
in our earlier paper [9]. Here, we focus on the effects of dif-
ferent coupling models of a gear pair ij on vibration character-
istics under TVMS excitation. In this section, a lateral and 
torsional coupling and a lateral, torsional, axial and swing 
coupling dynamic model of a helical gear pair are developed 
to study the effects of the gear coupling models, respectively. 

A 3D model of a helical gear pair with 12 Degrees of free-
dom (DOFs) is presented in Fig. 5(b). The displacement vec-
tor of a helical gear pair ij can be written as follows: 

 
T[ , , , , , , , , , , , ]ij i i i xi yi zi j j j xj yj zjx y z x y zq q q q q q=X , (12) 

 
where x and y are the lateral DOFs, z represents axial DOF, θx 
and θy denote swing DOFs and θz is the torsional DOF. Con-
sidering lateral, torsional, axial and swing coupling, the equa-
tions of motion of a helical gear pair ij can be written as fol-
lows: 
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where Mij, Cij, Gij and Kij denote the mass matrix, damping 
matrix, gyroscopic matrix and mesh stiffness matrix of the 
gear pair ij. Fij is the excitation force vector, and only a con-
stant torque in applied in this paper. All of those matrices can 

be found in Ref. [9]. 
The mesh stiffness matrix Kij (see Fig. 6) can be written as 

follow: 
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where kij is the mesh stiffness of the helical gear pair, αij can 
be expressed as follow: 
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where ψij, βij, sgn denote the angle between the plane of action 
and positive y-axis direction, helix angle, sign function of the 
rotation direction of the gear i, respectively. The detailed in-
formation for these parameters can be found in Ref. [9].  

The upper-left matrix elements in Kij denote the driving 
gear DOFs, and the lower-right matrix elements denote the 
driven gear DOFs (see Fig. 6). The upper-right and lower-left 
matrix elements denote the couple DOFs of the driving and 
the driven gears. The 144 elements in Kij (see Fig. 6) are all 
nonzero, which denotes the lateral-torsional-axial-swing cou-
pling. In this paper, the lateral-torsional-axial-swing coupling 
is also called full coupling. Only the elements in red boxes are 
nonzero and other elements are all zero, which denotes the 
lateral-torsional coupling. Considering the lateral-torsional 
coupling effect, αij can be rewritten as follows: 

Table 1. Transverse and face contact ratios of gear pairs 1 and 2. 
 

Gear pair 1 Gear pair 2 

Helix angle βij (º) Transverse contact ratio εt Face contact ratio εβ Helix angle βij (º) Transverse contact ratio εt Face contact ratio εβ 

0 1.7865 0 0 1.7024 0 

5 1.7763 0.3171 5 1.6932 0.2219 

10 1.7459 0.6317 10 1.6658 0.4422 

15 1.6957 0.9415 15 1.6205 0.6591 

20 1.6268 1.2442 20 1.5580 0.8709 

 

 
 
Fig. 4. Mesh stiffness under different helix angles: (a) Gear pair 1; (b) gear pair 2.  
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Combining the lumped mass models of gear pairs with the 

FE models of the shafts, equations of motion of the entire 
system can be written as:  

 
( ) u+ + + =&& &Mu C G u Ku F , (17) 

 
where M, C, K, G and Fu are the mass matrix, damping matrix, 
stiffness matrix, gyroscopic matrix and external force vector 
of the system, respectively. The Rayleigh-type damping is 
adopted, and detailed description of these matrices can be 
found in Ref. [9]. 

 
3.2 Identification of dominant mode and shaft based on 

strain energy 

In a gear rotor system, many modal components of different 
shafts in different directions are coupled in the process of the 

system vibration calculation. To distinguish the dominant 
mode and the dominant shaft which has a maximum deforma-
tion, the strain energy is adopted, and the strain energy of the 
ith order of the shafts can be written as follows [18]: 
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2
i i i
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where i

jx , kj denote displacement vector and stiffness matrix 
of the shaft j, respectively. Note that the gears are included 
into the shafts. Modal strain energy of the system is the sum of 
modal strain energy of the different shafts. In the analysis of 
natural characteristics, the bigger ratio of strain energy of each 
shaft to the strain energy of the system is the dominant shaft. It 
reflects the shaft has the greatest deformation energy in this 
order mode. The strain energy ratio i

jv  of shaft j in ith order 
can be expressed as follows: 
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where sys

iE  denotes the train energy of the ith order of the 
system. Similarly, the dominant mode can be determined ac-
cording to the strain energy. The mode of system and shaft 
can be described as lateral, torsional, axial and swing motions.  

An FE model in ANSYS software is established to verify 
the identification method using strain energy, as shown in Fig. 
7. The shafts, gears, bearing are simulated as Beam 188, Mass 
21, Matrix 27 elements, respectively. The meshing of the heli-
cal gear pair is simulated using Matrix 27 element. The real 
constants of this Marix 27 element are determined by the ele-
ments of the gear mesh stiffness matrix. 

Flow chart of the simulation including the TVMS calcula-
tion and dynamic characteristics analysis under two coupling 
models is shown in Fig. 8. The whole analytical procedure can 
be divided into two parts. First, the TVMS of a helical gear 

 
 
Fig. 5. (a) Schematic of a helical gear rotor system; (b) 3D model of a helical gear pair.  

 

 
 
Fig. 6. Mesh stiffness form of the gear pair. 
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pair is calculated by the sliced tooth theory based on our ear-
lier work in Ref. [2]. Second, to investigate the influence of 
different coupling models, a geared rotor system is established, 
in which the gear pair model is simulated by a lumped mass 
model, considering the TVMS and constant load torque. The 
meshing stiffness matrix Kij will change according to the dif-
ferent coupling models. 

4. Validation of the dynamic model 

As shown in Fig. 9, the experimental equipment coming 
from Ref. [8] is used for validation of the dynamic model. The 
helical gear system is shown in Fig. 9(b) and the main design 
parameters of the helical gear system are listed in Table 2. 
Some parameters of the helical gear system are not provided 

 
 
Fig. 7. FE model of the geared rotor system. 

 

 
 
Fig. 8. Flow chart of the simulation. 
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in Ref. [8], and here we assume the values of these parameters. 
The dynamic transmission errors of the helical gear system 
obtained by the experiment and the proposed model are shown 
in Fig. 10. As it can be seen, the measured value of DTE basi-
cally agrees well with the predicted values of DTE. In the low 

speed region (0-1000 rev/min), there is a small difference 
between the measured value and predicted value. This is be-
cause the bearing stiffness is unknown and is assumed in this 
study. This also suggests that the proposed model of a gear 
rotor system is effective to calculate the vibration responses. 

 
5. Dynamic characteristics comparison using two 

coupling models 

In this section, adopting two coupling models, the natural 
characteristics and the identification of dominant mode and 
shaft are analyzed in Sec. 5.1, and the vibration responses are 
evaluated in Sec. 5.2. The adopted FE model is shown in Fig. 
5, the gear parameters can be found in Sec. 2 and Table 3, and 
the detailed shaft and bearing parameters can be found in Refs. 
[8, 9]. 

 
5.1 Comparison of the natural characteristics using two 

different coupling models 

Generally, the mesh stiffness of the helical gear pairs is 
time-variable periodically (see Fig. 4). To calculate natural 
frequencies of the helical geared rotor system, the averaging 
mesh stiffness needs to be adopted. Based on the TVMS at βij 
= 20° in Fig. 4, the averaged mesh stiffness of the gear pair 1 
is calculated as 3.13×108 N/m and that of gear pair 2 is calcu-
lated as 3.69×108 N/m. 

Natural frequencies and strain energy of each shaft are ana-
lyzed by the proposed model and FE model in ANSYS soft-
ware, as listed in Tables 4 and 5. For the geared rotor system 
and shaft 2, the dominant mode of each order natural fre-
quency is also analyzed, as shown in Tables 6 and 7, respec-
tively. These tables show the following phenomena: 

Table 2. Design parameters of the helical gear system in Ref. [8]. 
 

Shaft parameters (mm) 

 d1 d2 l1 l2 l3 

All 37.6 43 100 100 50 

Gear parameters 

Parameters Pinion Gear 

Teeth number 50 50 

Transverse module (mm) 3 

Transverse pressure angle (°) 20 

Helix angle (°) 25.232 

Face width (mm) 20 

Applied torque (N·m) 150 

Bearing parameters 

kxx (N/m) kyy (N/m) kzz (N/m) 

1.7×108 1.7×108 7.6×107 

kθxθx (N·m/rad) kθyθy (N·m/rad) kθzθz (N·m/rad) 
All 

1×106 1×106 0 

 
 

 
 
Fig. 9. (a) Test rig; (b) schematic of a gear rotor system in Ref. [8]. 

 

Table 3. Parameters of gears. 
 
Gear Ix = Iy (kg.mm2) Iz (kg.mm2) m (kg) Pitch diameter Hand 

1 830 1660 0.95 91.0 Left 

2 2200 4400 1.22 126.0 Right 

3 30 60 0.29 55 Left 

4 1500 30000 4.67 197.5 Right 

 

 
 
Fig. 10. Comparison of the measured and predicted DTE amplitudes of 
the helical gear pair by the proposed method. 
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(1) From Tables 4 and 5, the natural frequencies and the 
dominant shaft obtained from the proposed model agree well 
with that obtained from FE model in ANSYS software. The 
maximum relative error of natural frequency is less than 1 %. 

(2) There is a slight difference of natural characteristics be-
tween full coupling and lateral-torsional coupling (see Table 
4). For example, the sixth strain energy of shaft 3 is 100 % 
and strain energy of shafts 1 and 2 is zero for lateral-torsional 

Table 4. Natural frequencies and strain energy by the proposed model. 
 

Full coupling  Lateral-torsional coupling 

Strain energy (%) Strain energy (%) No. 
Natural frequencies Dominant 

shaft Shaft 1 Shaft 2 Shaft 3 
 Natural frequencies Dominant 

shaft Shaft 1 Shaft 2 Shaft 3 

1 817.3 2 33.9 55.2 10.9  845.9 2 36.3 55.0 8.7 

2 1343.9 1 80.2 12.3 7.5  1358.4 1 81.0 13.1 5.9 

3 1453.3 1 100 0 0  1453.3 1 100 0 0 

4 1671.8 1 90.4 5.2 4.4  1675.5 1 90.2 5.9 3.9 

5 2322.0 3 0 0 100  2322.0 3 0 0 100 

6 2345.2 3 2.1 4.5 93.4  2352.5 3 0 0 100 

7 2364.3 3 8.9 18.3 72.8  2361.1 3 8.0 21.3 70.7 

8 2543.3 2 15.9 74.5 9.6  2532.3 2 11.7 81.5 6.8 

9 2657.1 1 91.1 8.7 0.2  2662.5 1 100 0 0 

10 2844.8 2 21.6 43.5 34.9  2934.9 2 38.4 46.3 15.4 

 
Table 5. Natural frequencies and strain energy by FE model in ANSYS software. 
 

Full coupling  Lateral-torsional coupling 

Strain energy (%) Strain energy (%) No. 
Natural frequencies Dominant 

shaft Shaft 1 Shaft 2 Shaft 3 
 Natural frequencies Dominant 

shaft Shaft 1 Shaft 2 Shaft 3 

1 818.7 2 38.5 55.1 6.4  847.3 2 40.3 54.7 5.0 

2 1352.0 1 81.5 14.0 4.5  1367.0 1 81.5 14.9 3.6 

3 1468.0 1 100 0 0  1468.0 1 100 0 0 

4 1679.1 1 93.3 .4.6 2.1  1682.4 1 93.0 5.2 1.8 

5 2334.5 3 0 0 100  2334.5 3 0 0 100 

6 2349.4 3 2.7 4.2 93.1  2352.5 3 0 0 100 

7 2369.7 3 21.3 32.6 46.1  2370.4 3 14.5 27.9 57.6 

8 2547.9 2 16.1 77.7 6.2  2537.2 2 14.8 81.0 4.2 

9 2657.5 1 69.8 29.8 0.4  2662.5 1 100 0 0 

10 2834.2 2 14.1 45.3 40.6  2928.1 2 18.3 41.8 39.9 

 
Table 6. Modal strain energy of geared rotor systems.  
 

Full coupling  Lateral-torsional coupling 

Modal strain energy (%) Modal strain energy (%) No. 
Natural frequencies Dominant 

mode Lateral Torsional Axis Swing 
 Natural frequencies Dominant 

mode Bending Torsion Axial Swing 

1 817.3 Torsional 5.7 93.5 0.2 0.6  845.9 Torsional 6.4 93.1 0 0.5 

2 1343.9 Lateral 51.0 44.6 0.2 4.3  1358.4 Torsional 54.0 41.7 0 4.3 

3 1453.3 Lateral 92.5 0 0 7.5  1453.3 Lateral 92.5 0 0 7.5 

4 1671.8 Torsional 37.7 58.9 0.3 3.1  1675.5 Torsional 35.2 61.8 0 3.0 

5 2322.0 Lateral 91.9 0 0 8.1  2322.0 Lateral 91.9 0 0 8.1 

6 2345.2 Axial 42.1 2.6 51.5 3.8  2352.5 Axial 0 0 100 0 

7 2364.3 Axial 40.3 10.8 44.9 4.0  2361.1 Lateral 82.1 10.1 0 7.8 

8 2543.3 Lateral 71.8 15.8 5.6 6.8  2532.3 Lateral 75.0 16.7 0 8.3 

9 2657.1 Axial 8.1 0.5 90.2 1.2  2662.5 Axial 0 0 100 0 

10 2844.8 Lateral 54.0 17.5 4.7 23.8  2934.9 Lateral 63.1 23.3 0 13.6 
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coupling; however, all the shafts have the strain energy for full 
coupling (see Table 4). Besides, the sixth modal strain energy 
in axial direction is 100 % for lateral-torsional coupling and 
that is 51.5 % for full coupling (see Table 6). These results 
revealed that axial and swing motions cannot be ignored for 
accurately determining the system natural characteristic. 

(3) Under full coupling and lateral-torsional coupling, the 
third strain energy of shaft 1 is 100 % and strain energy of 
shafts 2 and 3 is zero (see Table 4). It reveals that there is a 
weak coupling due to gear meshing among the shafts under 
some cases. 

(4) Taking the third-order mode as an example, the strain 
energy of shaft 1 is 100 % (see Table 4) and the dominant 

modal strain energy of the system is lateral-swing motion (see 
Table 6). Only the shaft 1 shows the lateral vibration in this 
order by observing the corresponding modal shape (shown in 
Ref. [9]). Besides the identification of geared rotor systems, 
the modal strain energy of one single shaft (shaft 2) can be 
also identified, as shown in Table 7. From above analysis, the 
strain energy can be used to distinguish the dominant mode 
shape and dominant shaft. 

 
5.2 Comparison of the vibration responses using two differ-

ent coupling models 

Based on the FE model of the helical geared rotor system 

Table 7. Modal strain energy of shaft 2. 
  

Full coupling  Lateral-torsional coupling 

Modal strain energy (%) Modal strain energy (%) No. 
Natural frequencies Dominant 

mode Lateral Torsional Axial Swing 
 Natural frequencies Dominant 

mode Lateral Torsional Axial Swing 

1 817.3 Lateral 64.5 26.9 3.7 4.9  845.9 Lateral 69.9 29.5 0 0.6 

2 1343.9 Lateral 52.0 44.2 1.5 2.3  1358.4 Lateral 55.2 43.0 0 1.8 

3 1453.3 No-vibration 0 0 0 0  1453.3 No-vibration 0 0 0 0 

4 1671.8 Lateral 62.9 30.2 0.6 6.3  1675.5 Lateral 67.7 30.3 0 2.0 

5 2322.0 No-vibration 0 0 0 0  2322.0 No-vibration 0 0 0 0 

6 2345.2 Lateral 88.4 1.2 0.6 9.8  2352.5 No-vibration 0 0 0 0 

7 2364.3 Lateral 89.0 0.7 0.5 9.8  2361.1 Lateral 91.0 1.3 0 7.7 

8 2543.3 Lateral 92.2 0.8 0 7.0  2532.3 Lateral 90.1 0.7 0 9.2 

9 2657.1 Lateral 86.3 0.3 0 13.4  2662.5 No-vibration 0 0 0 0 

10 2844.8 Lateral 71.4 10.4 0.5 17.7  2934.9 Lateral 76.2 15.1 0 8.7 

 

 
 
Fig. 11. Vibration responses of the gear 1: (a) x-direction; (b) z-direction; (c) θy-direction; (d) θz-direction. 
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developed in Sec. 3, vibration responses of the gear system are 
studied under the TVMS excitation using two different cou-
pling models. The applied load torque is 50 Nm. Vibration 
responses of the gear 1 and dynamic mesh forces of the gear 
pairs 1 and 2 are shown in Figs. 11 and 12, respectively. 

The responses in θz direction using two coupling models are 
very close and those in x, z, θy directions have a bigger error. 
This is because axial (z direction) and swing (θx and θy direc-
tions) vibration cannot be considered in the lateral-torsional 
coupling model. Therefore, the full coupling model could 
predict accurately the responses of a helical gear system. 

However, the lateral-torsional coupling model can cause some 
errors for predicting the responses of the helical gear system. 
Both the two models can predict effectively the dynamic mesh 
force of the gear pair (see Fig. 12). There are some resonance 
peaks of gear 1 in Fig. 11. These resonance frequencies occur 
when the gear mesh frequencies fe12 and fe34 are equal to fn1/2, 
fn2/4, fn2/2, fn1, fn2, fn3 and fn4, respectively. It reveals that the 
super-harmonic resonances may occur because of the TVMS 
excitation in two coupling models. 

The vibration responses of gear 1 and the dynamic mesh 
forces under different helix angles are shown in Fig. 13, which 

 
 
Fig. 12. Dynamic mesh forces: (a) Gear pair 1; (b) gear pair 2. 

 

 
 
Fig. 13. Vibration responses of gear 1 and dynamic mesh forces of gear pairs 1 and 2: (a) x-direction; (b) θz-direction; (c) dynamic mesh force of 
gear pair 1; (d) dynamic mesh force of gear pair 2. 
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shows the following vibration characteristics of geared rotor 
systems. 

(1) The amplitudes of vibration responses and the dynamic 
mesh forces decrease with the increasing helix angles, which 
is related to the TVMS fluctuation.  

Note that the fluctuation of TVMS of gear pair 1 under βij = 
20° is larger than that under βij = 15° (see Fig. 4); however, 
under most rotational speeds, the vibration response of gear 
pair 1 at βij = 20° is smaller than that of gear pair 1 at βij = 15°.  

(2) The vibration responses obtained from two coupling 
models are the same at βij = 0°, namely, the axial and swing 
coupling vibrations have no effects on the spur gear. The axial 
and swing coupling effects increase with the increasing helix 
angles. The shifting of the resonant peaks due to different 
coupling levels can clearly observed at βij = 15° and βij = 20° 
(see Figs. 13(a) and (b)). 

 
6. Conclusions 

In this study, we analyzed the combined effects of Time-
varying mesh stiffness (TVMS) and gear coupling level on the 
dynamic characteristics of a helical geared rotor system. Two 
types of coupling, lateral-torsional-axial-swing coupling (also 
known as full coupling in this paper) and lateral-torsional 
coupling, are compared by natural frequencies, modal strain 
energy and vibration responses. dynamic characteristics of a 
helical geared rotor system are analyzed. Some conclusions 
are summarized as follows: 

(1) The modal strain energy can be used to distinguish the 
dominant mode and shaft of geared rotor systems, which can 
contribute to identify the coupling level of the system.  

(2) The responses of a helical gear system in torsional direc-
tion and dynamic mesh force obtained from two coupling 
models are almost the same. However, there exist larger dif-
ferences in the lateral and axial vibrations. This also suggests 
that the axial and swing coupling cannot be ignored to accu-
rately predict the vibration response of the system. Due to the 
TVMS excitation, super-harmonic resonances can be observed 
in the amplitude-frequency responses. 

(3) The fluctuation value of TVMS decreases when the face 
contact ratio is close to an integer; for example, the TVMS 
fluctuation at helix angle βij = 15° is smaller than that at βij = 
20°. The amplitudes of vibration responses and the dynamic 
mesh forces decrease with the increasing helix angles, which 
is related to the TVMS fluctuation. It is worth noting that the 
vibration response of gear pair 1 at βij = 20° is smaller than 
that of gear pair 1 at βij = 15°, which is due to the combined 
effects of gear pair coupling and the fluctuation of TVMS. 
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Nomenclature------------------------------------------------------------------------ 

i
jE , i

jx ,kj : Strain energy of the ith order, stiffness matrix and 
displacement vector of the shaft j 

sys
iE   : Strain energy of the ith order of the system 

Fij  : Excitation force vector 
Mij, Cij, Gij and Kij : Mass matrix, damping matrix, gyroscopic 

matrix and mesh stiffness matrix of the gear pair ij 
M, C, K, G and Fu : Mass matrix, damping matrix, stiffness ma-

trix, gyroscopic matrix and external force vector of 
the system 

kh, kb, ks, ka and kf : Hertzian contact stiffness, bending stiffness, 
shear stiffness, axial compressive stiffness and gear 
foundation stiffness 

ki, kj : Mesh stiffness of the sliced tooth pairs i and j 
kij : Mesh stiffness of gear pair 
N : Number of sliced tooth pairs in mesh simultaneously 
sgn : Sign function 
z1, z2 : Numbers of the teeth of the pinion and gear  

 
Greek symbols 

βij : Helix angle of base circle 
τb, τe : The minimum and maximum pressure angles  
Δl : Width of the sliced tooth pair 
εt, εβ : Transverse contact ratio and face contact ratio 

ijy  : The angle between the plane of action and positive y-
axis 

i
jv  : Strain energy ratio of shaft j 
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