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Abstract 
 
In the present study, the buckling of piezoelectric cylindrical nanoshell subjected to an axial compression, an applied voltage and uni-

form temperature change resting on Winkler-Pasternak foundation is studied analytically. The modified couple stress theory combined 
with the geometrical nonlinear shell model is employed to derive the equilibrium equations and boundary conditions. The numerical 
results are proposed for the buckling of simply supported cylindrical nanoshell using the Navier-type solution. Thus, the effects of differ-
ent parameters such as dimensionless length scale parameter, length and thickness to radius ratio, temperature change, external electric 
voltage and Winkler and Pasternak foundation stiffness on critical buckling load are illustrated. It is shown that increase in dimensionless 
length scale parameter results in increasing critical buckling load and even intensifying the influence of other parameters, such as length 
and thickness, on critical buckling load.  
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1. Introduction 

Today, the advance of smart structures thanks the invention 
of piezoelectric nanostrutures due to its promising mechanical, 
thermal and electrical properties. ZnO piezoelectric nanowires 
was first reported by Pan et al. and opened a new field of re-
search in various fields of nonamechanics and nanoelectronics 
[1]. The superior properties of piezoelectric nanostructures 
lead to its extensive usages in many nanodevices like nanore-
sonators, nanogenerators, light-emitting diodes, and chemical 
sensors [2-4]. Indeed, the coupled electro-mechanical proper-
ties of piezoelectric materials, generating electrical charge 
under external mechanical deformation, and reversely, de-
forming under electrical charge, permits them to be used as 
sensors and actuators [5, 6]. Therefore, due to the various 
practical applications and further development of piezoelec-
tric-based nanodevices, the study of their behavior, such as 
their deformation under different loads, is of both theoretical 
significance and practical value. Hence, the buckling behavior 
of the piezoelectric nanostucturs has attracted the attention of 
many researchers. For example, the axial buckling of piezo-
electric nanowires under distributed transverse loading on the 
basis of Timoshenko beam theory and considering surface 

effect was investigated by Samaei et al. and the dependency of 
critical electric potential of buckling on both surface stresses 
and piezoelectricity was shown [7]. Yan et al. studied the vi-
bration and buckling of piezoelectric nanoplate affected the 
surface effects, using the modified Kirchhoff plate model and 
the sensitivity of the critical electric voltage of buckling to the 
plate thickness and aspect ratio was discussed [8]. Arani et al. 
studied the thermo-mechanical-torsional and axial buckling of 
double-walled boron nitride nanotube using the nonlocal elas-
ticity and piezoelasticity theories on Winkler-Pasternak me-
dium and the effects of some parameters such as nonlocal 
parameter, temperature change, piezoelectric and dielectric 
constants on the critical buckling load were shown [9, 10]. 

In order to examine the piezoelectric nanostructures more 
precisely, an appropriate approach should be used. Both theo-
retical and experimental approaches are utilized to investigate 
their behaviors. However, with regard to the difficulties of 
experiments at submicron size, the theoretical analysis, includ-
ing atomistic simulations and continuum mechanics, are be-
coming more important. As the molecular dynamic simulation 
is complicated and time consuming for large scale systems [11, 
12]; thus, these limitations inspired researchers to use the con-
tinuum based models which are computationally more effi-
cient [13-15]. On the other hand, based on the experimental 
observation, the size effect in small scale structures due to 
impurities, crystal lattice mismatch and nano cracks plays an 
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important role, which cannot be ignored anymore [16-18]. 
Therefore, there has been considerable attentions towards the 
modification of generalized continuum theory which account 
for the size effect [19-27].  

The nonlocal elasticity theory is a higher order continuum 
theory introduced by Eringen and accordingly many studies 
have been done [28, 29]. For example, Liu et al. investigated 
the thermo-electro-mechanical free vibration of piezoelectric 
nanoplates on the basis of nonlocal theory and using the 
Kirchhoff model [30]. The piezoelectric nanoplate was con-
sidered under the biaxial force, an external electric voltage and 
a uniform temperature change. The thermo-electro-
mechanical vibration of piezoelectric cylindrical nanoshell 
was examined by Ke et al. using the nonlocal theory and 
Love’s thin shell model and the effect of some parameters 
such as nonlocal parameter, temperature rise, external electric 
voltage were studied [31]. The influence of nonlocal parame-
ter and thermoelectric loading was shown significant.  

Another higher order continuum theory is couple stress the-
ory which was initially introduced by Mindlin, Toupin, Koiter 
and contains two material length scale parameters in addition 
two Lame constants [32-34]. Many studies are accomplished 
on the basis of this theory [35, 36]. Afterwards, the modified 
couple stress theory which has a symmetric couple stress ten-
sor unlike classical one and only includes one material length 
scale parameter was proposed by Yang et al. [37]. Using the 
modified couple stress theory based on the shell model Sah-
mani et al. investigated the size-dependent dynamic stability 
response of functionally graded shear deformable microshells 
and illustrated the effect of dimensionless length scale pa-
rameter variation on the width of the instability region [38]. 
Kim et al. presented the analytical solutions of a general third-
order plate theory on the basis of modified couple stress the-
ory and the effect of microstructure-dependent size parameter 
and power law distribution of two materials on bending, buck-
ling and vibration were discussed [39].  

Mindlin presented the general gradient elastic theory, which 
includes higher order strain gradients. Afterwards, in simpli-
fied version, which only has five material length scale parame-
ters, the second-order deformation gradients are included 
which has an anti-symmetric part and a symmetric part [40, 
41]. By modifying this formulation, the strain gradient theory 
has been developed by Fleck and Hutchinson [42]. And ulti-
mately, by using the higher order equilibrium equation intro-
duced by Yang et al., the modified strain gradient theory has 
been presented by Lam et al. [43]. This theory includes three 
material length scale parameters related to the dilation tensor, 
the deviatoric stretch gradient tensor and the symmetric rota-
tion gradient tensor. Gholami et al. examined the axial buck-
ling behavior of functionally graded circular cylindrical mi-
croshells on the basis of modified strain gradient theory and 
using first-order shear deformable shell model [44]. The size-
dependent sinusoidal beam model using the modified strain 
gradient theory for analysis the buckling of microbeam was 
studied by Akgöz et al. [45]. The size dependency illustrated 

very important when the thickness of the microbeam was 
closer to material length scale parameter.  

Since the structural element of nanotubes is more similar to 
the cylindrical shell, an appropriate model in view of this 
specification should be taken into account. Thus, in order to 
achieve more accurate results, the use of shell model has at-
tracted the attention of many researchers [46-49]. Mehralian et 
al. developed the functionally graded cylindrical thin shell 
model using modified couple stress theory to investigate the 
torsional buckling of nanotubes [50]. Ansari et al. investigated 
the vibration and dynamic instability of a functionally graded 
microshell conveying fluid on the basis of modified couple 
stress theory and discussed the effect of different parameters 
such as fluid velocity, length scale parameter and gradient 
index on natural frequency [51]. Tadi Beni et al. examined the 
free vibration of functionally graded cylindrical nanoshell 
based on the modified couple stress theory and first order 
shear deformable shell model and illustrated considerable 
effect of size parameter on natural frequency [52]. The three 
dimensional theory of elasticity was utilized by Alibeigloo et 
al. to investigate the vibration of SWCNT using the nonlocal 
theory and the effect of size parameter on natural frequency 
was discussed [53]. Zeverdejani et al. using thin cylindrical 
shell model based on the modified couple stress theory inves-
tigated the vibration of protein microtubules and illustrated the 
effects of some parameters like MT dimensions and size pa-
rameters on the axial and circumferential vibration frequency 
[54]. 

Since piezoelectric materials, as smart materials, have found 
a wide range of applications in many nanostructures, buckling 
analysis of piezoelectric cylindrical nanoshells subjected to the 
simultaneous mechanical, thermal and electrical loadings is of 
primary importance in the design of smart nanodevices. More-
over, due to the difficulties of nanoscale experiments and time 
consuming of atomistic simulation, the higher order continuum 
theories, as a good alternative and efficient method, have been 
developed to analysis bending, buckling and vibration of 
nanostructures. As such, there are several researches in the 
field of thermal investigation in conjunction with electro-
mechanical analysis of nanoshells [9, 10]. The bending stability 
of CNTs subjected to thermo-electro-mechanical loadings was 
investigated by Yao et al. and the effect of temperature and 
electric changes on the buckling bending moment was illus-
trated as well; such that, the buckling bending moment in-
creases by increase in temperature change at room or lower 
temperature and decreases by increase in temperature change at 
higher temperature [78]. Yao et al. studied the torsional buck-
ling behavior of CNTs with considering small scale effect un-
der thermo-electro-mechanical loadings and investigated the 
influence of different parameters on the critical buckling torque 
as well [79]. Besides shell element, beam and plate elements 
were studied under thermo-electro-mechanical loadings by 
Ebrahimi et al. and the effects of different parameters on the 
critical buckling load were shown at the meantime [75, 80]. 

Motivated by this considerations, this paper for the first 
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time investigates the thermo-electro-mechanical buckling of 
piezoelectric cylindrical nanoshells based on the modified 
couple stress theory. The formulation is developed on the 
basis of modified couple stress theory with regard to the geo-
metric nonlinearity. The governing equations and boundary 
conditions are derived using the potential energy principle. 

Thus, the formulation derived here have following novelties, 
benefits and characteristics simultaneously: 

First, the formulation derived here for studying the thermo-
electro-mechanical buckling of cylindrical nanoshell can be 
reduced to only one loading condition. 

Second, this formulation is able to predict the behavior of 
shell structures more realistically due to using the cylindrical 
shell model. 

Third, the size effect is considered in this formulation 
through using the modified couple stress theory and this for-
mulation can turn into the classical shell formulation as well. 

Also, as a case study, the buckling behavior of simply sup-
ported cylindrical nanoshell, are investigated. The effect of 
different parameters such as material length scale parameter, 
thickness ratio, length ratio and Winkler and Pasternak foun-
dation stiffness parameter on the critical buckling load is illus-
trated. 

 
2. Preliminary 

Consider a cylindrical nanoshell resting on the Winkler-
Pasternak elastic foundation subjected to a uniform distributed 
axial compressive load, uniform temperature change and an 
applied electric voltage φ(x,θ,z) as shown in Fig. 1. The origin 
of the coordinate system is located in the middle surface of 
nanoshell which x and θ axis are the longitudinal and circum-
ferential direction and z axis normal to them and toward out-
side. The length, radius and thickness of thin cylindrical shell 
are L, R and h, respectively.  

 
2.1 Modified couple stress theory 

Based on the modified couple stress theory, the strain en-
ergy in a continuum made of a linear elastic material occupy-
ing a volume Ω and is subjected to infinitesimal deformation 
can be derived as [37]: 

 

( )1
2s ij ij ij ij i iU m D E dVs e c

W
= + -ò%  (1) 

where σij, Di and mij are the components of the Cauchy stress 
tensor, electric displacement vector and the higher order stress 
tensor and εij, Ei and χij are the components of strain tensor, 
electric field vector and the symmetric part of rotation gradient 
tensor respectively and obtained as: 

 
Eij ijkl kl mij m ijc e Ts e b= - - D  (2) 

Ei ikl kl im m iD e s p Te= + + D  (3) 
2

662ij ijm l c c=  (4) 

( ), , 3, 3,

1
2ij i j j i i ju u u ue = + +  (5) 

,i iE f= -  (6) 

( )1
4ij ipq jpq jpq ipqe ec h h= +  (7) 

 
in which cijkl, emij, sim, βij and pi are the components of elastic 
tensor, piezoelectric constants, dielectric constants, thermal 
moduli and pyroelectric constants, respectively and ui, φ, ΔT, 
eipq and ηipq represent the components of displacement vector, 
electric potential, temperature change, Permutation symbol 
and deviatoric stretch gradient tensor, respectively. l indicates 
the material length scale parameter related to the symmetric 
rotation gradient. 

Hence, the constitutive equation for piezoelectric cylindrical 
shell under the plane stress state is given by: 
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where ijc% , ije% , ijs% , ib% and ip% are respectively the reduced 
elastic, piezoelectric, dielectric constants and thermal moduli 
and pyroelectric constants for the piezoelectric shell and de-
fined as [30, 31]: 
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  (10) 

 
According to Refs. [31, 55], the electric potential is consid-

ered to change as a combination of a cosine and linear varia-
tion, satisfied the Maxwall equation, as below: 

 

( ) ( ) ( ) 02, , cos , zVx z z x
h

f q b j q= - +   (11) 

 
 
Fig. 1. Configuration of the cylindrical shell. 
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in which, hb p= ; ( ),xj q  and V0 represent the spatial varia-
tion of the electric potential in the mid-plane and the external 
electric voltage, respectively. 

Experiments reveal an increase in materials characteristics 
with decreasing the size at the ultra-small scales. All these 
experiments imply that when the characteristic size (thickness, 
diameter, etc.) of a micro/nano element is in the order of its 
intrinsic the material length scales (typically sub-micron), the 
material elastic constants highly depend on the element di-
mensions. Unfortunately, while much is known about the 
mechanical characteristics of isolated bulk materials, the 
properties of material at nanoscale cannot necessarily be pre-
dicted from those measured at larger scales. The source of 
difference between the mechanical properties of ultra-small 
and bulk materials with the same composition can be attrib-
uted to several physical phenomena such as differences in 
structure, deformation, or fracture mechanisms. The differ-
ences typically occur when the material dimensions reach 
characteristic length scales that are associated with defect 
dimensions such as dislocation, spacing and grain size. At 
nanoscale level, the gradient deformations vary sharply, 
hence the microscopic stresses and strains are not constant 
and depend on the shrinking length scale of the nanostruc-
tures: The smaller the structure, the more rapid the micro-
scopic fields vary, and they do so in a way that leads to either 
stiffening or softening of the material. In order to model these 
gradient effects, a higher order continuum theory i.e. couple 
stress theory was introduced with length scale parameters. A 
length scale parameter might be considered as a mathematical 
parameter that scales the strain gradients in the constitutive 
model so as to balance the dimensions of strains and strain 
gradients. As the characteristic length of the deformation 
field becomes significantly larger than the material length 
scale parameter, strain gradient effects become negligible 
because the strain terms are much larger than their scaled 
gradient terms. In this case, the results obtain via modified 
couple stress theory is the same as that of classical theory. 
Note that classical continuum mechanics is unable to simu-
late the size effect in micro/nano structures. Also, it is still not 
possible to conduct time-consuming molecular simulations 
on realistic structures. 

It should be noted that since the higher-order electrome-
chanical coupling, induced by the strain gradient, is neglected 
then the piezoelectric properties do not consider size depend-
ent. This assumption, neglecting the higher-order electrome-
chanical induced by the strain gradient, is utilized in many 
nano-scale studied and consequently there are many studied in 
which the electric potential distribution is considered similar 
to Eq. (11) [30, 31, 63-75]. 

 
2.2 Displacement and electric field of cylindrical shell 

The displacement field according to Love’s thin shell theory 
is indicated by u, v and w along the three directions x, θ and z 
and can be written as [56]: 

( ) ( ) ( ),
, , ,

W x
u x z U x z

x
q

q q
¶

= -
¶

 (12) 
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q q q
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( ) ( ), , z ,w x W xq q=   
 

where U(x, θ), V(x, θ) and W(x, θ) are the middle surface dis-
placements. The electric field according to Eq. (6), can be 
obtained as follows [57]: 
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3. Governing equations and boundary conditions 

Based on the previous section, in order to obtain the equilib-
rium equations and boundary conditions using the modified 
couple stress theory, the principle of minimum potential en-
ergy and calculus of variation method, take the following 
steps: 
·First, calculate the classical and non-classical strain ten-

sors by using displacement field and utilizing Eqs. (5) 
and (7), according to Ref. [50]. 
·Second, calculate the Cauchy, higher order stress tensor 

and electric displacement vector’s components by substi-
tuting the strain and symmetric part of rotation gradient 
tensor besides electric field into the constitutive Eqs. (4), 
(8) and (9). 
·Third, determine the strain energy by substituting the 

classical and non-classical stresses as well as classical 
and non-classical strains besides electric field and elec-
tric displacement in Eq. (1). 
·Fourth, derive the equilibrium equations and boundary 

conditions by substituting strain energy and work of ex-
ternal forces into the principle of minimum potential en-
ergy and using calculus of variations. 

 
Therefore, the strain and symmetric rotation gradient tensor’ 

components are obtained as: 
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It should be noted that the numerical results has illustrated 
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that the rotations including U and V are of insignificant effect 
for shells whose displacement components are rapidly varying 
functions of shell coordinate [58]. Thus, these terms are ne-
glected in strain components.  

Moreover, the non-classical strain components are obtained 
as: 

 
2

2

1 2
2zz

U W Vz R
R x x

c
q q

æ ö¶ ¶ ¶
= - +ç ÷¶ ¶ ¶ ¶è ø

 (15) 

21
xx

W V
R x x

c
q

æ ö¶ ¶
= -ç ÷¶ ¶ ¶è ø

  

21 1 2
2

V U W
R x R xqqc q q
æ ö¶ ¶ ¶

= - -ç ÷¶ ¶ ¶ ¶è ø
  

2 2

2 2 2

1 1
2x x

W V W
R xq qc c

q q
æ öæ ö¶ ¶ ¶

= = - -ç ÷ç ÷ç ÷¶ ¶ ¶è øè ø
  

2 2 2 3

2 2 2

1 1 2
4z z

V U W z W
R x R x R xq qc c

q q q
æ ö¶ ¶ ¶ ¶

= = - + -ç ÷¶ ¶ ¶ ¶ ¶ ¶è ø
  

2 2 2 3

2 2 2

1 1 .
4xz zx

V U z W
x R x R x

c c
q q

æ ö¶ ¶ ¶
= = - -ç ÷¶ ¶ ¶ ¶ ¶è ø

  

 
Afterwards, in order to obtain the strain energy, the Cauchy, 

higher order stress tensors and electric displacement vector 
should be derived by using the classical and non-classical 
strains and electric field.  

In order to achieve the equilibrium equations and boundary 
conditions, the principle of minimum potential energy is util-
ized as: 

 
0sU Wd d dP = - =% %   (16) 

 
where sUd %  represents for strain energy variation, and Wd %  
is the variation of the work of external forces acting on the 
cylindrical shell. 

Also, by substituting classical and non-classical strains and 
stresses and electric field and displacement into the modied 
couple stress theory relation, the strain energy is obtained as 
follows: 
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In addition, the in-plane force and moment resultants in Eq. 

(17), are defined as: 
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Since the cylindrical shell is resting on the Winkler-

Pasternak elastic medium, the variation of work done on 
nanoshell is determined as below: 
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where P is external axial compression load, kw is the Winkler 
foundation stiffness and kg is the shear subgrade modulus of 
the foundation. Thus, by substituting Eqs. (17) and (20) in Eq. 
(16) and taking the variation and performing integrating by 
parts, the equilibrium equations are derived as: 
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where due to the combination of thermo-mechanical loadings, 
we have: 

 
M T E

xx xx xx xxN N N N= + +   (25) 
T EN N Nqq qq qq= +   

 
which superscript M ,T and E refer to mechanical, thermal and 
electrical component of loads. Moreover, according to Hook’s 
law and linear membrane equilibrium equations, the mechani-
cal prebuckling resultant force in θ direction is neglected. 

Boundary conditions of the cylindrical shell on the θ edge 
haven’t been written, due to the variation of θ from 0 to 2π 
and only boundary conditions on the longitudinal edges are 
considered; thus, the boundary conditions on the x edge are as 
follows: 
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é ù- = =ë ûò ò  (31) 

 
The coefficients A1 to A9, B1 to B10 and C1 to C13 and a1 to a6, 

b1 to b9 and c1 to c10 in the above equations are written in Ap-
pendix A.1. 

4. Solution procedure 

Utilizing the adjacent equilibrium criterion, the stability 
equations of circular cylindrical shell are obtained. The small 
increments to the displacement variables have been given in 
order to investigate the possible existence of adjacent-
equilibrium configurations. Afterwards, the two adjacent con-
figurations indicated by displacements before and after incre-
ment are investigated. Thus: 

 
0 1U U U= +   (32) 

0 1V V V= +    

0 1W W W= +    
 

where U0, V0 and W0 are displacement components of the 
equilibrium state and U1, V1 and W1 are arbitrary small incre-
ment. Thus, (U0, V0 and W0) and (U, V and W) are adjacent 
equilibrium configurations related to a single value of applied 
load. Similar to Eq. (32), the electric potential are found to be 
the sum of those related to the equilibrium and neighboring 
states as: 
 

0 1 .j j j= +   (33) 

 
By substituting Eqs. (32) and (33) into equilibrium equa-

tions (Eqs. (21)-(24)), all terms alone in U0, V0, W0 and 0j  
drop out because U0, V0, W0 and 0j  are a solution of equilib-
rium equations. Besides, quadratic and higher order terms in 
U1, V1 and W1 are neglected due to their smallness; therefore, 
the resulting stability equations and boundary conditions are: 
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and 
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It should be noted that, since the influence of prebuckling 

rotations is negligibly small in many instances, consequently 
we neglect the influence of prebuckling rotations according to 
Ref. [58]. This approximation, is utilized by researchers in 
literature, like Ref. [81]. 

In addition, the displacement U0, V0 and W0 is usually called 
prebucking deformation and U1, V1 and W1 is called the buck-
ling mode [58].  

 
4.1 Buckling analysis 

Consider a piezoelectric cylindrical nanoshell with simply 
supported edge with electric potential equal to zero at all 
edges of nanoshell; thus, the boundary conditions are ex-
pressed as follows: 
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0.

x L
j

=
=  (49) 

 
The circular cylindrical shell is subjected to a uniformly dis-

tributed axial compressive load P. It should be noted that the 
narrow boundary zones near to the shell ends are affected by 
the bending of shell walls. Therefore, for simplicity, this effect 
of localized bending is frequently neglected and the force 
resultants in prebuckling state are derived considering the 
membrane analysis of the unbuckled cylindrical form and 
thermal and electrical component of load [58, 60]: 
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however, according to Eq. (50), in circumferential direction, 
only thermal and electric load is taken into account. 

In order to investigate the nanoshell’s buckling, with con-
sideration of the boundary conditions according to Eqs. (44)-
(49), the approximate solutions may be considered as har-
monic trigonometric functions, according to Refs. [31, 66, 82], 
as follows: 

 

( ) ( )1 1, cos cosmU x U x n
L
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 (51) 

( ) ( )1 1, sin sinmV x V x n
L
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( ) ( )1 1, sin cosmW x W x n
L
pq qæ ö= ç ÷

è ø
  

( ) ( )1 1, sin cosmx x n
L
pj q j qæ ö= ç ÷

è ø
  

 
in which U1, V1, W1 and 1j  represent constant coefficients, 
and m, n are axial and circumferential wave numbers respec-
tively. 

Thus, by substituting approximate solutions Eq. (51) into 
equilibrium equations (Eqs. (34)-(37)) and boundary condi-
tions (Eqs. (44)-(49)), all boundary conditions are satisfied 
and the governing equations will be presented in a matrix 
form as below: 

 

11 12 13 14 1

21 22 23 24 1

31 32 33 34 1

41 42 43 44 1

0
0

.
0
0

S S S S U
S S S S V
S S S S W
S S S S j

é ù ì ü ì ü
ê ú ï ï ï ï
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 (52) 

 
The components of matrix S are represented in Appendix 

A.2 in order to investigate the critical axial buckling load. 



1780 F. Mehralian and Y. T. Beni / Journal of Mechanical Science and Technology 31 (4) (2017) 1773~1787 
 

 

Therefore, the determinant of the coefficients matrix must be 
set to zero in order to determine the non-trivial solution of Eq. 
(52).  

It should be noted that since the current study examines the 
buckling of cylindrical nanoshell under the axial compression 
the movable boundary conditions are considered ( 1 0,

0
x L

U
=

¹ ); 
therefore, the effects of temperature and electric voltage on the 
buckling of cylindrical nanoshell can only be considered in 
appropriate values of axial compression which is taken into 
consideration as well. 

 
5. Results 

As the first step, the results are compared with those re-
ported in the literature to show the accuracy of the current 
work. Then, some numerical results are provided to indicate 
the usability of the derived equilibrium equations on the basis 
of modified couple stress theory in order to calculate the buck-
ling behavior of piezoelectric cylindrical nanoshells subjected 
to thermo-electro-mechanical loads. Thus, the influences of 
different parameters such as dimensionless length scale pa-
rameter, h/l, length to radius ratio, L/R, the ratio of shell thick-
ness to radius, h/R, temperature change, ΔT, the variation of 
Winkler-Pasternak stiffness, kw and kg, and external electric 
voltage, V0, on the critical buckling load are represented. The 
cylindrical nanoshell is assumed to be made of PZT-4 with the 
material properties listed in Table 1 [30, 31]. 

It should be noted that the coefficients of thermal expansion 
are negative at low temperature and are positive in high tem-
perature [9, 10]. Unless otherwise stated, the temperature 
change at high temperature is assumed to be ΔT = 50 (K) and 
V0 is assumed to be zero [9, 10]. Moreover, due to lacking 
experiments and molecular dynamic simulation results on the 
length scale parameter of modified couple stress for piezoelec-
tric nanoshell, the dimensionless length scale parameter, l/h, is 
considered only theoretically in the interval of 0 to 5 in nu-
merical examples proposed here and radius is assumed to be 
2 nm. 

 
5.1 Comparison of results 

It should be noted that, this paper, for the first time, has 
been examined the buckling of nanoshell based on the modi-
fied couple stress theory using shell model under the thermo-
electro-mechanical loads; thus, up to now, the thermo-electro-
mechanical buckling of piezoelectric nanoshell is not investi-
gated in the literature. Therefore, as mentioned before, by 
setting length scale parameter to zero (l = 0) the equilibrium 
equations and boundary conditions can be reduced to the clas-
sical continuum theory; thus, the accuracy of the obtained 
results are examined based on the classical continuum theory, 
which is neglected the piezoelectric effect as well. By way of 
comparison, according to Table 2, as it can be seen, the classi-
cal Continuum theory (CT) gives the critical buckling load in 
good agreement with the results, obtaining from both numeri-
cal and analytical methods, in Ref. [61]. Moreover, as it is 

indicated, the results obtained based on the Modified couple 
stress theory (MCST) are higher than those achieved through 
classical continuum theory. For the validation of the results in 
the new non-classical shell formulation, the axial buckling 
load obtained from Molecular mechanic (MM) simulation in 
Refs. [76, 77] are compared with the ones of this paper in 
Table 3. As it is shown, the results of MM simulation have a 
good accordance with the results of modied couple stress 
theory than classical theory in different L/2R’s ratios. In other 
words, as is determined from Table 3 the classical continuum 
theory results has maximum error 77.3 % compared to the 
results of MM simulation but by taking the value of a length 
scale parameter between 0.066-0.099 nm, the maximum error 
between the couple stress theory results and the results of MM 

Table 1. Material properties of PZT-4. 
 

c11  
(GPa) 

c12  
(GPa) 

c13  
(GPa) 

c33  
(GPa) 

c66  
(GPa) 

132 71 73 115 30.5 

e31  
(C/m2) 

e15  
(C/m2) 

e33  
(C/m2) 

s11  
(C/Vm) 

s33  
(C/Vm) 

-4.1 10.5 14.1 5.841e-9 7.124e-9 

β1  
(N/m2K) 

β3  
(N/m2K) 

p1  
(C/m2K) 

p3  
(C/m2K) 

4.738e5 4.529e5 0.25e-4 0.25e-4 

 
Table 2. Comparison of dimensionless critical buckling load wi-th 
different thickness. 
 

2R/h Numerical  
analysis [61] 

Analytical  
analysis [61] 

Present  
(l = 0) 

MCST  
(l = h) 

800 1.5013 1.5141 1.5131 3.4099 

900 1.3586 1.3459 1.3450 3.0464 

1000 1.2111 1.2113 1.2105 2.7497 

1100 1.1021 1.1012 1.1005 2.4842 

1200 1.0170 1.0094 1.0087 2.2783 

1300 0.9365 0.9318 0.9311 2.1164 

1400 0.8654 0.8652 0.8646 1.9674 

1500 0.8075 0.8075 0.8069 1.8309 

 
Table 3. The comparison of critical buckling load with the results of 
MM simulation in different L/2R ratios. 
 

L/2R Ref. [76] Present study Error (%) Present study Error (%) 

2.41 39.12 39.23 
(l = 0.096) 0.28 22.18 

(l = 0) 76.3 

3.63 26.37 26.44  
(l = 0.079) 0.26 21.92  

(l = 0) 20.3 

L/2R Ref. [77] Present study Error (%) Present study Error (%) 

2.45 39.28 39.33  
(l = 0.099) 0.12 22.15  

(l = 0) 77.3 

3.79 27.02 27.39  
(l = 0.099) 1.3 21.87  

(l = 0) 23.5 

4.20 22.93 23.81  
(l = 0.066) 3.8 21.90  

(l = 0) 4.7 
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simulation are 3.8 %. Thus, the axial buckling load provided 
by the present size-dependent shell model are very close to the 
MM values. 

The value of length-scale parameters is selected as 0.066 < l 
< 0.099 nm to produce the best t with the MM results. Inter-
estingly, this model is able to accurately predict the axial 
buckling load of CNTs. It can be concluded that the present 
size-dependent model might bridge the gap between MM 
results and previous classic theoretical models. 

 
5.2 Effects of dimensionless length scale parameter, thick-

ness and elastic foundation on critical buckling load 

Figs. 2(a)-(c) illustrate the influence of dimensionless length 

scale parameter (l/h) on critical buckling load of piezoelectric 
cylindrical nanoshell for three different thickness ratios (h/R) 
in (kw, kg) = (0,0), (kw, kg) = (0.5,0), (kw, kg) = (0,10e18), re-
spectively based on the Modified couple stress theory (MCST) 
at high temperature. As it can be seen, by increasing dimen-
sionless length scale parameter (l/h) due to increasing 
nanoshell stiffness, the critical buckling load increases on the 
basis of the modified couple stress theory. On the other hand, 
for fixed values of l/h, as h/R increases, the critical buckling 
load, predicted by the modified couple stress theory increases. 
It is also visible that, due to increase in thickness ratio h/R, the 
increase of critical buckling load is intensified by increasing 
dimensionless length scale parameter. Moreover, it is clear 
that, the critical buckling load presented by modified couple 
stress theory is greater than that of classical continuum theory 
(l/h = 0). Besides, the influence of Winkler and Pasternak 
constants on increasing the critical buckling load is proposed 
as well. For instance, in l/h = 1 and h/R = 0.05, by increasing 
kg from 0 to 0.5, the critical buckling load increases from 
37.61 to 44.1 nN, just as kw, which increases the critical buck-
ling load from 37.61 to 43.34 nN, when increases from 0 to 
10e18.  

 
5.3 Effects of length to radius ratio on critical buckling load 

Figs. 3 and 4 indicate the effect of length to radius ratio L/R, 
besides l/h and h/R on critical buckling load based on the 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. The effect of dimensionless length scale parameter, h/R and 
elastic foundation stiffness on critical buckling load in the case of high 
temperature, (a) (kw, kg) = (0,0); (b) (kw, kg) = (0.5,0); (c) (kw, kg) = 
(0,10e18). 

 

 
 
Fig. 3. The effect of length to radius ratio on critical buckling load in 
different l/h, in the case of high temperature. 

 

 
 
Fig. 4. The effect of length to radius ratio on critical buckling load in 
different h/R, in the case of high temperature. 
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modified couple stress theory, respectively. In Fig. 3, as this is 
shown, the variations of the critical buckling load vs. the 
length to radius ratio on the basis of modified couple stress 
theory and classical continuum theory (l/h = 0) is similar. Ac-
cording to illustration, the dimensionless length scale parame-
ter l/h intensifies the influence of length to radius ratio on the 
critical buckling load. Moreover, in Fig. 4, the influence of 
length to radius ratio L/R on critical buckling load is shown in 
different thickness to radius ratios, h/R, based on the modified 
couple stress theory (l/h = 3). As is visible, the influence of 
length to radius ratio is intensified by the increase in thickness 
to radius ratio, h/R. 

 
5.4 Effects of external electric voltage on critical buckling 

load 

Fig. 5 depicts the influence of external electric voltage on 
the critical buckling load besides the dimensionless length 
scale parameter, l/h. As it is shown, the critical buckling load 
decreases by increase in external electric voltage from -0.01 to 
0.01. This is because of the axial compressive and tensile 
forces, which are generated by applying positive and negative 
voltages, respectively. Clearly, the negative voltage causes the 

higher critical buckling load. Moreover, according to Fig. 5, as 
increase in l/h parameter intensifies the effect of applied elec-
tric voltage on critical buckling load of piezoelectric nanoshell, 
the increase in dimensionless length scale par- ameter leads to 
higher critical buckling load with negative voltage.  

 
5.5 Effects of temperature change on critical buckling load 

The effect of temperature change ΔT at two cases of low 
temperature and high temperature on the critical buckling load 
based on the modified couple stress theory is illustrated in Fig. 
6. The results indicate that, in the case of high temperature, the 
increase in ΔT leads to decrease in critical buckling load, due 
to decreasing stiffness with increasing temperature change, 
while the critical buckling load increases as ΔT is increased at 
the case of low temperature. The similar trend of the critical 
buckling load variation with those expressed in Refs. [10, 62] 
indicates the accuracy of this work. 

 
5.6 Critical buckling load variation with regard to the differ-

ent temperature and external electric voltage change  

To study the effects of tempearture and external electric 

 
 
Fig. 6. Effect of temperature change on critical buckling load in the 
case of high and low temperature. 

 

Table 4. The influence of temperature change on the critical buckling load (nN). 
 

L/R = 0.1 L/R = 1 

h/R h/R  T 

0.03 0.04 0.05 0.03 0.04 0.05 

-100 43.191 83.804 146.88 20.789 28.834 37.836 

-50 43.184 83.794 146.87 20.782 28.825 37.824 

0 43.177 83.785 146.86 20.774 28.815 37.812 

50 43.170 83.776 146.85 20.767 28.805 37.800 

l/h = 1 

100 43.163 83.766 146.84 20.760 28.796 37.788 

-100 104.66 229.50 431.45 23.413 35.053 45.917 

-50 104.65 229.49 431.44 23.406 35.043 45.904 

0 104.64 229.48 431.43 23.398 35.033 45.891 

50 104.63 229.47 431.41 23.391 35.024 45.878 

l/h = 2 

100 104.62 229.46 431.40 23.384 35.014 45.865 
 

 

 
 
Fig. 5. Effect of external electric voltage besides l/h parameter on 
critical buckling load in the case of high temperature. 
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voltage change on the buckling response of piezoelectric 
cylindrical nanoshell, the variation of critical buckling load 
with respect to the thickness and length ratio for different di-
mensionless length scale parameter are illustrated in Tables 4 
and 5. As it can be seen from these tables, the critical buckling 
load is significantly size dependent; such that, increase in ma-
terial length scale parameter increases the critical buckling 
load in different temperature and external electric voltage. 
Besides, increase in thickness ratio and decrease in length 
ratio which increases the critical buckling load is visible at all 
temperature and external electric voltage too. Consequently, 
however increase in temperature and external electric voltage 
decreases the critical buckling load, the variation of critical 
buckling load is similar in different temperature and external 
electric voltage for different thickness and length ratio and 
dimensionless length scale parameters. Moreover, the buck-
ling modes for n = 1-6 are represented in Fig. 7. 

 
6. Conclusion 

In this article, the buckling behavior of a geometrically 
nonlinear cylindrical nanoshell resting on Winkler-Pasternak 
foundation was examined on the basis of the modified couple 
stress theory and shell model, subjected to an axial compres-
sion, an applied voltage and uniform temperature change.  

The size effect was considered using the modified couple 
stress theory. The minimum potential energy principle was 
utilized to derive the equilibrium equations and boundary 
conditions.  

Ultimately, using the Navier solution, the buckling of a 
nanoshell with simply supported boundary conditions was 
investigated and the effects of different parameters such as 
dimensionless length scale parameter, length and thickness to 
radius ratio, temperature change, Winkler and Pasternak stiff-
ness and external electric voltage on critical buckling load was 
examined based on the modified couple stress theory and the 
classical continuum theory, by setting l = 0.  

Thus, it is indicated that, the increase in dimensionless 
length scale parameter leads to increasing the critical buckling 
load and even intensifying the influence of other parameters, 
such as applied voltage, on the critical buckling load.  

 
Nomenclature------------------------------------------------------------------------ 

σij : Cauchy stress tensor 
Di : Electric displacement vector  
mij : Higher order stress tensor 
εij : Strain tensor 
Ei : Electric field vector 
χij : Symmetric part of rotation gradient tensor 
cijkl : Elastic tensor 
emij : Piezoelectric constants 
sim : Dielectric constants 
βij : Thermal moduli 
pi : Pyroelectric constants 
ui : Displacement vector 
φ : Electric potential 
ΔT : Temperature change 
l : Material length scale parameter  
eipq : Permutation symbol 
ηipq : Deviatoric stretch gradient tensor  

ijc%  : Reduced elastic constants 

Table 5. The effect of external electric voltage variation on the critical buckling load (nN). 
 

L/R = 0.1 L/R = 1 
h/R h/R  V0 

0.03 0.04 0.05 0.03 0.04 0.05 

-0.01 46.460 87.068 150.14 24.137 32.178 41.175 

-0.005 44.819 85.427 148.50 22.456 30.496 39.493 

0 43.177 83.785 146.86 20.774 28.815 37.812 

0.005 41.535 82.143 145.22 19.093 27.133 36.130 

l/h = 1 

0.01 39.894 80.502 143.58 17.411 25.452 34.449 

-0.01 107.92 232.76 434.71 26.761 38.396 49.503 

-0.005 106.28 231.12 433.06 25.080 36.715 47.697 

0 104.64 229.48 431.42 23.398 35.033 45.891 

0.005 103.00 227.84 429.78 21.717 33.352 44.085 

l/h = 2 

0.01 101.36 226.19 428.14 20.035 31.670 42.279 

 
 

 
 
Fig. 7. Buckling mode shapes of cylindrical nanoshell. 
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ije%  : Reduced piezoelectric constants 
ijs%  : Reduced dielectric constants 
ib%  : Reduced thermal moduli 
ip%  : Reduced pyroelectric constants 

V0 : External electric voltage 
sUd %  : Strain energy variation 

Wd %  : Variation of the work of external forces  
P : External axial compression load 
kw : Winkler foundation stiffness 
kg : Shear subgrade modulus of the foundation 
U0, V0, W0 : Displacement components of the equilibrium state 
U1, V1, W1 : Arbitrary small increment 
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Appendix  

A.1 

The constant coefficient A1 to A9, B1 to B10 and C1 to C13 in 
Eqs. (21)-(24) are obtained as below: 
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The constant coefficients a1 to a6, b1 to b9 and c1 to c10 in 

Eqs. (26)-(31) are achieved as: 
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A.2  

The components of S matrix in Eq. (52) are achieved as be-
low: 
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