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Abstract 
 
This paper presents a comprehensive approach developed to design an effective prediction model for hardness profile in laser surface 

transformation hardening process. Based on finite element method and Artificial neural networks, the proposed approach is built progres-
sively by (i) examining the laser hardening parameters and conditions known to have an influence on the hardened surface attributes 
through a structured experimental investigation, (ii) investigating the laser hardening parameters effects on the hardness profile through 
extensive 3D modeling and simulation efforts and (ii) integrating the hardening process parameters via neural network model for hard-
ness profile prediction. The experimental validation conducted on AISI4340 steel using a commercial 3 kW Nd:Yag laser, confirm the 
feasibility and efficiency of the proposed approach leading to an accurate and reliable hardness profile prediction model. With a maxi-
mum relative error of about 10 % under various practical conditions, the predictive model can be considered as effective especially in the 
case of a relatively complex system such as laser surface transformation hardening process.  
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1. Introduction 

Superficial heat treatment is an essential and complex proc-
ess in manufacturing technology. The major objective of su-
perficial hardening is to optimize the performance of operating 
mechanical components by modifying their physical, chemical 
and metallurgical properties. 

The most common methods of heat treatment include flame, 
induction, carburizing and nitriding. The disadvantages of 
these methods, such as the complexity of equipment for some 
and problems with parameter control for others, lead to the use 
of high power lasers as a new heat treatment process. The first 
heat treatment of metals by laser took place in the early 1960s. 
In the following years, much research was performed on the 
superficial hardening of steel which allowed the use of the 
laser. At the outset, researchers were interested in understand-
ing the influence of certain parameters (such as scanning 
speed, laser power, wavelength, beam diameter, etc.) on the 
temperature, hardness and depth of the treatment on flat ge-
ometries. Finite element models were created based on the 
Rosenthal equation of a moving heat source [1]. 

In another stage, some researchers became interested in the 

modeling of the temperature distribution on cylindrical piece 
during treatment, in order to predict the microstructure, hard-
ening depth, hardness, and residual stresses.  

Patwa and Shin achieved a 3D finite element model [2]. 
The model combines a transient digital three-dimensional 
solution (based on the modeling of Rozzi et al. [3, 4]) for a 
rotary cylinder undergoing laser heating by translation of the 
beam with a kinetic model. In order to evaluate the simulation 
results, an experiment was performed. Both researches reach a 
depth of 0.54 mm with a hardness of 63 HRC on an AISI 
5150 steel specimen with a laser (diode) power of 500 W and 
a rotational speed of 6 rpm [2]. Skvarenina et al. also predicted 
experimentally and successfully reached a 2.5 mm hardening 
depth with a uniform hardness of 57 HRC on an AISI 1536 
steel cylinder 60 mm in diameter, using a scanning speed of 
2.9 mm/s, a laser (diode) power of 1220 W and a rotational 
speed of 1 rpm [5]. Another thermal transient 3D model was 
developed by Orazi et al. [6]. The model is based on the ge-
ometry of the ring spot and was validated by experimental 
tests. The advantage of the Leonardo model over other models 
is that it achieves very high speeds. For a rotational speed of 
1140 rpm, a power of 1 kW, a scanning speed of 30 mm/min 
and a 30 mm diameter test piece of AISI 1040 steel, it finds a 
hardness of 690 HV. In general, a second laser pass generates 
a tempering of the material that is characterized by a drop in 
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micro hardness. In the same context, the low processing speed 
creates a superposition of treatment which pro-duce a non-
homogeneous micro hardness. 

The prediction of hardness by the finite element method has 
many advantages, namely minimizing costs and the experi-
mentation time, but it remains a complex and specific tool 
depending on the case. In an industrial framework the objec-
tive is to develop rapid modeling that allows the implementa-
tion of a real time control strategy. The regulation and selec-
tion of optimal parameters is a challenge that must be ad-
dressed in a minimal amount of time. According to the litera-
ture, the most widely used methods of hardness predictions 
using laser heat treatment are linear multi-regression and arti-
ficial neural networks (ANN). Barka and El Ouafi found a 
mathematical model for the prediction of hardened depth 
based on the multi-regression method from a host of experi-
mental tests on a 10 mm diameter cylinder. Using the Taguchi 
method, l9 experiments were planned with three factors at 
three levels. The various factors in the experiments are the 
scanning speed, the rotational speed and the laser power. With 
a power of 1700 W, a scanning speed of 4 mm/s and a rotary 
speed of 4000 rpm, a hardened depth of 1.9 mm was found [7]. 
A comparison between the two methods of hardness predic-
tion on plates is performed by Maamri et al. An experimental 
study was done with 16 training experiments and 9 validation 
experiments. The factors that are considered in this study are 
laser power, scanning speed, hardness, initial hardness and 
surface state. In this study, it is confirmed using validation 
tests that the neural network method leads to the most useful 
prediction [8]. 

The main objective of this work is first to design a thermal 
model based on the finite element method coupled with a 
hardness prediction algorithm relying on the metallurgical 
transformation kinetics. The second objective is to carry out a 
host of laser heating tests to validate the digital model. Finally, 
using the 3D model and artificial neural networks, we develop 
a predictive model of the hardness profile based on various 
operating parameters. 

 
2. Finite element modelling 

In this study, the laser was modeled as a source of circular 
Gaussian heat moving along the shaft. As illustrated in Fig. 1, 
the shaft is mounted on test stand allowing a relatively high 
rotational speed (Fig. 1). In general, non-linear mathematical 
models of heat transfer by conduction in a homogeneous and 
isotropic medium take the following form: 

 

. (1)
 

 
Q(x,y,z) [W/m3], which is the volume density of the laser 

applied to the material, is given by: 
 

 (2) 

where I(x,y) [W/m2], which is the intensity of the laser, and is 
given by: 

 
 (3)

 
 

here Q0 is the power of laser and S is the surface of the beam 
in contact with the material and f (x, y) is the Gaussian distri-
bution of the beam, given by: 

 

. (4) 
 
x0 and y0 represent the beam center coordinates at t = 0. The 

effect of rotation of the piece is modeled by a transmission 
term in the heat transfer equation (Eq. (1)), so that it is not 
necessary to rotate the geometry explicitly. The boundary 
conditions were chosen as follows: The initial temperature of 
the system is supposed to be T0 = 293 K; convection losses are 
taken into account given by Eq. (5) and radiation losses are 
considered negligible as compared to the incident radiation.  
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where h [W/(m2•K)], which is the heat transfer coefficient and 
Sa is the area of the cylinder. Take into consideration the 
boundary conditions, the Eq. (1) becomes: 
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For the mesh, the tetrahedral shape was chosen and a con-

vergence study of the mesh size was carried out in order to 
choose the optimal size (Fig. 2). 

 

3. Metallurgical modelling 

The metallurgical transformation process for the heat treat-
ment of steel occur over three major steps: The pearlite trans-
formation to austenite (pearlite dissolution), the homogeniza-
tion of the carbon in austenite, and the austenite transforma-

 
 
Fig. 1. Configuration of the laser hardening setup for cylindrical part. 
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tion to martensitic [9]. By heating the material up to the tem-
perature of eutectoid Ac1, colonies of pearlite in the micro-
structure are transformed into austenite. The distance between 
the pearlite plates, which allow colonies pearlite to be com-
pletely transformed into austenite, is given by the following 
equations [9]. 
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where D0 is the diffusion constant, Qa is the activation energy, 
R the gas constant, Tp is the peak temperature, and cd and ht  
are constants given by Eqs. (8) and (9). 
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Here K the thermal conductivity, V is the scanning speed, T0 

is the initial temperature and Rc is the reflection coefficient. 
The homogenization mechanism is simple: Around a ferrite 
grain and a cementite grain, an austenite germ can be created. 
This germ is formed by eutectoid transformation with a 
chemical composition of 0.8 % C. 

As the temperature rises it undergoes a systematic change in 
its composition. Rapid cooling of the austenite, which is 
formed only within a thin layer during laser hardening due to 
the self-sealing of the material when the laser beam is moved 
away, makes it difficult for carbon to diffuse outside its lattice. 
When the carbon is trapped in the network and cooled, the 
face-centered cubic crystal structure of austenite is trans-
formed into a hybrid quadratic structure, called martensite [5]. 
The martensitic volume fraction, f, which is formed on a pe-
riod T, is given by Eq. (10) [9]. 
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where fi = C / 0.8 is the initial volume fraction of pearlite and 
fm is the volume fraction of martensite, given by the following 
relationship: 
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The hardness of the material is calculated as follows: 
 

. (1 ).Hm f pH f H f += + -  (12) 
 

were Hm and Hf+p are calculated following Maynier’s equa-
tions and taking into account the initial chemical composition 
[10, 11]. 

As explained in Fig. 3, the metallurgical equations are ex-
pressed in Matlab software. From the history of temperature 
matrix generated by the simulation, the algorithm is able to 
predict the hardness profile. 

 
4. Simulation results 

This study investigates the machine sensitivity parameters 
of laser heat treatment of an AISI 4340 steel shaft. The AISI 
4340 steel is very common in the aerospace and automotive 
industries in the manufacture of propeller shafts, connecting 
rods, gear shafts and other parts, and automobiles due to its 
high tensile strength. The chemical composition and the mate-
rial properties of the 4340 steel are presented in Tables 1 and 2. 
The laser heat treatment of a 10 mm diameter cylinder with a 
power of 1550 W, a scanning speed of 5 mm/s, and a rotary 
speed of 4000 rpm was simulated with the finite element 
model presented in the preceding section. Fig. 1 shows the 
profile where the temperature is greater than the austenitizing 
temperature and Fig. 2 shows that the heat flux propagation 
along the cylinder. 

The interesting conclusion drawn from Figs. 4 and 5 is that 
the temperature does not increases abruptly at a given point, as 
in the case of the treatment of the plates, but rather gradually 
increases as the beam gets closer to the point. This is due to 
the rotation effect.  

As demonstrated in Fig. 6, an increase in the power causes 
intensification in the maximum temperature reached. The 

 
 
Fig. 2. Effect of mesh size on achieved temperatures. 

 

 
 
Fig. 3. Hardness curve estimation approach. 

 



618 M. Hadhri et al. / Journal of Mechanical Science and Technology 31 (2) (2017) 615~623 
 

 

power directly affects the rate of heating and cooling and sub-
sequently affects the microstructure obtained. The influence of 
rotational speed becomes negligible at and above 4000 rpm. 
With a rotational speed of 1000 rpm, a scanning speed of 5 
mm/s and a power of 1550 W, the temperature reach 1800 °C 
(Fig. 7). 

It is clear from Fig. 8 that an increase in scanning speed de-

creases treatment, both in terms of time and temperature. With 
a scanning speed of 2 mm/s, the temperature reached is greater 
than the melting temperature. The heating and cooling speed 
increase proportionally according to the scanning speed. 

 
5. Experimental validation 

The experiments were done with an AISI 4340 steel 
cylinder 10 mm in diameter. The specimen is mounted on a 

Table 1. Chemical composition of 4340 steel. 
 

Elements Content (wt %) 

C 0.38 - 0.43 

Cr 0.70 - 0.90 

Mn 0.60 - 0.80 

Mo 0.20 - 0.30 

Ni 1.65 - 2.00 

P 0.035 

Si 0.15 - 0.35 

S 0.004 

Fe 95.195 - 96.33 

 
Table 2. Material properties. 
 

Property Symbol Unit Value 

Reflexion coefficient Rc  0.6 

Steel absorptivity Ac m-1 800 

Eutectoid temperature  Ac1 K 996 

Austenitization temperature Ac3 K 1063,15 

Austenite grain size (assumed) g µm  

Activation energy of carbon 
diffusion in ferrite Qa kJ/mol 10 

Pre-exponential for diffusion of  
carbon D0 m2/s 80 

Gas constant R J/mol.K 6.10-5 

Steel carbon content C  0.34 % 

Austenite carbon content Ce  0.8 % 

Ferrite carbon content Cf  0.01 % 

Critical value of carbon content Cc  0.05 % 

Volume fraction of pearlite colonies fi  0.5375 

 

 
 
Fig. 4. Simulation results - Temperature distribution. 

 

 
 
Fig. 5. Simulation results - Heat flux distribution. 

 

 
 
Fig. 6. Influence of laser power on temperature and heating time (W = 
4000 [rpm] and V = 5 [m/s]). 

 

 
 
Fig. 7. The influence of rotational speed on the temperature and time of 
treatment (P = 1550 [W] and V = 5 [m/s]). 
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test stand that could reach rotation speeds up to 10000 rpm. 
The laser used is Nd type: YAG. The laser head is mounted on 
a Fanuc robot with six degrees of freedom.  

Fig. 9 shows the experimental setup. The specimens are 
treated by hardening and tempering to ensure a core hardness 
of 35 HRC. The micro hardness is measured using a Clemex 
device. Four experiments were conducted with a random 
choice of parameters to validate the finite element model. An 
algorithm based metallurgical formulations coupled with Mat-
lab can process the simulation results on COMSOL.  

Practical experiments are performed with a confidence 
interval of 95 % (Table 3). Figs. 10 and 11 show the relative 
deviations between the practical measures and the simulation 
results that are acceptable for 3D model validation. For tests 1 
and 3, the relative error varies between 3.5 % and 11 %. The 
relative errors for tests 2 and 4 are under 1 %. 

 
6. Statistical analysis 

The objective of this part is to identify the influence of vari-
ous parameters on the hardened depth. This is achieved using 
an experiment design, consisting in producing a series of N 
experiments and determining the value of the hardened depth 

for various combinations. So, in this case, the selected solution 
is the hardened depth profile represented by the three charac-
teristic {H1, D1, D2}. The experiments are carried out using a 
3D model with COMSOL software (see Figs. 4 and 5). 

The factors to be examined in this study are power, rotary 
speed and scanning speed (Table 4). The Analysis of the vari-
ance (ANOVA) is a basic tool in determining the significance 
of a particular effect or a mathematical model. The principle 
of the analysis of variance is based on calculating the total 
difference between the results of modelled experiments and 
the average of those measurements. 

ANOVA is a computational technique which is used to es-
timate the relative significance of each process parameter in 
terms of percent contribution to the overall response. The pa-

 
 
Fig. 8. Influence of rotational speed on temperature and heating time 
(P = 1550 [W] and V = 5 [m/s]). 

 

 
 
Fig. 9. Robotic heat treatment laser cell used for the experimentation. 

 

Table 3. Factors and levels for validation tests. 
 

Test P (W) V (mm/s) W (rpm) 

1 1750 5 4000 

2 1550 5 4000 

3 1300 4 2000 

4 1500 8 4000 

 
Table 4. Factors and levels for ANOVA.  
 

Factor Symbol Units 

Power P W 

Scanning speed V mm/s 

Speed of rotation W rpm 

 

 
 
Fig. 10. Typical hardness curve – Case of test 1. 
 

 
 
Fig. 11. Experimental validation of the hardened depth. 
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rameters with higher percent contributions are ranked higher 
in terms of importance in the experiment, and also have sig-
nificant effects in controlling the overall response [12, 13]. 
Among several existing plans, the Taguchi orthogonal plan 
minimizes the effect of aliases and measures error with mini-
mum testing. In this context, an orthogonal plan L27 of 3 fac-
tors to 3 levels was chosen (Table 5). The results of the tests 
presented Table 6 show that in this case the factors {P, V} and 
the interaction {PV} have a P-value less than 0.005, which 
means that there are 0.05 in 100 chances that the true value of 
the coefficient {P, V, W, PV} will be zero. This confirms the 
significance of the power, the scanning speed, the rotational 
speed, and the interaction between the power and the scanning 
speeds in the model. 

The influence of the other terms is not significant in control-
ling the overall response [13]. The results of Fig. 12 confirm 
the preliminary simulation results, showing a remarkable in-
fluence of scanning speed and power. On the other hand, the 
influence of the rotation speed is negligible in relation to the 
other factors. The contribution of power to the hardened depth 
is 18.91 %, and the contribution of the scanning speed is about 

67.60 %. The contribution rotation speed is low, on the order 
of 0.83 %. The interactions of power with the scanning speed 
have a combined contribution of about 12.49 %. 

 
7. Artificial neural network prediction model  

The objective of this section is to create a model of artificial 
neural networks capable of predicting the hardness and the 
hardened depth. The curve describing the hardness profile is 
divided into three zones. The first is the hardened zone, con-
sisting of 100 % martensite. The second is the transition zone, 
consisting of ferrite, pearlite and martensite. The third zone is 
the untreated area. For this reason, we define the four points 
{H1, H2, D1, D2}: The first two sets are used to define the 
hardness and the others to define the depth (Fig. 13). The arti-
ficial neural network is a very powerful model in terms of its 

Table 5. Experimental planning (L27). 
 

Test P V W 

1 1300 4 2000 

2 1300 4 4000 

3 1300 4 6000 

4 1300 6 2000 

5 1300 6 4000 

6 1300 6 6000 

7 1300 8 2000 

8 1300 8 4000 

9 1300 8 6000 

10 1500 4 2000 

11 1500 4 4000 

12 1500 4 6000 

13 1500 6 2000 

14 1500 6 4000 

15 1500 6 6000 

16 1500 8 2000 

17 1500 8 4000 

18 1500 8 6000 

19 1700 4 2000 

20 1700 4 4000 

21 1700 4 6000 

22 1700 6 2000 

23 1700 6 4000 

24 1700 6 6000 

25 1700 8 2000 

26 1700 8 4000 

27 1700 8 6000 

 
 

Table 6. ANOVA for hardened depth (D2). 
 

Source DF Sum of 
squares 

Mean 
square F-Value P-Value C (%) 

P 2 1.33725 0.5933 584.65 0.000 18.91 

V 2 4.77970 0.2189 215.73 0.000 67.60 

W 2 0.05899 0.0117 11.53 0.004 0.83 

P.V 4 0.88339 0.2208 217.62 0.000 12.49 

P.W 4 0.00170 0.0004 0.42 0.791 0.02 

V.W 4 0.00166 0.0004 0.41 0.742 0.02 

Error 8 0.00812 0.0010 - - 0.11 

Total 26 7.07081 - - - 100 

 

 
 
Fig. 12. Effect of various parameters on the hardened depth (D2). 

 

 
 
Fig. 13. Typical hardness curve. 
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precision in prediction, inspired by the biological neuron. A 
neuron is a tiny structure that treats nerve impulses that arrive 
(inputs), each according to its relative importance, and emits 
only one output signal (output). 

Artificial neurons reproduce the same process, receiving 
each input signal (input) tempered by a weight (weight). 
These weights are also called synaptic weights by analogy. 
The weighted inputs, usually ordered, are then compared to an 
activation threshold and passed in the function of the neuron, 
which produces the output (output) desired [14, 15]. In this 
study, a Multilayer Perceptron neural network model with one 
hidden layer containing 10 neurons is chosen (see Fig. 14). 
The number of intermediate layers depends on the complexity 
of the problem to be dealt with. The inputs to the system are 
the scanning speed, the rotation speed and the laser power, but 
the outputs are the limits of the hardness curve: H1, D1, D2. 

The design used in the ANOVA study is chosen mainly to 
determine the interactions of different factors. In addition, it 
does not present a rich database for a neural network. For this 
another orthogonal design was chosen in order to have given a 
more complete database. The selected plan is the L25 Taguchi 
plan (Table 7). It consists of three factors on five levels. A 
neural network model of 3 inputs and 2 two outputs was es-
tablished. The three input parameters are P, V and W. The 
output parameters are the hardened depths D1 and D2. A single 
hidden layer of 10 neurons was used. The sigmoid function is 
used as the activation function. Furthermore, the value of the 
coefficient of determination, R2 = 99.58 %, is good, which 
indicates that the model is relatively well adjusted. Therefore, 
there is a good correlation between the measured values and 
the calculated ones (Fig. 15 and Table 8). Another neural net-
work model of three inputs and one output was also estab-
lished. The three input parameters are P, V and W. The output 
parameter is the hardness depth, H1. 

An orthogonal matrix L9, based on the Taguchi method, 
was used in the validation experiments [12]. The validation 

matrix illustrated in Table 9 is injected into the same neural 
network programs previously used. The results found in the 
validation are satisfactory and show that the model is reliable 
in predicting the hardness based on other input parameter.  

Table 8 shows that the values of the coefficients of determi-
nation of the validation tests of the points {D1, D2} and {H1} 
are 94.104 and 95.427, respectively. This implies a very good 
capacity for prediction. Two practical tests were planned to 
validate the results of the neural networks (Figs. 16 and 17). 
With a power of 1500 W, a scanning speed of 4 mm/s, and a 
rotary speed of 4000 rpm, the relative errors is 11 % in predic-
tion of the D1 point, and 0 % in prediction of the D2 point. As 
a conclusion the method of neural networks is very reliable in 
terms of prediction, and enables manufacturers to create a rich 
and an accurate database. 

 
8. Conclusions 

In this study, a comprehensive approach developed to de-
sign an effective prediction model for hardness profile of AISI 
4340 steel heat treated by laser is presented. Several laser 
hardening parameters and conditions were analysed and their 
correlation with multiple performance characteristics of hard-
ened surface was investigated using a structured experimental 
investigations and exhaustive 3D numerical simulations under 
consistent practical process conditions.  

After identifying the hardening parameters and conditions 
that provide the best information about the laser heating and 
the surface hardening transformation processes, an ANN 
based modelling approach was proposed to build an accurate 
and consistent hardness profile prediction model. The result-
ing model demonstrates that the ANN modelling approach can 
be used to achieve an accurate predicting model. Globally, the 
performance of the hardness profile prediction model shows 
significant improvement as compared to conventional meth-

Table 7. Experimental planning for training data. 
 

Factor Levels 

P 1200 1400 1600 1800 2000 

V 4 5 6 7 8 

W 1000 2000 3000 4000 5000 

 

 
 
Fig. 14. The ANN based model structure. 

 

Table 8. Coefficients of determination for the ANN prediction model. 
 

 Rtraining Rvalidation Rtest Rtotal 

Depth 0.99583 0.94104 0.95329 0.97701 

Hardness 0.99313 0.95427 0.9732 0.97909 
 

 
 
Fig. 15. Scatter plots of simulation and prediction of {D1, D2}. 
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ods such as multiple regression analysis. With a global maxi-
mum relative error less than 11 % under various conditions, 
the prediction model can be considered efficient and have led 
to conclusive results, due to the complexity of the heat treat-
ment process. 

 
References 

[1] S. Soundarapandian and R. Kovacevic, Hardness prediction 
in multi-pass direct diode laser heat treatment by on-line sur-
face temperature monitoring, Journal of Materials Process-
ing Technology, 212 (11) (2012) 2261-2271.  

[2] R. Patwa and Y. C. Shin, Predictive modeling of laser hard-
ening of AISI5150H steels, International Journal of Ma-
chine Tools and Manufacture, 47 (2) (2007) 307-320.  

[3] J. C. Rozzi et al., Transient thermal response of a rotating 
cylindrical silicon nitride workpiece subjected to a translat-
ing laser heat source, part I: comparison of surface tempera-
ture measurements with theoretical results, Journal of Heat 
transfer, 120 (4) (1998) 899-906. 

[4] J. C. Rozzi et al., Transient, three-dimensional heat transfer 

model for the laser assisted machining of silicon nitride: I. 
Comparison of predictions with measured surface tempera-
ture histories, International Journal of Heat and Mass 
Transfer, 43 (8) (2000) 1409-1424. 

[5] S. Skvarenina and Y. C. Shin, Predictive modeling and ex-
perimental results for laser hardening of AISI 1536 steel with 
complex geometric features by a high power diode laser, Sur-
face and Coatings Technology, 201 (6) (2006) 2256-2269. 

[6] L. Orazi et al., Laser surface hardening of large cylindrical 
components utilizing ring spot geometry, CIRP Annals - 
Manufacturing Technology, 63 (1) (2014) 233-236. 

[7] N. Barka and A. El Ouafi, Effects of laser hardening process 
parameters on case depth of 4340 steel cylindrical specimen 
- A statistical analysis, Journal of Surface Engineered Mate-
rials and Advanced Technology, 5 (3) (2015) 124. 

[8] M. Ilyes, A. El Ouafi and N. Barka, Prediction of 4340 steel 
hardness profile heat-treated by laser using artificial neural net-
works and multi regression approaches, International Journal of 
Engineering and Innovative Technology, 4 (6) (2014) 14-22. 

[9] M. F. Ashby and K. E. Easterling, The transformation harden-
ing of steel surfaces by laser beams - I. Hypo-eutectoid steels, 
Acta Metallurgica, 32 (11) (1984) 1935-1948. 

[10]  P. Maynier, J. Dollet and P. Bastien, Prediction of micro-
structure via empirical formulae based on CCT diagrams, 
Hardenability Concepts With Applications to Steel, Metal-
lurgical Society of AIME (1978) 163-178. 

[11]  P. Maynier, B. Jungmann and J. Dollet, Creusot-Loire sys-
tem for the prediction of the mechanical properties of low al-
loy steel products, Hardenability concepts with Applications 
to Steel, Metallurgical Society of AIME (1978) 518-545. 

[12]  R. L. Mason, R. F. Gunst and J. L. Hess, Statistical design 
and analysis of experiments: with applications to engineer-
ing and science, John Wiley & Sons (2003). 

[13]  B. Acherjee et al., Prediction of weld strength and seam 
width for laser transmission welding of thermoplastic using 
response surface methodology, Optics & Laser Technology, 
41 (8) (2009) 956-967. 

[14]  S. K. Dhara, A. S. Kuar and S. Mitra, An artificial neural 
network approach on parametric optimization of laser micro-
machining of die-steel, International Journal of Advanced 
Manufacturing Technology, 39 (1) (2008) 39-46. 

[15]  G. Buffa, L. Fratini and F. Micari, Mechanical and micro-
structural properties prediction by artificial neural networks 
in FSW processes of dual phase titanium alloys, Journal of 
Manufacturing Processes, 14 (3) (2012) 289-296. 

 
 

Mahdi Hadhri is a researcher student in 
the Department of Mathematics, Com-
puter Science and Engineering at the 
University of Quebec at Rimouski. His 
research fields include manufacturing 
materials, manufacturing processes im-
provement, and quality management for 
industrial applications. 

Table 9. Experimental planning for validation data. 
 

Factor Levels 

P 1300 1400 1600 

V 4 5 6 

W 3000 4000 5000 

 

 
 
Fig. 16. Scatter plots of simulation and prediction of H1. 

 

 
 
Fig. 17. Validation results for the ANN prediction model. 
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