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Abstract 
 
The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. 

To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decompo-
sition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal 
of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the 
singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Fi-
nally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of 
ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the 
classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can 
accurately diagnose and identify different fault types of gear under variable conditions.  
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1. Introduction 

As any defect of the gearbox can result in machine downtime 
and loss of production, fault diagnosis of gearbox plays an im-
portant role in industrial machinery [1]. Because of the complex 
structure and poor work conditions, the gear teeth may easily 
suffer damages such as wear, pitting and pitting wear on teeth 
surface [2]. Fault diagnosis mainly includes three parts: Feature 
extraction, pattern recognition, and classification [3]. Therefore, 
an optimal method for fault diagnosis is to find a feature extrac-
tion technique that can extract the most distinctive features to 
optimize classification results and improve diagnostic accuracy 
[4]. In gear fault diagnosis, the variation of working conditions 
often influences the generated vibration patterns. For this reason, 
it is very important to seek an efficient fault diagnosis method 
applicable to variable conditions. 

Recently, the study of gear fault diagnosis has received ex-
tensive concern from the researchers. Raad et al. employed an 
indicator of cyclostationarity for gear diagnosis in time do-
main [5]. Pavle et al. successfully performed a fault detection 
of the mechanical drives based on the wavelet packet Renyi 

entropy signatures [6]. Liu et al. performed the gear fault de-
tection by employing the fast dynamic time warping to iden-
tify the corresponding faulty gear with small fluctuations of 
the operating speed of the machine [7]. Li et al. addressed a 
multimodal deep support vector classification method based 
on deep learning strategy to perform fault diagnosis tasks for 
gearboxes, which was proven to be effective for the gearbox 
fault diagnosis [8]. Zhang et al. adopted the energy operator 
demodulating of optimal resonance components to detect the 
compound faults of gearboxes [9]. Through these studies, rich 
experience in gear fault diagnosis has been accumulated and 
the pivotal function under variable conditions. However, both 
the nonlinear and non-stationary characteristic of vibration 
signals and the interferences under variable conditions in-
crease the difficulty of extracting features from the complex 
vibration signal, and the fault diagnosis under variable condi-
tions still needs to be further studied. 

At present, several popular time-frequency analysis methods 
for gear fault feature extraction have been suggested in the lit-
erature, such as the Short-time fourier transform (STFT) [10], 
the Wavelet packet transform (WPT) [11] and the Wigner-Ville 
distribution [12, 13]. However, those methods also have some 
weakness, for example the major limitation of SFTF is unavoid-
able in trade-off between time and frequency resolution, WPT is 
not a self-adaptive time-frequency analysis method and the 
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computation of WPT is time-consuming, the Wigner-Ville dis-
tribution is limited by the presence of cross-term interference. 
Hence, several self-adaptive signal processing methods have 
been proposed, such as Empirical mode decomposition (EMD) 
[14] and Local mean decomposition (LMD) [15]. Nonetheless, 
the EMD method also has some drawbacks such as over enve-
lope, mode mixing [16] and end effects [17]. The LMD method 
still has some inevitable problems such as distorted components 
and time-consuming decomposition. 

Intrinsic time-scale decomposition (ITD) method was pro-
posed by Frei et al. [18] as a novel time frequency analysis 
method for analyzing the non-stationary and nonlinear signals. 
With high decomposition efficiency and frequency resolution, 
ITD can help decompose a complex signal into several PRCs 
with the lowest variation of PRCs as the trend, which can 
accurately extract the dynamic feature of nonlinear signals. 
Meanwhile, ITD does not involve spline interpolation and 
screening process. It has low edge effect and is promising for 
the application to the real-time data analysis [19]. Due to its 
advantages in adaptability and higher computing efficiency, 
the ITD method is well suitable for gear fault diagnosis under 
variable conditions. Lin et al. [20] performed a bearing fault 
diagnosis method based on spectral kurtosis and ITD which is 
able to improve the performance of the bearing fault diagnosis. 

Under variable conditions, the fault time frequency 
characteristic of gear changes over time, and the ITD method 
is suitable for dealing with the complex signal. Nevertheless, 
the proper rotation components obtained through ITD under 
variable conditions are always too tremendous and complex 
to be regarded as the fault feature vectors. Thus, time-
frequency analysis ITD is combined with singular value de-
composition for the first time in this study for gear fault diag-
nosis. SVD is applied to achieve feature reduction and im-
prove the robustness of the feature vectors. The singular 
value can maintain the stability and enhance the robustness of 
the feature extraction under variable conditions. Support vec-
tor machine (SVM) as a powerful machine learning method 
has been successfully applied to fault classification [21]. 
Moreover, SVM requires less human intervention and less 
running time than the other intelligent classification methods 
such as K-nearest neighbors (K-NN) [22] and Back propaga-
tion [23]. 

In this study, a novel hybrid model based on ITD, SVD and 
SVM is presented for gear fault diagnosis under variable con-
ditions. Firstly, the vibration signal is decomposed into some 
PRCs with ITD to obtain the feature vectors under variable 
conditions. Secondly, SVD is applied to achieve feature re-
duction and improve the robustness of the feature vectors. The 
proposed method is compared with EMD-SVD and WPT-
SVD in terms of feature extraction. Finally, the singular val-
ues are fed into the trained SVM to identify the fault type. 

This paper is organized as follows: Sec. 2 presents the in-
troduction of ITD, SVD and SVM, Sec. 3 shows the case 
study performed to validate the method, and Sec. 4 concludes 
the paper. 

2. Methodology 

Gear fault diagnosis includes fault feature extraction and 
fault classification. The vibration signal processing method is 
one of the most important fault feature extraction methods. 
According to the extracted features, the different fault types 
can thus be identified [24]. The detailed process will be intro-
duced in the following part of the section. 

 
2.1 Signal decomposition based on ITD  

As a new self-adaptive signal decomposition method, In-
trinsic Time-scale decomposition is applied to the non-
stationary signal analysis successfully. Any complex non-
stationary vibration signal can be decomposed into a series of 
PRCs and a monotonous trend signal [25]. For an original 
signal tX , the operator L  is defined as the baseline extrac-
tion factor, and the rest signal is regarded to have a proper 
rotation. The decomposition of the tX  can be represented as 
follow: 

 
(1 )t t t t tX LX L X L H= + - = +                     (1) 

 
where t tL LX=  is the baseline signal, (1 )t tH L X= -  is the 
proper rotation component. 

It is assumed that , 1,2,...kX k =  is the extremum of the 
signal tX , kt is the corresponding moment, and 0 0t = . In 
order to simplify the definition, kX and kL are defined as the 

( )kX t  and ( )kL t , respectively. As tL and tH  are defined 
on [0, ]kt , and tX  is also meaningful in 2[0, ]kt + , the base-
line extracting operator e  on interval 1( , ]k kt t +  can be ex-
pressed as follow:  
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The 1kL +  in Eq. (2) can be expressed as follow: 
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where a is a linear gain, and 0 1a< < . In general, 0.5a = . 
The proper rotation component can be expressed as below: 

 
(1 ) .t t t t tHX L X H X L= - = = -   (4) 

 
Base signal tL retains the monotonicity between the ex-

treme points of the signal. Besides, the local relatively high 
frequency is extracted as a proper rotation component. Then, 
the baseline signal is set as the input signal, and the above 
steps are repeated until a drab trend signal is obtained. Conse-
quently, the original signal is decomposed into a set of proper 
rotation components with a frequency range is from high to 
low and a monotonic trend component. The overall procedure 
can be expressed with the formula below: 
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wherein i

tH  is the thi  layer of the proper rotation, p
tL  is 

the monotonic baseline signal representing the trend of tX , 
and p is the decomposition level. 

 
2.2 Feature extraction based on SVD 

Under variable conditions, the vibration signal of gear is de-
composed with ITD into some PRCs which are too complex 
to be regarded as the fault feature vectors. The SVD method is 
proposed to reduce the dimensions of the fault feature vectors 
and improve the accuracy of the classification [26]. 

Singular value decomposition is an orthogonal matrix trans-
formation algorithm, and the singular value has a good nu-
merical stability when the matrix elements change. It is as-
sumed that A  is a m n´  matrix. With the SVD method, 
any matrix *m nA RÎ  can be decomposed into three matrices, 
namely * *,m m m nU R S RÎ Î  and *m nV RÎ  as shown below:  

 
( )T

m n m m m n n nA U S V´ ´ ´ ´=  (6) 
 

wherein U and V are orthogonal, and S is a diagonal matrix 
with ( )r rank A= , as shown below: 
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is represents the singular values of A . The singular values 

are listed in descending order as follow:  
 

1 2( ) ( ) ( ) .rA A As s s³ ³ ³L  (8) 
 
SVD is adopted to reduce the dimensionality of the PRCs 

obtained through ITD. The feature of the original matrix can 
be expressed with the singular values, which is beneficial to 
compressing the scale of the feature vector. 

 
2.3 State classification based on SVM 

The feature vectors of the different fault types are obtained 
based on ITD and SVD. In addition, the SVM is proposed to 
realize the classification of multiple classes. As a statistical 
learning theory proposed by Vapnik-Chervonenkis, SVM has 
a huge advantage in solving the small sample, nonlinear and 
high dimensional pattern recognition problem [27]. For two-
class problem, a training set ( , ), 1,2...k kx y k N= is given, where 

n
kx RÎ  and { 1,1}ky Î - . The mechanism of SVM is to con-

struct an optimal hyperplane and a classifier of the form:  

( ) [ ]Ty x sign w x b= +  (9) 
 

wherein w,b are utilized for defining a hyperplane in the fea-
ture space consisting of data vectors x  that satisfy the con-
straint 0w x b× + = . The classifier can be formulated as fol-
low:  
 

[ ] 1 , 0, 1,..., .T
k k ky w x b k Nx x+ ³ - ³ =  (10) 

 
The classification interval can be calculated as 2 / w , and 

the problem of constructing an optimal hyperplane is con-
verted under the constraint of: 
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wherein c is a positive real constant that controls the punish-
ment for misclassified samples. 

In order to solve the constrained optimization problem, the 
Lagrangian is introduced, the conditions for optimality are 
created, and finally the problem is solved in the dual space [28]. 

For multi-classification problems, several approaches to ex-
tend two-class SVMs to a multi-class SVM for multi-category 
classifications have been proposed [29]. The one-against-one 
algorithm that transforms a c-class problem into ( 1) / 2c c -  
two-class problems is applied in this work. Through voting, 
the class with the most votes is regarded as the class of the 
sample. 

The proposed gear fault diagnosis technique under variable 
conditions is described in Fig. 1, with detailed steps shown as 
follows: 

Step 1: Decompose the vibration signal into several PRCs 
and the trend signal by using ITD. Combine the PRCs and the 
trend signal into the feature matrix A . 

Step 2: Compute the singular values of the feature matrix 
A with SVD. Regard the singular values as the feature vectors 

of the vibration signal. 
Step 3: Diagnose the failure types according to the feature 

vectors by using SVM. 

 
 
Fig. 1. Block diagram of the proposed method. 
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3. Experiments and analysis 

3.1 Gear fault data 

An experimental analysis on gear fault diagnosis is con-
ducted to evaluate the effectiveness of the proposed method. 
The gear vibration data are obtained through rotating machin-
ery vibration analysis with a QPZZ-II test platform, as shown 
in Fig. 2. The four types of the vibration signal (normal, pit-
ting, wearing and pitting-wearing signal) are collected at 5120 

sample/s. Under the working condition with no-load, the mo-
tor drives the input shaft at a motor speed of 880 RPM. In 
order to change the load, the current of the motor is controlled 
at 0.05 A, 0.1 A and 0.2 A (corresponding to the motor speeds 
of 866, 850 and 834 RPM, respectively). The length of each 
original collected signal is about 50000, and 25 samples for 
each vibration condition are extracted, as shown in Table 1. 
The vibration signal waveforms of different fault types under 
the no-load condition are shown in Fig. 3. 

 
3.2 Gear fault diagnosis based on the proposed method 

To acquire the fault feature vectors, the ITD method is used 
to decompose the vibration signals of the different fault types 
into the proper rotation components, as shown in Fig. 4. The 
original signals are decomposed into three PRCs and a mo-
notonous trend signal. PCR1~PCR3 are the proper rotation 
components to represent the local relatively high frequency of 
the original signals and the L is the monotonous trend signal. 
The high frequency of the proper rotation components con-
tains the primary information of the different fault types, and 
the difference among the fault types is significant. The PRCs 
and the trend signal is combined into a feature matrix, which 
can be constructed as fault feature vectors. 

Under variable conditions, the PRCs obtained with ITD are 
too tremendous and complex to be regarded as the fault fea-
ture vectors. To solve this problem, the SVD is applied to 
reduce the dimensions of the fault feature vectors. After ob-
taining the feature matrix, the singular values can be obtained 
by conducting SVD. The singular value can maintain the sta-
bility and enhance the robustness of the fault diagnosis under 
variable conditions. The fault feature values obtained through 
ITD-SVD are partly shown in Table 2. The first three singular 
values are shown in Fig. 5. The three singular values represent 
the decomposed components of the vibration signal. It can be 
seen that the singular values under the same failure mode are 

Table 1. Relevant information for the dataset. 
 

Groups 

Working conditions 
Label Status 

880 RPM 866 RPM 850 RPM 834 RPM 

1 Normal 25 25 25 25 

2 Pitting fault 25 25 25 25 

3 Wearing fault 25 25 25 25 

4 Pitting-wearing 
fault 25 25 25 25 

 

 
 
Fig. 2. Test platform of gearbox. 
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Fig. 3. Vibration signal waveforms of (a) the normal signal, and signals with (b) pitting fault; (c) wearing fault; (d) pitting-wearing fault under the 
no-load condition. 
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highly consistent and the difference of the singular values 
under different fault types is large enough to easily separate 
them. Due to the significant separability under variable condi-
tions, the singular value can be applied to the fault classifier. 

Through the proposed feature extraction method based on 
ITD and SVD, singular value vectors are obtained as the fea-

ture vectors. On the basis of SVM, state classification can be 
done for recognizing the fault types of gear under variable 
conditions. The datasets in Table 1 are divided into a training 
dataset with 20 samples of data selected randomly from each 
fault type and a testing dataset with 380 samples of data. The 
classification result of ITD-SVD is shown in Fig. 6, from 

Table 2. Fault feature values obtained through ITD-SVD. 
 

Fault feature values 
Condition 

1 2 3 4 5 6 7 8 

Normal 
1465.6 
681.7 
397.5 

1465.1 
638.4 
404.9 

1467.4 
586.1 
363.1 

1454.7 
749.4 
358.7 

1443.0 
858.7 
360.7 

1451.2 
695.9 
261.6 

1451.7 
709.8 
341.2 

1456.7 
691.5 
349.2 

Pitting fault 
645.2 
463.7 
245.9 

599.5 
463.6 
324.4 

577.4 
460.8 
266.0 

791.3 
458.3 
326.0 

760.7 
468.2 
289.4 

654.6 
446.0 
345.9 

587.0 
455.1 
283.8 

616.9 
456.0 
323.1 

Wearing fault 
2446.1 
682.0 
606.0 

2346.0 
690.3 
611.5 

2178.8 
700.8 
631.1 

1764.5 
1029.1 
645.4 

1418.1 
879.8 
659.3 

1683.7 
1018.5 
718.1 

1632.92 
1001.5 
740.0 

1585.8 
1003.2 
658.5 

Pitting-wearing 
fault 

1829.9 
1301.7 
802.4 

1820.2 
1314.5 
735.3 

1534.5 
1355.0 
875.5 

1676.7 
1273.1 
934.9 

1669.0 
1324.4 
807.2 

1630.2 
1316.8 
878.6 

1873.1 
1281.2 
874.8 

1716.4 
1356.3 
811.3 
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Fig. 4. PRCs of the vibration signal obtained with ITD: (a) Normal status; (b) pitting fault; (c) wearing fault; (d) pitting-wearing fault. 
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which it can be seen that the actual output of SVM is ex-
tremely consistent with the target output under variable condi-
tions. The average classification accuracy of the three feature 
extraction methods based on SVM is 99.53 %. In the case of 
small samples, the SVM can achieve a good classification 
result. 

 
3.3 Comparisons with EMD-SVD and WPT-SVD 

In this subsection, some conventional time-frequency 
analysis methods such as EMD and WPT combined with 
SVD are also applied to the feature extraction of gear under 
variable conditions, and their performances are compared with 
that of the proposed approach. 

With the EMD method, the vibration signal can be decom-
posed into some IMFs and a residual. The SVD method is 
applied to the first 4 IMFs to obtain the feature vector, and the 
first three singular values for datasets in Table 1 are shown in 
Fig. 7. The classification interval between the normal signal 
and the signal with pitting fault is so prominent that the pitting 
fault can be identified easily. Nevertheless, the classification 
of the wearing and the pitting-wearing fault is mixed up com-
pletely, which may result in misclassification. In other words, 
the feature vector obtained by EMD and SVD is affected 
greatly by working condition variation. 

With the WPT method, the vibration signal can be divided 
into 3 levels to obtain the wavelet packet coefficients of the 8 
wavelet packet nodes using dB5. Furthermore, the wavelet 
packet coefficients are utilized to reconstruct the signals to 
acquire the decomposed signal, and the SVD method is ap-
plied to the decomposed signal to obtain the feature vector. 
The first three singular values are shown in Fig. 8. The wear-
ing fault is divided into two parts. As a result, the WPT 
method combined with SVD is sensitive to gear fault diagno-
sis under variable conditions, meanwhile it is also not suited 
for gear fault diagnose under variable conditions. 

Through the contrast analysis, it is proved that the feature 
extraction method based on ITD-SVD can maintain the stabil-
ity and enhance the robustness of the gear fault diagnosis un-
der variable conditions. The singular values under variable 
conditions are shown in Fig. 9. For gear feature extraction 
under variable conditions, the proposed method can obviously 
improve the performance of fault patterns and outperforms the 
time-frequency analysis methods: EMD and WPT combined 
with SVD. 

The average classification accuracy of the three feature ex-
traction methods based on SVM is shown in Table 3. It is 
verified again that the proposed method outperforms the time-
frequency analysis methods, i.e. EMD and WPT combined 
with SVD. 

 
3.4 Comparisons with BP and KNN 

In order to verify the performance of classifier, the classifi-
ers for K-NN and BP are compared with the multi-classifiers 
of SVM. The running time and the average classification ac-
curacy of the three classifiers based on ITD-SVD are shown in 
Table 4. As can be seen from Table 4 that the average time 
consumption by SVM is 0.0106 s, and the average classifica-
tion accuracy of SVM is 99.53 %, which is higher than those 
of the other two methods. 

BP adopts the greedy strategy to search the hypothesis 
space, which can only obtain the local optimal solution. In the 
case of small samples, the performance of BP is poor. K-NN 
mainly solves the small sample problem by calculating the 

 
 
Fig. 5. The first three singular values obtained through ITD-SVD in the dataset: (a) Normal status; (b) pitting fault; (c) wearing fault; (d) pitting-
wearing fault (Note: Sample number. 1-100, 101-200, 201-300, 301-400 represent normal status, pitting fault, wearing fault, pitting-wearing fault,
respectively). 

 

 
 
Fig. 6. Classification result of SVM. 
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distance among samples. The computational complexity of 
KNN is higher than SVM. Owing to the selection of kernel 
function, SVM can achieve the global optimum and obtain a 
higher accuracy in the case of small samples. In view of this, 
the proposed method combining ITD-SVD with SVM can be 
effectively applied in gear fault diagnosis under variable con-
ditions. 

 
4. Conclusions 

In this paper, a method based on ITD-SVD and SVM for 
gear fault diagnosis under variable conditions is put forward. 
In line with this method, the intrinsic time-scale decomposi-

tion is firstly performed to decompose the vibration signals 
into several PRCs, and the singular value decomposition is 
applied subsequently to reduce dimensionality. ITD-SVD is 
successfully performed to extract the fault feature vectors and 
improve robustness under variable conditions. A detailed 
comparison is made among ITD, EMD and WPT combined 
with SVD, and the result shows the superiority of ITD-SVD 
under variable conditions. Therefore, under certain circum-
stances, the influence of the time-varying working condition 
can be negligible. Finally, SVM is applied to the fault classifi-
cation. With a small number of training samples, the algorithm 
can achieve very high accuracies. What is more, SVM is 
compared with K-NN and BP, as they are all regarded as ef-

 
 
Fig. 7. Scatter plots of the three singular values extracted with EMD-SVD. 
 

 
 
Fig. 8. Scatter plots of the three singular values extracted with WPT-SVD. 
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fective methods for fault classification. It is found that SVM 
has higher accuracy. The experimental results indicate that the 
proposed ITD-SVD method with SVM is suitable and effi-
cient for gear fault diagnosis under variable conditions. 

The working condition discussed in this paper is four types 
of speed. If the working condition is changing continuously, 
the accuracy of the proposed method may be influenced. In 
addition, the fault classification of the same fault type with 
different speeds is worthy of future study. 
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