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Abstract 
 
Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time do-

main. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition 
based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient 
impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of 
phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is pro-
posed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and 
they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is supe-
rior in rotating machinery fault diagnosis.  
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1. Introduction 

Vibration signals of rotating machinery in fault condition 
contain complex components which are diverse in both time 
and frequency domains. For non-stationary and nonlinear fault 
signal, neither isolated time domain nor frequency domain 
features can comprehensively represent the signal characteris-
tics [1]. Time-frequency distribution (TFD) is prominent in 
establishing the comprehensive relationship between time and 
frequency domains [2]. The non-stationary and nonlinear fea-
tures of signal revealed by TFD can effectively reflect the 
operating status of rotating machinery.  

Manifold learning [3, 4] is mainly applied in the field of 
image recognition [5, 6], which can reduce the dimension of 
nonlinear and high-dimensional data and reveal the potential 
features of data structure. Some global nonlinear dimensional-
ity reduction algorithms based on manifold learning have been 
proposed, such as isometric mapping (Isomap) [3], Locally 
linear embedding (LLE) [4] and Local tangent space align-
ment (LTSA) [7, 8]. In the field of rotating machinery fault 
diagnosis, Wang [9] applied manifold learning to extract the 
impulse features from multiscale envelope signal; He [10] 
applied manifold learning to extend the duration of the impact 
features. Su and Gan [11, 12] constructed compound manifold 
features for multi-fault diagnosis. Previous studies show that 

manifold learning can reflect the differences of signal charac-
teristics of rotating machinery in different operating status.  

In fact, the TFDs of vibration signals can be also considered 
as images. Therefore, rotating machinery fault diagnosis is 
achievable through recognizing the TFD images of vibration 
signals with the application of manifold learning.  

An image with 100×100 pixels can be considered as a 
point in 10000-dimension space. Having similar images 
means the corresponding points are close to each other in the 
space. However, the phases of cyclical transient impulses and 
rotating frequency modulation are different in each signal 
sample, the corresponding points of TFD images from a same 
pattern are dispersedly distributed on a manifold structure in 
high-dimensional space. Therefore, when several similar fault 
patterns happen, manifold structures of different fault patterns 
might cross each other in the space and the sample points in 
mixing zone are hard to recognize, as shown in Fig. 1.  

In this study, a Multiscale singular value manifold (MSVM) 
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Fig. 1. TFD points in space. 
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method was proposed to eliminate the effects of phase differ-
ences and extract the inherent features of TFDs. Through re-
ducing the dimension of TFDs, outstanding sample clustering 
results and diagnosis effects can be obtained. All applied 
methods in MSVM, such as continuous wavelet transform, 
phase space reconstruction and singular value decomposition 
are proven and effective techniques, which makes fault diag-
nosis approach convenient and efficient. 

 
2. Multiscale singular value manifold method 

2.1 TFD based on continuous wavelet transforms  

Time-frequency distribution is an effective tool to represent 
the features of multi-component signal in both time and fre-
quency domains, which reveals more features than isolated 
frequency or time domain signal [1, 2]. The TFD based on 
EMD and Hilbert–Huang Spectrum [13] is interfered by end 
effect, the time series length of TFD based on short-time Fou-
rier transform is shorter than the original signal [10]. Com-
pared to those methods, the performance of Continuous wave-
let transform (CWT) is superior in time-frequency analysis.  

For signal x(t) continuous wavelet transform can be ex-
pressed as [14]:  
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where wt(a,u) is the wavelet coefficient of signal at time t with 
scale factor a and time shift factor u. ψ* is the complex conju-
gate of wavelet function ψ in permit condition:  
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Complex Morlet wavelet is introduced since its waveform is 

similar to the transient impulse of rotating machinery fault 
signal [15]:  
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where fb and fc are waveform parameters which determine the 
bandwidth and center frequency of the wavelet function. In 
this study the parameters are not focus points, and then they 
are set to be fb = 1.5 and fc = 1.  

With complex Morlet wavelet, the TFD of signal can be ex-
pressed as:  

 

( ) ( )2 2
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where E(a,u) is the envelope signal in scale a and at time u. a
∈[1, λ], λ is the total number of TFD scales, u∈[1, N], N is 
the length of signal. The relationship between component 
frequency f of each scale and corresponding scale a is f = 

afs/2λ (fs is sampling frequency). Accordingly, the TFD of 
signal can be considered as an image with λ×N pixels.  

 
2.2 Phase space reconstruction 

Phase space reconstruction (PSR) [16] can reconstruct the 
inherent dynamic features embedded in a time series. For a 
time series x(t) = [x1,x2,…,xN] with embedding dimension m 
and time lag τ, the i-th phrase point vector can be expressed 
as:  
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The appropriate embedding dimension m  can be obtained 

according to Cao’s method [17]. Based on Takens’ theory [18], 
the highest analytical accuracy of time series can be achieved 
when the time lag τ is set to be 1. Then the phase space of x(t) 
can be reconstructed as:  
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To reconstruct the inherent dynamic features in time and 

frequency domains, each scale of TFD is reconstructed ac-
cording to Eq. (6). Hence, the reconstructed phase space of 
TFD (RTF) can be expressed as:  

 
(1) (2) ( )
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where E(a) is the envelope signal in scale a, Em(a) is the re-
constructed phase space of E(a) with embedding dimension m. 

 
2.3 Dimensionality reduction based on singular value de-

composition and manifold learning 

Singular value decomposition (SVD) [19] is a proven 
method for matrix inherent feature extraction and dimension-
ality reduction. A matrix Xn×m can be decomposed into 1 di-
agonal matrix and 2 orthogonal matrixes by SVD method, 
which can be expressed as:  

 
T

n m n n n m m m´ ´ ´ ´=X U S V , (8) 

 
where Sn×m is the diagonal matrix with nonzero diagonal ele-
ments sv1, sv2, …, svm (sv1 ≥ sv2 ≥ … ≥ svm > 0, m < n), Un×n 
and Vm×m are orthogonal matrixes. For fault signal samples, 
the diagonal element vector sv = [sv1, sv2, …, svm] can repre-
sent the inherent dynamic features of corresponding recon-
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structed phase space matrixes in lower dimension and avoid 
the influences cause by phase differences.  

Accordingly, the reconstructed phase space of TFD (RTF) 
can be decomposed by SVD in each scale, and then the low-
dimensional time-frequency singular value matrix TFSV is 
obtained:  

 
TFSV (1) (2) ( ) Tsv sv sv l= é ùë ûL . (9) 

 
Through PSR and SVD method, a λ×N TFD image of sig-

nal has been reduced to a λ×m TFSV matrix (m < N). To im-
plement a further dimensionality reduction, the time-
frequency singular value matrix of each signal sample is con-
nected scale by scale and constructed to be a multiscale singu-
lar value vector, which can be expressed as:  

 

1 1(1) (1) (2) ( ) T

m mmsv sv sv sv sv l= é ùë ûL L .  (10) 

 
Manifold learning is a theory for global nonlinear dimen-

sionality reduction, and LTSA [7] is an excellent dimensional-
ity reduction algorithm based on manifold learning. For the 
multiscale singular value matrix MSV(λ×m)×L = [msv1, msv2, …, 
msvL] of L signal samples (msvi∈R(λ×m)), the feature dimen-
sion λ×m can be reduced to d (d < λ×m) by LTSA algorithm, 
which can be expressed as follow steps [7]:  

 
2.3.1 Extract local information  

Select the k nearest neighborhoods of each msvi (i = 1, 
2, …, L) according to Euclidean distance to construct the local 
information matrix msvk

i: 
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Remove the mean of k nearest neighborhoods from the 

msvk
i matrix, and then calculate the d largest right singular 

vectors of the centralized msvk
i matrix to construct the local 

orthogonal basis Vi: 
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2.3.2 Construct alignment matrix  
Determine the 0-1 selection matrix Si: 
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Calculate the correlation matrix Wi: 
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where ek is a column vector of k ones.  

Construct the alignment matrix B as:  

1
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2.3.3 Align global coordinates  

Calculate the d+1 smallest eigenvectors of matrix B, and 
then select the 2nd to the d+1-th smallest eigenvalues to con-
stitute the global coordinates MSVM (∈Rd×L). Accordingly, 
the d-dimension manifold features are obtained:  

 

2 3 1MSVM T

d L du u u´ += é ùë ûL , (16) 

 
where ui+1∈RL (i = 1, 2, …, d) are corresponding to the i-th 
manifold features of L signal samples.  

Through two steps of dimensionality reductions based on 
singular value decomposition and manifold learning, the high-
dimensional TFDs of signal samples are reduced to lower 
dimension. The low-dimensional features are beneficial to 
sample classification and pattern recognition.  

In summary, the multiscale singular value manifold method 
can be expressed as Fig. 2 and following steps:  

(1) Divide signal samples from each class into train samples 
and test samples randomly with a determined ratio;  

(2) Calculate the TFDs of signal samples with complex 
Morlet wavelet;  

(3) Reconstruct the phase space of TFDs in each scale to 
obtain RTFs;  

(4) Reduce the dimension of RTFs through SVD and extract 
inherent features of each scale as time-frequency singular 
value matrix TFSV;  

(5) Construct the multiscale singular value matrix MSV of 
all samples;  

(6) Reduce the dimension of MSV through manifold learn-

 
 
Fig. 2. MSVM fault diagnosis method. 
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ing to obtain multiscale singular value manifold features 
MSVM;  

(7) Train the Support vector machine (SVM) [20-22] with 
MSVM features of train samples and classify test samples 
with the trained SVM.  

(8) Diagnose the fault patterns with clustering results and 
classification accuracies.  

 
3. Experimental verification 

Four cases are tested to verify the performance of proposed 
MSVM method. They are gear fault, bearing extended defect 
fault, bearing multiple fault positions and bearing multiple 
fault severities, as shown in Table 1. Several related methods 
are also applied to those cases as comparisons to the proposed 
method:  

(1) SVDM: Without considering the frequency domain, sig-
nal samples in time domain are reconstructed in phase space 
and decomposed by SVD. Then we reduce the dimension of 
singular value vectors of all samples through manifold learn-
ing. The corresponding low-dimensional features are SVDMs.  

(2) TFDM: The TFDs of signal samples are considered as 
images (λ×N-dimension) and recognized by manifold learning. 
The corresponding low-dimensional features are TFDMs.  

 
According to Cao’s method, E1(m) is defined to evaluate 

the robustness of embedding dimension m to noise [17]. Sig-
nals from Cases I, II and III are tested, as shown in Fig. 3. The 
trends of E1(m) are stable when m is larger than 10. In this 
study, m is set to be 12, which means good robustness to noise. 
To obtain appropriate TFDs of all signal samples, the scale λ 
is set to be 128.  

Case I: Gear fault 
Vibration signal samples are acquired at the drive shaft side 

of the gearbox, as shown in Fig. 4. Normal gears and defec-
tive gears are respectively installed in the gearbox and the 
output shaft is coupled to load. In running status, vibration 
signal samples are acquired by accelerometer. The rotating 
frequency of motor is 14.3 Hz, the sampling frequency is 
5120 Hz and the sampling time of each signal sample is 1 
second. The signal sample classes are normal, driven gear 
with pitting defect and drive gear with wear defect. The pa-
rameters of gears are shown in Table 2. The TFD of each class 
is shown in Fig. 5.  

The dimensionality reduction parameter d is set to be 2. As 
the low-dimensional features show in Figs. 6(a) and (b), the 
MSVM features of each class are very stable and samples 
from three classes are almost distributed at three points. As the 
clustering results of SVDM show in Fig. 6(c), some samples 
from normal and pitting defect are mixed and the samples 
from each class are distributed in lines. As the image recogni-
tion results of TFDM method shown in Fig. 6(d), the samples 
from each class are distributed quite close to the other classes 
and they cannot be distinguished or identified accurately.  

 
Case II: Bearing extended defect fault 

Experimental platform and bearings (HRB-1209) with dif-
ferent ranges of pitting defects are shown in Fig. 7. Pitting 
defects (depth 0–0.019 inch) are artificially machined on one 
side of the outer race surface. Normal bearing and defective 
bearings are respectively installed in the test end and the radial 
load is set in the middle of the shaft. In running status, vibra-
tion signal samples are acquired by accelerometers in both 
horizontal and vertical directions of the test end. The rotating 
frequency of motor is 15 Hz, the sampling frequency is 
25600 Hz and the sampling time of each signal sample is 0.5 
second. The defect parameters of outer race surface are shown 
in Table 3. The TFD of each signal class is shown in Fig. 8, 
within 0–0.1s time range.  

Table 1. Tested cases. 
 

Samples (Each class) 
Cases Sample classes 

Train Test 

Gearbox 3 30 20 

Bearing 1 3 30 20 

Bearing 2 4 30 20 

Bearing 3 5 30 20 
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Fig. 3. Embedding dimension selection. 

 

Table 2. Gear parameters. 
 

Gear Teeth Rotating frequency  
(Hz) 

Meshing frequency 
(Hz) 

Drive 55 14.3 788 

Driven 75 10.5 788 

 
 

 
 
Fig. 4. Gearbox. 

 



 Y. Feng et al. / Journal of Mechanical Science and Technology 31 (1) (2017) 99~109 103 
 

  

Time/s

Fr
eq

ue
nc

y/
H

z

 

 

0.2 0.4 0.6 0.8 1

500

1000

1500

2000

2500

0.5

1

1.5

2

2.5

3

3.5

     Time/s

Fr
eq

ue
nc

y/
H

z

 

 

0.2 0.4 0.6 0.8 1

500

1000

1500

2000

2500

0.5

1

1.5

2

2.5

3

3.5

4

 
                                   (a)                                               (b) 
 

Time/s

Fr
eq

ue
nc

y/
H

z

 

 

0.2 0.4 0.6 0.8 1

500

1000

1500

2000

2500

0.5

1

1.5

2

2.5

3

3.5

4

 
(c) 

 
Fig. 5. Time-frequency distributions: (a) Normal; (b) wear; (c) pitting. 
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Fig. 6. Clustering results: (a) MSVM features; (b) MSVM; (c) SVDM; (d) TFDM. 
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   The dimensionality reduction parameter d is set to be 2. As 
the low-dimensional features show in Figs. 9(a) and (b), the 
MSVM features of each class are very stable and samples 
from three classes are almost distributed at three points. As the 
clustering results of SVDM show in Fig. 9(c), normal signal 
samples are separated from the other samples, while the sam-
ples from local defect and extended defect are not completely 
distinguished, and some samples from two fault patterns are 
still mixed. As the image recognition results of TFDM method 
show in Fig. 9(d), normal signal samples are away from fault 
samples, while the samples from extended defect are almost 
surrounded by the samples from local defect. Hence, the sam-
ples from two fault patterns are too close to distinguish clearly.  

 
Case III: Multiple fault positions 

Bearing data is collected from the CWRU bearing data cen-
ter [23]. The rotating frequency of drive shaft is 30 Hz, the 
sampling frequency is 12000 Hz, and the sampling time of 
each signal sample is 0.4 second. Signal samples are acquired 
from normal bearing (SKF-6205) and bearings with defects 
which are artificially machined on the surfaces of outer race, 
inner race and rolling element. The defect size is 0.007 inch. 
The corresponding fault feature frequencies of fault patterns 
are Ball passing frequency on outer race (BPFO) 107.3, Ball 
passing frequency on inner race (BPFI) 162.2 and Ball fault 

frequency (BFF) 141.5 Hz.  
The dimensionality reduction parameter d is set to be 3. As 

the low-dimensional features and clustering results show in 
Figs. 10(a)-(c), all samples are almost distributed at four 
points and the sample concentrating effect of SVDM method 
is consistent with that of MSVM method. As the image recog-
nition results of TFDM method show in Fig. 10(d), the sam-
ples from each class are separated from the other classes, 
while the samples from rolling element defect are close to the 
samples from outer race defect. It is obvious that the samples 
from outer race defect and inner race defect are distributed in 
lines, which imply the influences of phase differences are not 
completely eliminated by TFDM method. 

Table 3. Parameters of bearings. 
 

Defect type Defective range Fault frequency (Hz) 

Normal 0 — 

Local defect π/16 102.5 

Extended defect 5π/16 102.5 

 

 
(a) 

 

 
(b) 

 
Fig. 7. Bearing experiment: (a) Experimental platform; (b) local defect 
and extended defect bearings. 
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Fig. 8. Time-frequency distributions: (a) Normal; (b) local defect; (c) 
extended defect. 
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Fig. 9. Clustering results: (a) MSVM features; (b) MSVM; (c) SVDM; 
(d) TFDM. 
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Fig. 10. Clustering results: (a) MSVM features; (b) MSVM; (c) 
SVDM; (d) TFDM. 
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Case IV: Multiple fault severities 
Vibration signal samples of fault bearings with different de-

fect sizes are also collected from the CWRU bearing data 
center. The defects are artificially machined on the surfaces of 
inner race with defect sizes 0.007, 0.014, 0.021 and 0.028 inch. 

The rotating frequency of drive shaft is 30 Hz, the sampling 
frequency is 12000 Hz and the sampling time of each signal 
sample is 0.4 second.  

The dimensionality reduction parameter d is set to be 4. To 
show the low-dimensional features in 3-dimension, the dimen-

Table 4. Concentration degrees and classification accuracies. 
 

Concentration degree Total classification accuracy 
Method 

Case I Case II Case III Case IV Case I Case II Case III Case IV 
Effective cases 

MSVM 1.55×1012 2.05×1011 1.97×1010 1.23×1010 100 % 100 % 100 % 100 % 4 

SVDM 5.0762 5.5046 1.02×108 2.53×109 95 % 93.33 % 100 % 100 % 2 

TFDM 1.3865 3.4102 3.4523 4.1429 88.33 % 96.67 % 100 % 40 % 1 
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Fig. 11. Clustering results: (a) MSVM features; (b) MSVM-PC feature; (c) MSVM-PC; (d) SVDM-PC; (e) TFDM-PC. 
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sions of MSVM, SVDM and TFDM features are reduced to 
three by PCA. As the low-dimensional features and the clus-
tering results show in Figs. 11(a)-(d), all samples are almost 
distributed at five points and the sample concentrating effect 
of SVDM method is consistent with that of MSVM method. 
As the image recognition results of TFDM show in Fig. 11(e), 
only normal samples and the fault samples from defect size 
0.028 inch are distinguished, while the remaining fault sam-
ples from the other three defect sizes are almost distributed at 
the same point and these fault samples are unrecognizable. It 
can be observed that the normal samples are distributed on a 
circle, which is caused by the phase differences of rotating 
frequency modulation. 

 
4. Quantitative analysis 

To determine the concentration degree of samples, a quanti-
tative variable C (the ratio of mean distance among sample 
centers of different classes and mean distance of samples to 
the corresponding class center, a larger C means the samples 
from different classes are easier to distinguish) is defined as:  
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In p classes of signal samples, each class contains q samples, 

where si
j is the j-th sample which belongs to the i-th class, is  

is the sample center of the i-th class. 
The concentration degree C and the classification result of 

each case are shown in Table 4. In all of four cases, the con-
centration degrees of MSVM method are the highest and the 
corresponding classification accuracies are 100 %, which in-
dicates that the performance of MSVM method in sample 
clustering is the best and MSVM method can distinguish sam-
ple classes from each other and recognize fault patterns accu-
rately.  

Note that the SVDM method can also accurately recognize 
each signal class in cases III and IV, while its performance is 
not quite stable in cases I and II. In case III the defect posi-
tions are different, which means the fault feature frequencies 
and the time spacing of transient impulses are different. Such 
significant differences can be effectively reflected in time 
domain and extracted by SVD. In case IV the defect sizes on 
inner race are different, while the defect types are still single 
and local style. The durations and amplitudes of transient im-
pulses would be changed by different sizes of local defects. 
Such typical changes can be also reflected in time domain and 
extracted by SVD.  

However, defect types are diverse. As the gearbox signals 
show in Fig. 5, the TFDs of normal signal and pitting defect 
signal are very similar and there are meshing signal compo-
nents with similar time spacing in both of them. Compared to 
the signals in time domain in Fig. 12(a), more differences in 

details are clearly expressed in time-frequency domain, which 
cannot be completely reflected in time domain. Therefore, the 
samples from normal and pitting defect are not accurately 
identified by the SVD method based on time domain.  

Moreover, as the TFDs of case II shown in Fig. 8, the center 
frequency and amplitude of transient impulses in TFDs of 
local defect and extended defect signals are the same. Since 
the defective range of bearing with extended defect is larger, 
rolling elements would always contact with defects and then 
some successive and abnormal components generate. These 
successive and abnormal components are similar to noise, as 
shown in Fig. 12(b). The results of SVD method are interfered 
by these noise-like components. Therefore, the samples from 
local defect and extended defect are not accurately identified 
by SVD method.  

The characteristics of signals in time domain cannot com-
prehensively reveal the differences between similar fault pat-
terns. There are still some shortcomings in SVDM method 
since the limitations of isolated time domain characteristics. 

TFDM is an image recognition method. Even though TFD 
samples belong to the same fault pattern, the phases of rotat-
ing frequency modulation and transient impulses are still dif-
ferent, as shown in Fig. 13 (red dotted lines). A TFD image 
can be considered as a point in λ×N-dimension space and the 
corresponding points of similar images are close to each other. 
However, the phase differences of different TFDs would 
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Fig. 12. Signals in time domain: (a) Normal and pitting signals of 
gearbox; (b) local defect and extended defect signals of bearings. 
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change the positional relationships of corresponding points in 
the space. Even though the dimension of TFDs is reduced, the 
TFDs from the same fault pattern are still dispersedly distrib-
uted with the lowest concentration degree.  

In case II, there is no cyclical transient impulse in normal 
signals and the corresponding TFDs are completely different 
from fault signals within the frequency band 3000-10000 Hz, 
as shown in Fig. 8. Therefore, the corresponding points of 
normal samples are away from the fault samples and normal 
pattern can be easily distinguished from fault patterns.  

In case III, since fault patterns are completely different, the 
manifold structure of each pattern is far away from the others 
in high-dimensional space. In this particular case, the TFDs 
from four classes are correctly distinguished without phase 
difference elimination process. However, TFDM method 
doesn’t work in cases I, II and IV when fault patterns are simi-
lar.  

Consequently, SVDM is a method based on signal in time 
domain and there are still some limitations in multi-fault pat-
tern recognition; the image recognition method TFDM cannot 
recognize similar fault patterns. MSVM method can eliminate 
the effects of phase differences and extract the inherent fea-
tures of TFDs. The performance of MSVM method is superior 
and stable in multi-fault pattern recognition.  

5. Conclusions 

We have proposed a novel multiscale singular value mani-
fold method based on image recognition for rotating machin-
ery fault diagnosis. To achieve image recognition, signal sam-
ples must be previously converted to images; thus continuous 
wavelet transform is applied to represent the time-frequency 
distribution images of vibration signals. Since the phase dif-
ferences of transient impulses in different TFDs are obstacles 
to image recognition, phase space reconstruction and singular 
value decomposition are applied to eliminate the influences of 
phase differences and extract the inherent features of TFDs. 
Taking into account the nonlinear characteristics of high-
dimensional features, manifold learning is applied to reduce 
the dimension of nonlinear multiscale singular value vectors 
of samples, and then the low-dimensional MSVM features of 
samples are obtained which are beneficial to pattern recogni-
tion and fault diagnosis. Comparison verifications indicate that 
multiscale singular value manifold method exhibits excellent 
stability and applicability. Experimental results prove that the 
proposed method can extract the features of time-frequency 
distribution images of vibration signals, and the low-
dimensional MSVM features can recognize fault patterns of 
signal samples accurately and effectively.  
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