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Abstract 
 
This paper explores nonlinear dynamic behavior of vibro-impacting tapered cantilever with tip mass with regard to frequency response 

analysis. A typical frequency response curve of vibro-impacting beams displays well-known resonance frequency shift along with a hys-
teric jump and drop phenomena. We did a comprehensive parametric analysis capturing the effects of taper, tip-mass, stop location, and 
gap on the non-smooth frequency response. Analysis is presented in a non-dimensional form useful for other similar cases. Simulation 
results are further validated with corresponding experimental results for a few cases. Illustrative comparison of simulation results for 
varying parameters brings out several interesting aspects of variation in the nonlinear behavior.  

 
Keywords: Beam; Frequency response; Jump and drop phenomena; Tapered cantilever; Vibro-impact  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

Vibro-impact phenomena play an important role in the dy-
namic behavior of structural components having motion con-
straints. Impacting situations occur in a variety of systems 
because of intermittent contact between mated parts as a con-
sequence of clearances and manufacturing tolerances. Some of 
the examples of such practical situations include the interac-
tion between bridges and their foundation, impact between 
gear teeth due to backlash, contact between steam generator 
tubes and their respective supports during flow induced vibra-
tion, reed type valve in refrigeration compressor [1, 2]. The 
analysis of a vibrating beam with motion constraints provides 
a good insight into the rich dynamic behavior of these systems. 
The vibro-impact phenomenon gives rise to complex dynamic 
behavior and leads to modeling and analysis related chal-
lenges. Hence, the vibro-impacting beam has been investi-
gated by numerous researchers by experimental and analytical 
approaches. 

Vibro-impacting uniform beams have been studied exten-
sively to analyze the qualitative behavior of vibro-impacting 
systems. Moon and Shaw [3] analyzed the chaotic response of 
vibro-impacting beam for harmonic excitation force. Shaw 
and Holmes [4] and Shaw [5] presented sub-harmonic and 
chaotic motions and bifurcations leading to chaos. Nordmark 
[6] reported grazing bifurcation in impact oscillators. Many 
researchers have reported the qualitative changes in the behav-

ior with changing parameters of this so-called monostable 
system vibro-impacting beam. Apart from these, work has 
been reported towards modeling approaches of vibro-
impacting beams. Two approaches are widely used for model-
ing of vibro-impacting systems [1]. The first uses the coeffi-
cient of restitution model, which assumes instantaneous con-
tact between beam and stop [7-9]. The second approach con-
siders a piecewise linear system in which contact is modeled 
as a linear spring (or spring damper model) and leads to sepa-
rate equations for beam in contact and out of contact with the 
stop [1, 4, 5, 10]. In the early investigations related to model-
ing [3-5, 8, 9], the vibro-impacting beam was modeled as a 
single degree of freedom system (single degree of freedom 
oscillator) to check the qualitative response, and the results 
were also validated experimentally by Refs. [3, 5]. Wagg and 
Bishop [7] and Wagg [11] captured the response of uniform 
vibro-impacting beam without tip mass using multiple modes. 
These theoretical and experimental analyses were focused on 
the study of chaotic behavior, bifurcation, super harmonic and 
subharmonic resonances, period doubling and chaos. Krishna 
and Padmanabhan [2] studied the impacting uniform cantile-
ver without tip mass under two conditions: Two flexible stops 
at the free end, and two rigid stops at the free end. They pre-
sented jump phenomena and hardening spring type behavior 
in the frequency response. Gandhi and Badkas [12] reported, 
for the first time, the frequency responses analysis of the vi-
bro-impacting uniform cantilever with tip mass and varying 
position of the stop. Abbas et al. [13] reported nonlinear be-
havior and frequency shift in hollow beams filled with metal 
swarf. Chen et al. [14] detected super harmonic and subhar-
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monic resonances and jump phenomena in the frequency re-
sponse of the gear system with rectangular mesh stiffness. 
Viet et al. [15] used frequency response analysis to check the 
performance of semi-active tuned mass dampers. Numbers of 
important cases associated with dynamics of vibro-impacting 
beams are reported in the Refs. [16-21].  

Many other researchers have contributed in the study of vi-
bro-impacting systems. However, some areas are still un-
touched. The previous literature is primarily focused on uni-
form cantilever beams. However, many vibro-impacting com-
ponents have varying cross section and can be modeled and 
investigated as a tapered beam (for example, turbine and com-
pressor blade, reed valve). To the best of our knowledge, the 
dynamics of a vibro-impacting tapered cantilever has not been 
explored so far. It is evident that the trends of qualitative be-
havior of vibro-impacting uniform and tapered beam remain 
more or less the same, but the quantitative changes due to the 
taper affect the resonance regimes and oscillation amplitude. 
We focus on analytical and experimental characterization of 
the nonlinear frequency response of vibro-impacting tapered 
cantilever with tip mass and further on its non-dimensional 
parametric analysis. The analysis is useful in understanding 
the effects of variable cross sections on the vibro-impact re-
sponse of the systems. Furthermore, the resonance regimes 
and oscillation amplitude are the critical parameters in design-
ing the cantilever beam type vibration energy harvesters 
which have been investigated recently [20]. The analysis pro-
vides a base for the future research on exploiting wider band-
width with high amplitude by changing the geometry of vibro-
impacting beam for efficient absorption of ambient vibration. 

Theoretical analysis based on assumed modes method and 
spring damper model for impact stop is employed. According 
to assumed mode method, the displacement of vibrating beam 
is expressed as, 

 

1
( , ) ( ) ( ),i i

i
y s t s q tj

¥

=

=S  (1) 

 
where ( )i sj  are admissible functions of the spatial variable 
s (we use ( )i sj as the mode shapes of a tapered beam with 
tip mass) and ( )iq t are time dependent generalized coordi-
nates. Natural frequencies and mode shapes of tapered beam 
with varying width and constant thickness cannot be deter-
mined analytically. Hence a numerical approach using differ-
ential transform applied previously [22-24] is employed for 
the purpose. Equations of dynamics, obtained using force 
balance, and simplified using Eq. (1) and orthogonality of 
mode shapes, are used for simulation and parametric analysis. 
The results are validated against simulated and experimental 
results of vibro-impacting uniform cantilever presented in 
Gandhi and Badkas [12]. Comprehensive simulation results 
are presented in non-dimensional form towards parametric 
analysis leading to complete characterization.  

This paper is organized as follows: Sec. 2 describes dy-
namic modeling of vibro-impacting tapered beam with tip 

mass. The differential transform method used for obtaining 
natural frequencies and mode shapes is presented. Experimen-
tal and simulation details are presented in Sec. 3. Results ob-
tained from the present investigation are discussed in Sec. 4. 
Finally, Sec. 5 concludes the research work.  

 
2. Modeling  

Figs. 1 and 2 show schematic diagrams of a linearly tapered 
vibro-impacting cantilever beam having tip mass. The beam is 
mounted horizontally and harmonic displacement excitation is 
given at its fixed end. The stop is placed at one side to restrict 
the motion of the vibrating beam. The position of the stop can 
be changed by moving the stop along x  direction, and the 
gap between beam and stop can be adjusted by moving the 
stop along y direction. 

Modeling involves three stages. Subsec. 2.1 presents the 
governing equation of vibro-impacting non-uniform cantilever 
beam with tip mass and excited at the fixed end. Modal analy-
sis is carried out in Subsec. 2.2 by using differential transform 
method to obtain mode shapes to be used in assumed modes 
method. The last subsection finally uses mode shapes in as-
sumed modes method to obtain uncoupled equations of gener-
alized coordinates. 

 
2.1 Governing equations and solution approach 

The cantilever is considered to have the following proper-
ties: Linear elastic material having modulus of elasticity E, 
area moment of inertia I(x), cross section area A(x) and den-
sity r . The linear taper variation in width is characterized by 
taper parameter ( [0,1])m m Î . The width ( )b x of the beam is 
expressed in terms of taper parameter m  as, 

 

0 0( ) ( ) (1 ),xb x b u x b
L

m= = -      (2) 

 
where function ( )u x represents the variation of width along 
the length of the beam. If 0 1s x / l, s [ , ]= Î  is defined as 

 
 
Fig. 1. Schematic of vibro-impact beam. 

 

 
Fig. 2. Top view of beam without end mass. 
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dimensionless length of the beam, then ( ) 1u s sm= -  repre-
sents dimensionless width function. The equation governing 
the transverse vibration of Euler Bernoulli beam under the 
effect of distributed viscous damping C  and external excita-
tion force ( , )f x t  is  

 
2 2 2

2 2 2

( , ) ( , ) ( , )( ) ( )

( , ).

y x t y x t y x tEI x C A x
x x t t
f x t

r
é ù¶ ¶ ¶ ¶

+ +ê ú¶ ¶ ¶ ¶ë û
=

 (3) 

 
In the above equation, ( , )y x t  denotes the transverse dis-

placement of vibrating beam and ( , )f x t  is external excita-
tion. For linearly varying width, area moment of inertia 

( )I x and the area ( )A x in terms of dimensionless length s are, 
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where 0I and 0A are the moment of inertia and area, respec-
tively, at the big end of the tapered beam. Considering base 
excitation, Eq. (3) in non-dimensional coordinates can be writ-
ten as 
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where the base excitation sin( )tc s= W .When base excitation 
is given to the beam with the stop placed at a certain position 
along its length, the dynamics of the beam can be developed 
considering the following cases: 

Case 1. Beam is not in contact with the stop ( 1( )y s l< ).  
Case 2. Beam is in contact with the stop ( 1( )y s l³ ). 
When the beam is in contact with the stop (case 2), the im-

pact force comes in action and the governing equation be-
comes, 
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Impact stop is modeled by considering it to be a ground 

spring damper system as shown in Fig. 3. Hence, the external 
force due to impact can be expressed as, 
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where d  is Dirac delta function and 1s is the location of stop 
from the fixed end of the beam. When the beam is not in con-
tact with stop (case 1), Eq. (5) is used, and when the beam is 
in contact with stop (case 2), Eq. (6) is used to predict the 
response of the vibrating beam. As mentioned, the assumed 
mode method is used for simplifying infinite dimensional 
system Eqs. (5) and (6) to finite dimensions. Eq. (1), consider-
ing finite number N  of modes, can be written as 
 

1
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N
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i
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where N  is the number of modes assumed. We consider 
admissible functions ( )i sj  as natural mode shapes of a ta-
pered beam. Mode shapes are determined by a numerical 
method using differential transforms presented in the follow-
ing section.  

 
2.2 Natural frequencies and mode shapes by differential 

transform 

Considering the homogeneous part of governing Eq. (5) and 
neglecting damping and applying separation of variable,  

 
( , ) ( ) ( ),y s t s Q tj=  (9) 

 
where ( )sj is mode shape function and ( )Q t is temporal co-
ordinate of transverse displacement y , we can get two sepa-
rate equations for spatial and temporal variable. By putting 
this value of y in Eq. (5) and neglecting damping and exter-
nal excitation, we get two equations,  
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By putting the values of A(s) and I(s) from Eq. (4), Eq. (11) 

can be expressed as, 
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Fig. 3. Schematic of impact stop modeling. 
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where b  is dimensionless natural frequency and is defined 
as, 
 

4
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Eq. (12) can be expanded as, 
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The boundary conditions for a tapered cantilever with tip 

mass are, 
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Applying separation of variables, the boundary conditions 

are converted in form of j are, 
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where rM  is mass ratio defined as 
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Solving Eq. (14) for boundary conditions Eq. (16) gives the 

values of nondimensional natural frequencies and mode 
shapes. Eq. (14) involves variable coefficients and can be 
solved by numerical methods. The differential transform 
method is applied here for solution. Differential transform of 
the function ( )f x  is defined as [22], 
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Here, ( )f x  is the original function and ( )F k  is the trans-

formed function. Differential inverse transform of F(k) is de-
fined as follows. 
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By combining Eqs. (18) and (19), we get the following 
equation. 

 

0 0

( )( ) .
!

k k

k
k x

x d f xf x
k dx

¥

= =

æ ö
= ç ÷

è ø
S   (20) 

 
Eq. (20) represents the Maclaurin series of the function f(x). 

Taking differential transform of Eq. (14) and by using the 
transformation formula [22, 23], we get the following equa-
tion which gives recurrence relation. 
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U(k) and ( )kF  are differential transforms of ( )u s  and 
( ),sj  respectively. From transform formulae, the boundary 

conditions Eq. (16) can be transformed as follows: 
 

(0) 0,F =   (1) 0,F =   (22) 

0
( 1) ( ) 0,

n

k
k k k

=

- F =S   (23) 

4

0 0
( 1)( 2) ( ) ( ),

(1 )

n n
r

k k

Mk k k k kb
m= =

- - F = - F
-S S   (24) 

 
where n is the total number of terms in Maclaurin series. By 
assuming the symbolic values for (2)F and (3)F , we can get 
other values (4)F , (5)F ,....... ( )nF  by using recurrence rela-
tionship Eq. (21). We assume 
 

(2) ,pF =  (25) 
(3) .rF =  (26) 

 
Values up to ( )nF , found by using recurrence relation, are 

substituted in transformed boundary conditions stated in Eqs. 
(23) and (24). From two boundary conditions we get two 
equations in terms of p  and r  as follows: 

 
11 12 0,B p B r+ =  (27) 

21 22 0,B p B r+ =  (28) 
 

where 11B , 12B , 21B  and 22B  are polynomials of b corre-
sponding to n terms in Maclaurin series, and for nontrivial 
solution for p and r we have the following frequency equa-
tion in determinant form. 
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By solving Eq. (29), we can get the dimensionless natural 
frequencies ib . The accuracy of natural frequencies depends 
upon the number of terms n used in the series. For lower natu-
ral frequencies, convergence occurs even with lower values of 
n. However, for higher natural frequencies, higher values of n 
have to be used. The mode shapes are derived by using in-
verse differential transform. By putting the values of ib  in 
Eq. (27) or Eq. (28), we can get the ratio /ic p r= . In the 
differential transform domain, *( )kF  can be obtained by 
substituting ib  (obtained from Eq. (29)) and / ir p c=  (ob-
tained from Eq. (27) or Eq. (28)) in ( )kF  (obtained from 
recurrence relation Eq. (21)). Using these values in inverse 
differential transform gives ( )sj in the dimensionless space 
coordinate as, 
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k
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2.3 Dynamics of vibro-impacting beam 

After obtaining mode shapes numerically, as mentioned in 
the previous section, we use Eq. (8) to reduce partial differen-
tial equations of motion, to several ordinary differential equa-
tions as follows. By putting Eq. (8) in Eq. (5) (No-Impact 
case) and putting the expression of I(s) and A(s), 
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In the above equation, ' represents differentiation with re-

spect to s . By putting the value of ( ( ) ( ) '') ''iu s sj from the Eq. 
(12) dividing all the terms by 0Ar  and using the definition 
of b  from Eq. (13), Eq. (31) can be written as, 
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where iw is the ith natural frequency corresponding to ib . 

Mode shapes obtained from Eq. (30) are orthogonal to each 
other. Therefore, if i and j are indices representing the modes 
and iB ’s are some constants, 
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After multiplying Eq. (32) with ij and integrating with re-

spect to s in the limit 0 to 1 and using the orthogonality prop-
erty of mode shapes (Eq. (33)), we get the following independ-
ent equations in generalized coordinate iq for each mode i:  
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We define modal damping factor as,   
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With this definition, finally, equations of dynamics in terms 

of generalized coordinates (one for each mode) are given by, 
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Eq. (36) is used when there is no contact with impact stop. 

By repeating the same procedure on Eq. (6), we can obtain the 
following equations of dynamics when the cantilever is in 
contact with the impact stop. 
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Eq. (37) is used during impact. 

 
3. Simulation and experimental details 

Using the equations developed in the previous section, dy-
namics and further parametric analysis is carried out. This 
section presents important aspects of simulation and experi-
ments. The beam properties (material: Copper beryllium al-
loy) and nominal dimensions used are listed in Table 1. The 
values of spring damper parameters Ks and Cs for impacting 
stop cannot be taken directly. So the simulations were per-
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formed to decide these values and clarified for better match 
with experimental results for the case of taper parameter = 0.5 
and mass ratio = 0.5 (Fig. 8(c)), and these values were used 
for simulation for all the other cases. The values used in all the 
simulations are Ks = 5500 N/m and Cs = 0.00005 Ns/m. The 
damping factor iz  is found by half power bandwidth method 
from the experimentally obtained frequency response curve 
(without stop) for the beam with taper parameters = 0, 0.25, 
0.5 and 0.75 and mass ratio = 0.5. The value of average damp-
ing factor iz = 0.018 is used in all the simulations. Assuming 
very small change in the damping with increasing mass ratio, 
the same damping factor is used for simulations of the beams 
with mass ratios 1 and 5. 

 
3.1 Simulation details 

The equations of dynamics Eqs. (36) and (37) in terms of 
generalized coordinates are solved using ODE45 solver in 
MATLAB®. The event detection functionality of the solver is 
used to locate the event of impact accurately. Convergence 
analysis is carried out, and first five modes (N = 5 in Eq. (8)) 
are found to be sufficient to obtain convergence with the de-
sired accuracy. Simulation consisted of slow forward sweep in 
frequency followed by slow backward sweep with the range 
around the fundamental frequencies of the beam. At each fre-
quency, the steady state amplitude of the end tip was recorded 
to finally generate the frequency response.  

 
3.2 Experimental details 

Figs. 4 and 5 show a schematic diagram and photograph of 
the experimental setup, respectively. The beam is clamped 
horizontally to an aluminum base used as an attachment to a 
shaker (LDS V406). The impacting stop, screwed in the base, 
is a M6×0.5 brass fine-threaded screw fitted with steel ball at 
the tip. Fine threads help in accurately adjusting the stop gap 
and a locking nut is provided to firmly fix the stop after ad-
justment. Input signal waveform to the shaker is provided by 
dSPACE 1104 DAQ system via an amplifier. The excitation 

parameters are adjusted using the dSPACE Controldesk envi-
ronment. The gain of the amplifier is adjusted to give 

30.2 10 ms -= ´ in all the experiments. A fiber optic displace-
ment sensor (Philtek RC 140) is used to accurately measure 
small displacement excitation given by the shaker. Large am-
plitude of the end tip vibration is measured by a scale placed 
near the end tip as shown in Fig. 4. Although scale gives accu-
racy of 0.5 mm in measurement, error in the measurement is < 
2 % because of relatively large tip amplitude. The experiment 
consists of slow forward sweep followed by slow backward 
sweep with the range being around the fundamental frequency 
of the beam. At each frequency, the system is allowed to reach 
steady state before its response is recorded. 

 
4. Results 

4.1 Frequency parameters by DTM 

The natural frequencies and mode shapes were obtained by 
method presented in Sec. 2.2. The natural frequency parame-
ters ( 2b ) determined by Differential transform method 
(DTM) were compared with those obtained by Initial value 
method (IVM) [25] in Table 2. The comparison shows excel-
lent agreement up to two decimal places. The trend of natural 
frequency parameter shows that when the mass ratio is zero, 
the natural frequencies increase with increasing taper, but 

Table 1. Properties of beam. 
 

Beam properties       Value          Unit 

Modulus of elasticity ( E ) 1.11×1011      N/m2 

Density ( r ) 8200          kg/m3 

Length ( L ) 150           mm      

Width at the fixed end ( 0b ) 16             mm 

Thickness ( h ) 0.4            mm 

Beam damping (z ) 0.018 

Stop position ( 1s ) 0.65 (Non-dimensional) 

Stop gap ( l ) 1             mm 

Stop stiffness ( SK ) 5500          N/m 

Stop damping ( SC ) 0.00005        N-s/m 

Excitation amplitude (s ) 0.2           mm 

 
 

 
 
Fig. 4. Line diagram of experimental set-up. 

 

 
 
Fig. 5. Experimental set-up. 
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when mass ratio is 1 or 10, the second and third natural fre-
quencies increase with increasing taper, but the first natural 
frequency decreases with increasing taper. Fig. 6 shows the 
first five mode shapes obtained by differential transform 
method for the tapered cantilever with taper parameter 

0.25m = and mass ratio 0.5MR = . 

 
4.2 Validation for a special case 

We used the results of the proposed DTM in simulation of 
trends in nonlinear dynamic behavior and further parametric 
analysis. Fig. 7 validates simulation results obtained using the 
proposed DTM method in comparison with previously pub-
lished [12] simulation results for a special case of uniform 
cantilever (taper parameter 0m = ).  

Mode shapes were obtained analytically in Ref. [12]. The 
close match between them validates the accuracy of mode 
shapes obtained by differential transform method in predict- 
ing the behavior accurately. Frequency ratio is the ratio of 
external excitation frequency and resonant frequency of the 
beam. Amplitude ratio is the ratio of tip amplitude of vibrating 
beam and base excitation amplitude.  

 
4.3 Parametric analysis 

This section presents results of parametric analysis with ta-
per parameters (0, 0.25, 0.5, 0.75) and mass ratios 0.5, 1 and 5. 

Figs. 8-10 show simulation results for varying taper parame-
ters and mass ratio of 0.5, 1 and 5, respectively. Experimental 
results are also superimposed for MR = 0.5 for validation pur-
poses. The frequency response curves in all three cases show 
that for the same mass ratio, as the taper parameter increases, 
the peak amplitude ratio (highest amplitude ratio in forward 
sweep curve) and resonance frequency shift increases. The 
hysteresis region (area between drop and jump line in the fre-
quency response curve) also increases as the taper is increased. 
The graphs are plotted with the same limits on x and y axes to 
visually capture the trend. Experimental results for MR = 0.5 
match very well with simulation observations. Thus, the taper 
on cantilever enhances the nonlinear effect of jump and hys-
teresis phenomena. 

Moreover, for the same taper parameter, as the mass ratio is 
increased, the peak amplitude ratio decreases, but the reso-
nance frequency shift increases. Increased mass would prevent 
higher amplitudes of vibration, and hence we see the decrease 
in the peak amplitude ratio. The trend observed above can be 
explained by the physics of the system. The intensity of im-
pact plays an important role in the evolution of dynamics. This 
intensity is expressed in terms of impact force exerted by the 
stop during impact. The last term of right hand side in Eq. (37) 
represents the impact force fI  expressed as 

 
1 1

1 1
0

1

1 ( ) ( , )( ( ( , )) )

( ).

i
f S S

i

s dy s tI K y s t C
A L B dt

s s

j l
r

d

= - -

-
 (38) 

 
When the beam comes in contact with the stop, reaction 

force fI is exerted on beam in the opposite direction resulting 
in change of momentum. In Eq. (38), the term 1( ) /i is Bj  
plays a major role in deciding the value of fI . 

As taper parameter increases (for constant mass ratio), 
1( ) /i is Bj increases, which increases the value of the impact 

force. Increase of impact force further results in higher veloc-
ity and displacement of beam, resulting in increase of peak 
amplitude. The frequency ratio at which a jump is observed 
remains almost the same in all the cases; thus, increase in peak 
amplitude happening at higher frequency ratio leads to an 
increased hysteresis region. With the increase in mass ratio  

Table 2. Comparison of natural frequency parameters obtained by 
Differential transform method (DTM) adopted in this analysis and 
Initial value method (IVM) [25], where TP = Taper parameter and MR 
= Mass ratio, i = Mode number. 
 

TP 0.3 0.5 0.7 

MR 
 
i  DTM IVM DTM IVM DTM IVM 

0 
1 
2 
3 

3.91 
22.98 
62.43 

3.91 
22.98 
62.43 

4.315 
23.51 
63.19 

4.315 
23.51 
63.19 

4.931 
24.68 
64.52 

4.931 
24.68 
64.52 

1 
1 
2 
3 

1.533 
16.43 
50.99 

1.533 
16.43 
50.99 

1.51 
16.58 
51.10 

1.511 
16.58 
51.10 

1.479 
16.76 
51.24 

1.479 
16.76 
51.24 

10 
1 
2 
3 

0.52 
15.84 
50.36 

0.52 
15.84 
50.36 

0.505 
16.10 
50.61 

0.505 
16.10 
50.61 

0.486 
16.39 
50.90 

0.486 
16.39 
50.90 

 

 
 
Fig. 6. Mode shapes of tapered cantilever beam with 0.25m =  and 
MR = 0.5. 

 

 
 
Fig. 7. Comparison of simulation result with the result of Gandhi and 
Badkas [12] for stop position s1 = 0.5, gap l = 4 mm, mass ratio = 1.5 
and taper parameter m = 0. Here frequency ratio = 1/ nwW , amplitude 
ratio = /tipy s . 
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Fig. 8. Simulation and experimental results of frequency response curve for beams with different taper parameters: (a) m =0; (b) m =0.25; (c) m =
0.5; (d) m =0.75 and mass ratio = 0.5. Here frequency ratio = 1/ nwW , amplitude ratio = /tipy s . 

 
 

 
 
Fig. 9. Simulation results of frequency response curve for beams with different taper parameters: (a) m = 0; (b) m = 0.25; (c) m = 0.5; (d) m = 0.75 
and mass ratio = 1. Here Frequency ratio = 1/ nwW , amplitude ratio = /tipy s . 
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(for the same taper parameter), the term 1( ) /i is Bj decreases. 
Hence, the impact force decreases, which results in less de-
flection and corresponding lesser amplitude ratio. 

Thus, the combination of higher taper parameter with lower 
mass ratio will give the maximum peak amplitude.  Changes 
in values of SK and SC , do not show a significant change in 
the trend of the results.  

Fig. 11 shows the variation in amplitude ratio as the non-
dimensional gap ( /l s ) increases (stop position is same). The 
results are shown for the beams with taper parameters 0, 0.25, 
0.5 and 0.75 and mass ratio 0.5. As the nondimensional gap 
increases, the amplitude ratio increases. This behavior can be 
explained as follows. 

With an increase in the gap, the beam can travel more in the 
downward direction. Hence, the strain energy stored during 
downward movement increases and the beam gets more ki-
netic energy during upward movement, thereby increasing the 

amplitude ratio. 
Fig. 12 shows the effect of stop position on the peak ampli-

tude ratio for beams with varying taper parameter and nominal 
mass ratio 0.5. For the same gap, as the stop moves towards 
the free end, the peak amplitude ratio decreases. The reason 
for this behavior is the restricted movement of the vibrating 
beam in the downward direction as the stop moves towards 
the free end.  

To understand the effect of stop location, consider the vi-
bro-impacting beam MN  as shown in Fig. 13 with two dif-
ferent stop locations. 

Case 1. Stop location close to fixed end at gS . 
Case 2. Stop location close to free end at hS . 

'' ''O N  and ' 'O N represent the deflected beam segments 
after the stop location for cases 1 and 2, respectively. 

The deflection of the impacting beam for both the cases de-
pends upon the length of ' 'O N  and '' ''O N  and  the curva-

 
 

Fig. 10. Simulation results of frequency response curve for beams with different taper parameters: (a) m = 0; (b) m = 0.25; (c) m = 0.5; (d) m = 0.75 
and mass ratio = 5. Here frequency ratio = 1/ nwW , amplitude ratio = /tipy s . 

 
 

 
 
Fig. 11. Change in peak amplitude ratio with respect to gap at various 
Taper parameters (TP). 

 

 
 
Fig. 12. Change in peak amplitude ratio with respect to stop position s1

at various Taper parameters (TP). 
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ture of segments ' 'O N  and '' ''O N after impact. However, in 
the present analysis, the Euler-Bernoulli beam is considered 
and the deflection is very small compared to the length of the 
beam. Therefore, the change in curvature of deflected beam 
segments ' 'O N  and '' ''O N is negligible. Hence, the length 
of the beam segments after stop location ( ' 'O N and '' ''O N ) 
is the governing factor which affects the deflection of vibro-
impacting beam. Since '' ''O N  is longer than ' 'O N , the 
deflection of the beam in the positive y direction (Fig. 1) is 
more in case 1 than in case 2, which is shown in the Fig. 13. 
Hence, as the stop moves towards the free end the deflection 
of the tip of vibro-impacting beam decreases.  

 
5. Conclusion 

Detailed theoretical and experimental analysis has been car-
ried out to understand the dynamic behavior of the “vibro-
impacting tapered beam having tip mass”. The analysis is 
focused on the general trends of frequency response with 
varying parameters, which provides insight into dynamic 
characteristics of such systems. The dynamic response of the 
system is modeled using the assumed mode method and the 
stop is modeled as a spring damper system. The differential 
transform method is used to solve for the natural frequencies, 
and mode shapes of the tapered beam with tip mass and the 
results are validated with the available literature. Results are 
presented with non-dimensional parameters to capture the 
essence of the behavior. The frequency response of the beams 
with different taper parameters and mass ratios is obtained by 
simulation and validated with experiments. It has been ob-
served that the peak amplitude ratio at the resonance fre-
quency, resonance frequency shift, and the hysteresis region 
(area between the jump and drop line in the frequency re-
sponse curve) increase with increasing taper parameter and 
decreasing mass ratio. 

Further, increasing gap between the beam and stop de-
creases the intensity of impact and results in decreased reso-
nance frequency shift but increased peak amplitude ratio. 
Moreover, as the stop location moves away from the fixed end 
by keeping the gap the same, the peak amplitude ratio de-
creases and the resonance frequency shift increases. The re-
sults would be useful for application areas including vibration 
energy harvesting and turbo machinery. The analysis method 
can be extended to vibro-impacting tapered beam with multi-
ple stops and multidimensional cases. 

Nomenclature------------------------------------------------------------------------ 

C  : Damping coefficient per unit length 2( )Ns m--  
M : End mass (kg) 
q  : Temporal coordinate for transverse displacement m  
,x s  : Length coordinate ( m ), dimensionless length coor-

dinate 
b  : Dimensionless frequency parameter 
z  : Damping Factor 
m  : Taper parameter 
r  : Density of beam material ( 3kg m-- ) 
s  : External excitation ( m ) 
j  : Mode shape function 
w  : Natural frequency ( 1secrad -- ) 
F  : Differential transform of j  
W  : Frequency of external excitation ( 1secrad -- ) 

0A  : Area at fixed end of the beam ( 2m ) 
0b  : Width of beam at fixed end ( m ) 
0I  : Area moment of inertia at the fixed end of the beam 

( 4m ) 
1s  : Dimensionless distance of point of impact from the 

fixed end 
tipy  : Displacement at the tip of the beam (m) 
( )A s  : Variable cross section area of the beam ( 2m ) 
( )I s  : Variable area moment of inertia of the beam ( 4m ) 
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