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Abstract 
 
Complex systems like combat vehicles contain numerous subsystems and components. Therefore, simultaneous consideration of hier-

archy of a system, subsystems, and components is necessary for optimization. Multidisciplinary design optimization techniques have 
been researched to design the complex system. However most of these techniques premise integration process of total system which 
requires great time and cost. To reduce time and cost for the integration process, we introduce a target cascading technique that optimizes 
complex hierarchy system with several subproblems of each subsystem and component. Another challenge is to improve the firing accu-
racy of combat vehicle under various uncertainties. Robust design is therefore necessary to improve the firing accuracy of combat vehi-
cles. To utilize these two concepts in optimization process, statistical information of firing angle is used as linking variables for problem 
formulation of robust target cascading. Furthermore, analysis of variance, surrogate modeling and statistical approach evaluating firing 
accuracy are employed to enhance efficiency of optimization. Finally, optimum design of a combat vehicle is achieved by using robust 
target cascading while improving firing accuracy.   
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1. Introduction 

Combat vehicles are complex systems that consist of nu-
merous related subsystems and components that share design 
variables and exchange responses. Therefore, to achieve opti-
mal design, simultaneous consideration of the complex total 
system is necessary. Multidisciplinary design optimization 
(MDO) techniques have been developed to accomplish the 
simultaneous consideration and most of these techniques are 
needed on integration process of total system. Through the 
integration process, initial design with feasibility can be ob-
tained. However, because design teams and experts work in-
dependently and have separate skills, the process for system 
integration requires much effort, time and cost. One type of 
MDO techniques is the Target cascading (TC) method, which 
has been developed to optimize complex system without sys-
tem integration process [1]. TC optimizes total system with 
several subproblems of each subsystem and components. 
Therefore, the time and cost for the system integration process 
can be reduced. TC has been employed in the design of vari-
ous products that have systems with complexity and hierarchi-
cal structure. Especially, it was widely employed in design of 
various types of vehicle like commercial bus [2], sport-utility 

vehicle [3], and heavy truck [4]. In other fields, design of air-
craft [5] and building [6] were performed using TC. Accord-
ing to research, TC provides optimum design that satisfies 
feasibility and adequacy without system integration process. 
In this research, TC is employed for the robust design of com-
bat vehicles by considering the complexity and hierarchical 
structure of combat vehicles.  

Combat vehicles have various performance such as fire-
power, mobility, and survivability. Among these perform-
ances, firing accuracy is the most important performance that 
determines the striking power of a combat vehicle. However, 
there are various uncertainties that affect the firing accuracy of 
combat vehicle like environmental and operational uncertain-
ties. According to previous researches, deflection of barrel, 
ballistic error, and weather error exist and those uncertainties 
make firing accuracy poor [7]. Due to these uncertainties, if 
firing is carried out under wrong aiming angle, it is certain that 
high firing accuracy cannot be guaranteed [8]. Therefore, to 
consider uncertainties and improve firing accuracy, research 
quantifying uncertainties and assessing firing accuracy was 
performed [9]. In this research, uncertainty of firing angle is 
considered and design optimization improving firing accuracy 
is performed through achieving robust landing point of shot. 

In this research, the TC is employed to optimize a complex 
combat vehicle while saving cost and time for system integra-
tion process. Additionally, to achieve high firing accuracy, 
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robust optimization technique is employed. Unlike previous 
TC researches, the statistical information of firing angle is 
evaluated and used as linking variables to employ TC and 
robust optimization technique together. This paper is organ-
ized as follows: In Sec. 2, modeling of the combat vehicle is 
described. The entities of each level of a system as well as 
brief information of theory and implementation are described. 
The design variables and responses of each entity are defined 
in this section. In Sec. 3, concepts of TC and Robust target 
cascading (RTC) are introduced. In addition, Analysis of vari-
ance (ANOVA) and surrogate modeling technique is em-
ployed to increase efficiency of optimization process. RTC of 
combat vehicle problem is formulated and optimization of 
combat vehicle is performed. In the end, conclusion is pre-
sented in Sec. 4.   

 
2. Modeling of combat vehicle 

2.1 Computational modeling of combat vehicle 

In this research, combat vehicle is modeled by benchmark-
ing 6-wheel Autonomous platform demonstrator (APD) which 
developed at National Robotics Engineering Center (NREC). 
Brief specifications of APD is listed in Table 1. In this re-
search, five main performances of APD are evaluated: firing 
accuracy, longitudinal firing stability, lateral firing stability, 
acceleration performance and comfortability. Combat vehicle 
is modeled into 4 parts: ballistic model, firing stability model, 
mobility model and suspension spring model. Specific de-
scriptions of modeling, input and output are written in the 
following section. 

 
2.1.1 Ballistic model 

Firing accuracy is evaluated by using a ballistic model. Un-
der assumption of existence of uncertainty of pitch and yaw 
angles of firing, which makes landing point of shot different, 
firing accuracy is evaluated based on variances of pitch and 
yaw angles. To evaluate firing accuracy, exterior ballistic 
model and firing accuracy estimation model based on bivari-
ate normal distribution is employed.  

Landing point of shot is calculated by exterior ballistic 
model. Point-mass trajectory model is employed as exterior 
ballistic model [10, 11]. Point-mass trajectory model simpli-
fies simulation by assuming projectile as a point-mass. Gravi-
tational force and drag force affected by static atmosphere are 
considered in simulation. The equation of motion for point-

mass is expressed as following equation:  
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where V denotes velocity vector of trajectory and g is vector 
of gravitational acceleration. Initial condition of differential 
equation is given through pitch and yaw angles of firing. The 
equation can be separated into equation of each coordinate. 
The trajectory of point-mass can be calculated by solving fol-
lowing equations: 
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where x and z denotes coordinate of longitudinal and lateral 
firing direction respectively. y is coordinate of vertical direc-
tion. C*

D and Vp are calculated as following equations: 
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where ρ, A, CD and mp denote density of air, cross section area 
of projectile, drag coefficient of projectile, and mass of projec-
tile, respectively. 

The differential equations are solved using ode45 solver in 
MATLAB software and modularized in function form. The 
function evaluates coordinate of landing point of shot from 
given pitch and yaw angles of firing. 

Based on landing points of shots, firing accuracy can be 
calculated. In evaluation of firing accuracy, Monte Carlo sim-
ulation (MCS) is commonly used [12]. However, MCS needs 
a lot of samples and this increases cost and time spent in 
evaluation. MCS based method evaluates firing accuracy ac-
cording to following equation: 

 

N
Nα s

N =
 (4) 

 
where αN denotes firing accuracy evaluated through MCS, N is 
total number of shots and Ns is number of shots which strike 
target. Due to characteristics of MCS, large cost and time 
needed in evaluation, MCS based method is hard to employ in 
optimization that performs repetitive evaluation.  

In this research, to save cost and time, statistical approach 
using bivariate normal distribution is employed. Probability 
density function (PDF) of bivariate normal distribution is ex-
pressed as follows: 
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Table 1. Specifications of APD. 
 

Parameters Specification Unit 

Upper body mass 12965 kg 

Lower body mass 4200 kg 

Wheelbase 4.2 m 

Track 2.54 m 

Height 1.9 m 
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Note that μ denotes expected value of each marginal distri-

bution and Σ denotes matrix of covariance and these are pa-
rameters of bivariate normal distribution.  

Probability of landing in domain is expressed as bivariate 
normal distribution and its parameters are determined by max-
imum likelihood estimation. Based on estimated PDF of biva-
riate normal distribution, firing accuracy can be calculated 
using follows: 

 

òò=
target

 dxdzfα

 (6) 
 

where α represents firing accuracy evaluated by statistical 
approach and target is target domain represented by size and 
position of target.  

By integrating the PDF of probability of landing over speci-
fied target domain, firing accuracy can be evaluated. Fig. 1 
shows the estimated bivariate normal distribution and the in-
tegrating area given by the target domain. 

Based on statistical approach using bivariate normal distri-
bution, 20 times of firing was carried out to evaluate firing 
accuracy. Because of variances of pitch and yaw angles, 20 
landing points of shots are scattered on ground. Position of 
center of target is assumed same as landing point of shot fired 
with mean pitch angle and mean yaw angle.  

To improve firing accuracy, robustness of points of impact 
should be guaranteed. Therefore, in this research, robust opti-
mization concept is employed because high firing accuracy 
can be obtained by minimizing variance of firing angle. 

In conclusion, firing accuracy of combat vehicle is evalu-
ated in ballistic model. Based on variance of pitch and yaw 
angles, landing points of shots are calculated through point-
mass trajectory model function. Then firing accuracy of ac-
cording landing points is evaluated through statistical ap-
proach based on bivariate normal distribution.  

2.1.2 Firing stability model 
Firing stability model evaluates longitudinal firing stability, 

lateral firing stability, and variance of firing angle based on 
pitch, yaw and roll angles generated according to firing. To 
evaluate these responses, interior ballistic model and dynamic 
model are modeled. 

Interior ballistic model is modeled to calculate recoil force 
generated from firing. Le Duc empirical model is employed as 
interior ballistic model [13]. Through Le Duc empirical model, 
pressure occurs in caliber tube is calculated with respect to 
travel distance of projectile. Le Duc empirical model ex-
presses velocity of projectile as following equation: 
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where v and dx denote velocity and travel distance of projectile. 
a and b are constant coefficients. By applying Newton’s laws 
of motion and law of conservation of energy, pressure in cali-
ber is calculated as following equation: 
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where mc and L denote mass of propellant and length of cali-
ber respectively. Based on the pressure, recoil force can be 
calculated by multiplying cross section area of projectile, A. 

In summary, recoil force is evaluated based on gun parame-
ters which consist of mass of projectile and propellant and 
caliber. The internal ballistic model based on the Le Duc em-
pirical model is implemented as a function form using 
MATLAB software. 

To evaluate firing stability based on recoil force, a dynamic 
model is composed. According to specification of bench-
marked APD, 6-wheel full vehicle model is composed by 
employing mass, spring, damper and tire components in 
commercial software MapleSim. Additionally, the turret and 
gun are attached on top of the combat vehicle to perform fir-
ing. Turret and gun consist of dampers and springs and these 
are designed to absorb recoil force from firing. Based on re-
coil force evaluated using Le Duc empirical model, dynamic 
model analyzes change of pitch, roll and yaw angles after 
firing. Dimensions of chassis of combat vehicle and parame-
ters of turret and gun are considered as design variables in this 
dynamic model.  

As a result, changes of pitch, roll and yaw angles are calcu-
lated. Fig. 2 shows changes of pitch and yaw angle after longi-
tudinal firing. As described in Fig. 2, maximum absolute value 
from pitch angle of firing is used to evaluate longitudinal fir-
ing stability. Likewise, maximum roll angle after lateral firing 
is used to evaluate lateral firing stability. To evaluate variance 
of firing angle, pitch and yaw angles, candidate period for next 
firing is assumed as shown in Fig. 2. Therefore, variance of 
firing angle is evaluated by calculating variance of pitch and 

 
               (a)                         (b)  
 
Fig. 1. (a) 3-D plot; (b) 2-D contour plot describing PDF of landing 
point and target area. 

 

. 
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yaw angles of candidate period of next firing.  
Consequently, specifications of chassis, gun and turret are 

considered design variables in firing stability model. Based on 
these design variables, Le Duc interior ballistic function eval-
uates reaction force. Then dynamic model, composed using 
MapleSim, evaluates behavior of combat vehicle, pitch, roll 
and yaw angles. Longitudinal firing stability, lateral firing 
stability and variance of firing angle are evaluated. 

 
2.1.3 Mobility model 

In mobility model, acceleration performance and comfort-
ability of combat vehicle are evaluated. To evaluate these 
performances, chassis model, powertrain model, suspension 
model, tire model and road profile are modeled using Maple-
Sim.  

Same chassis model used in firing stability model was also 
used. Because combat vehicle used in this research is hybrid 
combat vehicle, powertrain consists of internal combustion 
engine, battery, electric in-wheel-motor, controller and etc. 
These components are also modeled using MapleSim library. 
For suspension model, swing arm type suspension which used 
in APD is employed. Tire is modeled using Fiala tire model 
introduced by Fiala and extended by the developers of MSC 
Adams.  

Acceleration performance is simulated by running on a flat 
road profile. It is evaluated based on required time for acquir-
ing specific speed. Comfortability is evaluated by passing a 
specific bump on the flat road profile. Maximum vertical ac-
celeration after passing bump is measured to evaluate com-
fortability.  

In summary, specifications of chassis, which are also con-
sidered in firing stability model, and specifications of power-
train, suspension and tire are considered as design variables in 
mobility model. Based on these design variables, the velocity 
and vertical acceleration are evaluated through a dynamic 

model function, and these values represent the acceleration 
performance and comfortability of combat vehicle. 

 
2.1.4 Suspension spring model 

At the component level, the suspension spring design 
needed for suspension of mobility model is considered. Be-
cause spring design is related to suspension model, this affects 
design of mobility model. Simple spring design method based 
on mathematical equation is employed. The stiffness coeffi-
cient of spring is evaluated through the follows: 

 
4

38 a

d Gk
D N

=  (9) 

 
where d, D and Na represent wire diameter, coil diameter and 
effective number of turns respectively and these are consid-
ered as design variables. The shear modulus of spring material 
is G. Evaluated stiffness coefficient of spring is used in the 
mobility model. Additionally, spring mass and spring index 
are evaluated and used as performance of suspension spring. 

 
2.2 Hierarchical structure of combat vehicle 

According to modeling of combat vehicle described in Sec. 
2.1, input and output of each model are summarized in Table 
2 where σ2

fire represents the vector of σ2
pitch and σ2

yaw which are 
variance of pitch angle and variance of yaw angle, respec-
tively. Firing stability includes longitudinal firing stability and 
lateral firing stability. In addition, design variables of each 
parameter groups are described in Table 3. As shown in Table 
3, ballistic model and firing stability model share variance of 
pitch and yaw angle. Likewise, firing stability model and mo-
bility model share chassis parameter and spring model shares 
stiffness coefficient with mobility model. Considering input 
and output relationship of each shared variables between these 
parts, hierarchical structure of combat vehicle is composed as 
shown in Fig. 3.  

Finally, as shown in Fig. 3, hierarchical modeling of combat 
vehicle is composed of three levels. System level consists of  

 
 
Fig. 2. Response evaluation of firing stability model. 

 

Table 2. Input and output of each models. 
 

Level Model Output Input # of d.v. 

System Ballistic Firing  
accuracy σ2

fire 2 

Chassis 6 

Gun 3 Firing stability σ2
fire,  

firing stability 
Turret 6 

Chassis 6 

Powertrain 4 

Suspension 5 

Subsystem 

Mobility 
Comfortability 

acceleration 
perf. 

Tire 3 

Component Suspension 
spring 

Stiffness coef. 
mass, index Spring 3 
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ballistic model and subsystem level consists of firing stability 
model and mobility model. The very bottom level, component 
level consists of suspension spring model. Linking variables 
between models are described in Fig. 3. Variance of pitch and 
yaw angle, chassis variable and suspension spring stiffness 
coefficient are linking variables between models. Based on the 
hierarchical structure of combat vehicle, RTC of combat vehi-
cle is performed.  

 
3. Robust target cascading of combat vehicle 

3.1 Target cascading formulation using quadratic penalty 
function 

Most MDO techniques need total system integration proc-
ess before performing optimization. However, in reality, be-
cause design of each subsystems and components are carried 
out independently, total system integration process requires 

Table 3. Description of design variables of each parameter groups. 
 

Parameter group Symbol Description Current value Unit 

Mbody Body mass 7000 kg 

LF Longitudinal distance between C.G. and front suspension 1.2 m 

LM Longitudinal distance between C.G. and middle suspension 0.6 m 

LR Longitudinal distance between C.G. and rear suspension 1.1 m 

H Vertical distance between C.G. and suspension 0.186 m 

Chassis 

W Lateral distance between C.G. and suspension 1.1 m 

mp Mass of projectile 19.5 g 

mc Mass of propellant 1.28 g Gun 

Dgun Diameter of gun 0.105 m 

Kturret Spring stiffness of turret 8.50E+06 N/m 

Cturret Damping coefficient of linear motion 50000 Ns/m 

Kgun Spring stiffness of trunnion in vertical direction 4.00E+06 N/m 

Cgun Damping coefficients of liear motion 44,300 Ns/m 

Kturret,h Spring stiffness in the horizontal direction of turret 5.00E+07 N/m 

Turret 

Kgun,h Spring stiffness of trunnion in horizontal direction 5.00E+07 N/m 

Tqmax Maximum torque 950 Nm 

GR Motor gear ratio 10 - 

Cbat Rated battery capacity 62.3 Ah 
Powertrain 

RPMgen Engine refernce RPM for generation 2000 rpm 

Kf Stiffness coefficient of front suspension 300000 N/m 

Km Stiffness coefficient of middle suspension 300000 N/m 

Kr Stiffness coefficient of rear suspension 300000 N/m 

Csus Damping coefficient of suspension 30000 Ns/m 

Suspension 

Msus,body Mass of suspension (actuator) 170 kg 

Rtire Radius of tire 0.5 m 

Ktire Stiffness coefficient of tire 800000 N/m Tire 

Ctire Damping coefficient of tire 1600 Ns/m 

d Wire diameter 0.03 m 

D Mean diameter 0.16 m Spring 

Na Number of turns 6.592 - 

 

 
 
Fig. 3. Hierarchical structure of combat vehicle. 
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great cost and time. TC is developed to save cost and time 
consumed in this process. TC optimizes total system with 
optimization of small subproblems.  

Diagram of TC is shown in Fig. 4. For each entities of sys-
tem level, subsystem level and component level, subproblems 
exist. Linking variables or targets exist between subproblems 
to consider coupling relation between subproblems. Thus 
same linking variable acts as variable in the one subproblem, 
while acting as response in the other subproblem. To eliminate 
differences from duality, penalty function is added in objec-
tive function of each subproblems. In this research, TC using 
quadratic penalty function is used and its general subproblem 
is given as the follows [14]: 
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where fij, gij and hij are the original objective function and con-
straints of subproblem or component. Objective function is 
composed of original objective function and quadratic penalty 
function, π(cij). Inconsistency between target linking variable, 
tij, and response linking variable, rij, is represented as cij. In 
this formulation, these variables represent nominal values and 
stochastic properties of linking variables cannot be propagated 
between levels. Therefore, to evaluate stochastic property of 
system level performance, like robustness, modification of 
formulation is necessary. Penalty weight w for the inconsis-
tency is multiplied to improve convergence and it is updated 
with every iteration. Penalty weight update scheme is calcu-
lated as follows: 

  
( 1) ( )w wk kb+ =  (11) 

where β represents update parameter. The update parameter 
should be larger than 1 and generally use 2 < β < 3. Conver-
gence of TC is determined by difference of inconsistencies 
between previous iteration and current iteration. Mathematical 
expression of convergence criterion is as follows: 
 

( ) ( 1)c ck k t+

¥
- £  (12) 

 
where κ represents iteration number. Tolerance of conver-
gence is τ and it is determined by designer.  

 
3.2 Analysis of variance and surrogate modeling 

Before performing RTC of combat vehicle, ANOVA and 
surrogate modeling were performed to improve efficiency of 
optimization process. 

 
3.2.1 Analysis of variance 

Current combat vehicle model has a number of design vari-
ables. In particular, the firing stability model has 15 design 
variables, and mobility model has 18 design variables. Em-
ploying large number of design variables in optimization pro-
cess makes convergence of optimum design worse and in-
creases cost and time for optimization. In this research, 
ANOVA is employed with respect to firing stability model 
and mobility model to select significant design variables 
among the initial design variables [15].  

In firing stability model, ANOVA was performed with re-
spect to 4 responses: variances of pitch and yaw angles, longi-
tudinal firing stability and lateral firing stability. In mobility 
model, 2 responses are considered: Comfortability and accel-
eration performance. Design of experiment for ANOVA is 
performed using 2-level orthogonal array. The result of 
ANOVA is listed in Tables 4 and 5. Values in tables represent 
the p-value of each design variables for each response. In this 
research, design variables with p-value lower than 0.01 are 
screened as significant design variables. For the chassis design 
variables, which are used in both firing stability model and 
mobility model, the intersection of the ANOVA results of the 
two models were selected to minimize number of linking vari-
ables. As a result, design variables of each models are 
screened as table through ANOVA. Significant variables 
which used in optimization are described in bold face in Ta-
bles 4 and 5. In firing stability model, 3 significant design 
variables are selected among 15 initial design variables. Like-
wise, 18 design variables are screened into 5 design variables 
in mobility model. 

 
3.2.2 Surrogate modeling 

Exterior ballistic model in ballistic model and dynamic 
model in firing stability model and mobility model consist of 
differential equations. Therefore, these models take dozens of 
seconds for single analysis and employing these high fidelity 
models in optimization process increases cost for optimization. 

 
 
Fig. 4. Diagram of subproblem in target cascading. 
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In this research, surrogate modeling is employed to enhance 
efficiency of optimization process. Surrogate model is a math-
ematical model which predicts response model based on sam-
ple points. Efficiency of optimization can be enhanced by 
replacing high fidelity model by surrogate model. 

To increase prediction accuracy of surrogate model, Opti-
mal Latin hypercube design (OLHD) is performed to deter-

mine initial sample points and Maximin distance design 
(MDD) is performed sequentially [16, 17]. The kriging surro-
gate model, which is suitable for computational experiment, is 
employed as surrogate model [18, 19]. As a result, kriging 
surrogate model of 7 responses are constructed. The number 
of sample points and normalized RMSE are listed in Table 6. 

 
3.3 Robust target cascading formulation of combat vehicle 

Based on hierarchical structure of combat vehicle and 
ANOVA result, optimization formulation for RTC is formu-
lated. Unlike other TC formulations, statistical information, 
the variance of firing angle, is employed as linking variable to 
evaluate robustness of performance in system level. By em-
ploying variance, statistical properties can be propagated be-
tween system and subsystem level. The objective of optimiza-
tion is maximizing firing accuracy. In constraint, all other 
performances except firing accuracy are set to have better 
performance than current design.  

Subproblem of ballistic model is formulated as follows: 
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where objective function consists of firing accuracy and in-
consistencies of linking variables, i.e., variance of firing angle.  

Subproblem of firing stability model is formulated as fol-
lows: 
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where longitudinal firing stability and lateral firing stability 
are configured in constraints. Local design variables of firing 
stability model are represented as mp and mc.  

Subproblem of mobility model is as follows: 

Table 4. ANOVA result of firing stability model. 
 

p-value 
Group Design 

variable σ2
pitch σ2

yaw Longi. Lat. 

Mbody 0.000 0.181 0.000 0.285 
LF 0.000 0.171 0.000 0.060 

LM 0.000 0.181 0.000 0.125 

LR 0.000 0.171 0.000 0.084 

H 0.032 0.181 0.669 0.440 

Chassis 

W 0.741 0.171 0.963 0.001 

mp 0.000 0.946 0.860 0.377 
mc 0.000 0.944 0.829 0.281 Gun 

Dgun 0.901 0.946 0.992 0.979 

Kturret 0.849 0.944 0.984 0.980 

Cturret 0.835 0.946 0.986 0.969 

Kgun 0.814 0.944 0.985 0.966 

Cgun 0.758 0.946 0.989 0.972 

Kturret,h 0.817 0.944 0.992 0.969 

Turret 

Kgun,h 0.802 0.171 0.890 0.226 

 
 

Table 5. ANOVA result of mobility model. 
 

p-value 
Group Design  

variable Comfortability Acc. Perf. 

Mbody 0.000 0.000 
LF 0.132 0.448 
LM 0.473 0.707 
LR 0.432 0.878 
H 0.494 0.483 

Chassis 

W 0.338 0.810 
Tqmax 0.105 0.000 
GR 0.447 0.000 
Cbat 0.383 0.950 Powertrain 

RPMgen 0.966 0.990 
Kf 0.003 0.587 
Km 0.142 0.480 
Kr 0.283 0.874 

Csus 0.257 0.876 
Suspension 

Msus,body 0.020 0.030 
Rtire 0.086 0.000 
Ktire 0.260 0.569 Tire 

Ctire 0.897 0.966 
 

 

Table 6. Number of samples and error of kriging model. 
 

# of samples 
 # of 

d.v. OLHD MDD Total 
Response RMSE 

Ballistic 2 6 12 18 Firing 
accuracy 0.077 

σ2
pitch 9.8e-5 

σ2
yaw 0.033 

Longi. 5.1e-4 
Firing 

stability 3 10 20 30 

Lat. 1.7e-4 

Comfort. 3.0e-3 
Mobility 5 21 42 63 

Acc. perf. 0.083 
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Note that acceleration performance and comfortability are 

listed in constraints.  
Lastly formulation for suspension spring model is config-

ured as follows: 
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Mass of spring and spring index are considered as con-

straints. Fig. 5 shows 4 optimization formulations of each 
models and linking variables between models. To perform 
RTC evaluation of robustness based on statistical information 
should be shared between models [20, 21]. In this research, 
statistical moment, variance of firing angle is used as linking 
variable. Additionally, optimization formulation for All-at-
once (AAO), one of the MDO technique, is performed as fol-
lowing equation to compare optimization result with RTC: 
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Objective function and constraints of above AAO formula-
tion are identical to RTC formulation.  

 
3.4 Results  

RTC problem of combat vehicle is solved based on formu-
lation in Sec. 3.3. Penalty weight update parameter is config-
ured as β= 2.5 and convergence tolerance is configured as τ 
= 0.001.  

Table 7 shows change of linking variables after RTC. In 
current design, linking variables, σ2

pitch and σ2
yaw, have incon-

sistencies. After performing optimization, however, these 
linking variables are converged to identical values. This result 
shows that RTC gives optimum design with feasibility. Table 
8 and Fig. 6 show performances and design variables of RTC 
optimum and AAO optimum. Both optimum design con-
verged to similar design. Objective function, firing accuracy, 
is converged to identical value and most of constraints and 
design variables converged to identical value also. In optimum 
design, firing accuracy is increased by 8.5 % while satisfying 
all constraints. However, in computational time, RTC con-
sumed 3.69 s while AAO consumed 17.2 s.  

 
4. Conclusion 

In this research, optimization of combat vehicle is per-
formed. TC is employed for hierarchical consideration of total 
system while saving time and cost for system integration 
process. The TC considers the complexity of combat vehicle 
and independence of design teams in reality. To improve fir-

 
 
Fig. 5. Formulation for robust target cascading. 

 

Table 7. Convergence of linking variables. 
 

Linking variables Current RTC 

σ2,U
pitch 5.00e-4 1.84e-4 

Ballistic 
σ2,U

yaw 5.00e-8 5.95e-8 

σ2,L
pitch 5.50e-4 1.84e-4 

σ2,L
yaw 5.50e-8 5.95e-8 

Firing  
stability 

MU
body 7000 7700 

ML
body 7000 7700 

Mobility 
KU

f 300000 300120 

Suspension 
spring KL

f 300000 300120 

 
 

 
 
Fig. 6. Optimum points of AAO and RTC. 
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ing accuracy of combat vehicle, uncertainty of firing angle is 
considered and robust optimization concept is employed. 
Based on these two concepts, RTC for improving firing accu-
racy is carried out.  

Modeling of combat vehicle was performed by benchmark-
ing APD. 4 parts of combat vehicle are modeled using com-
mercial software MATLAB and MapleSim. Based on input 
and output of 4 models, relationships between models are 
clarified and linking variables are defined. Each of 4 models 
are allocated to system, subsystem and component level to 
perform RTC. To evaluate robustness of objective function, 
statistical moment is used as linking variable in RTC. 

Before performing RTC, ANOVA and surrogate modeling 
are employed to increase efficiency of optimization process. 
Through ANOVA, the number of design variables of firing 
stability model decreased to 3 from 15. In mobility model, 18 
design variables are screened into 5. Based on ANOVA result, 
surrogate modeling of ballistic model, firing stability model 
and mobility model are performed. Sequential design of ex-
periment using OLHD and MDD is employed to increase the 
accuracy of surrogate model. From these sample points, 
kriging surrogate models of 7 responses are constructed.  

Based on hierarchical modeling of combat vehicle, 
ANOVA and surrogate modeling, RTC of combat vehicle is 
performed. Statistical information of firing angle is employed 
as linking variable to perform TC and robust optimization 
together. Statistical properties between system and subsystem 
level are propagated through linking variables and robustness 
of firing accuracy is evaluated in system level. Optimization 
formulations of subproblems are defined using quadratic pen-
alty function. In addition, formulation of AAO is performed to 
verify the result of RTC.  

The results show that optimum design of RTC has feasibil-
ity with respect to linking variables and is converged similarly 
to AAO. Computational time for RTC is required much 
shorter than that for AAO. It is noted that RTC is efficient for 
not only system integration process but also optimization 
process. Both result gives design with 8.5 % increased firing 
accuracy and feasibility of constraints. Fig. 7 shows change of 
PDF of landing point of shot. Scatter of landing points of op-
timum design is more concentrated on the center and corre-
sponding PDF is more narrowed into target. The figure shows 
that robustness of landing points is increased and firing accu-
racy is improved.  

Table 8. Results of performances in RTC and AAO. 
 

 Current AAO RTC Unit 

Objective func. Firing accuracy 67.8 76.3 76.3 % 

Longi. 1.15e-2 7.29e-3 7.29e-3 deg 

Lat. 3.52e-1 2.81e-1 2.81e-1 deg 

Acc. perf. 1.84 1.84 1.84 sec 

Comfort. 13.8 6.95 9.50 m/s2 

Mspring 24.0 22.5 16.1 kg 

Constraint 

Cspring 5.33 5.47 5.33 - 

CPU time - 17.2 3.69 s 

Function call - 1,537 1,488 times 

 
 

 
                                (a)                                (b) 
 
Fig. 7. Contours of PDF of landing point at (a) current design; (b) optimum design. 
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