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Abstract

A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion re-
quirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-
SPR (Spherical joint-active prismatic joint- revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, con-
straint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity,
and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model,
the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed.
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1. Introduction

Dynamics simulators are often used in recreational facilities
or devices for simulating the motions of cars and planes. The
goal of a dynamics simulator is to give a realistic impression
of a driving or flying [1-3]. With the development of mecha-
nism theory, the Stewart platform is used to design a dynamics
simulator [4]. The Stewart platform is a good choice for mo-
tion platform because it has six Degrees of freedom (DOFs),
which can achieve various required motions. In addition, this
Parallel manipulator (PM) connects all six legs, forming a
closed loop mechanism, which allows the PM to have good
accuracy, rigidity and capability of handling a large payload.
The idea of a dynamics simulator based on Stewart platform
has been demonstrated by very successful applications. Exten-
sive research and application activities have been carried out
on the Stewart-like PMs used for dynamics simulators. How-
ever, it is quite surprising that little attention has been paid to
other novel versions that may be more effective in many prac-
tical applications. Motivated by this idea, we present a new
concept of series-parallel dynamics simulator, which uses

Series-parallel manipulators (S-PMs) as their mechanism body.

The proposed concept in this paper uses 3-RRS and 3-SPR
PMs and adopts outer and inner layout.

In recent years, the idea of serially connected PMs has been
employed to design S-PMs [4-14]. The generated S-PMs have
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higher stiffness than Serial manipulators (SMs) [4] and a lar-
ger workspace than PMs [5-8]. Generally, the PMs included in
the S-PMs are selected from some well-known PMs, such as
3-UPU PM [9], 3-RPS PM [10-13], 3-SPR PM [14], Tricept
PM [15] and so on, which may lead to some S-PMs [16-20]
with good performance. By serially connecting two PMs to
form S-PMs, enhanced translational and rotational abilities,
high stiffness and huge workspace can be achieved. Based on
this concept, a novel (3-RRS)+(3-SPR) S-PM is proposed to
design a novel dynamics simulator. Kinematics and dynamics
are important issues for dynamics simulator. It is well known
that SMs have easy forward kinematics yet difficult inverse
kinematics. Inversely, PMs have easy inverse kinematics yet
difficult forward kinematics [21, 22]. For the S-PMs, both the
forward and the inverse kinematics difficulties are included in
S-PMs. In addition, because of their highly nonlinear relations
between joint variables and position/orientation of the end
effectors for the S-PMs, solving the inverse dynamics of the
S-PMs formed by the 3-RRS and 3-SPR PMs is also challeng-
ing.

For the above reasons, we aimed at deriving simple and
compact formulae for the inverse kinematics velocity, accel-
eration in compact and explicit form, which is suitable for
computer programming, and aims at establishing inverse dy-
namics for the proposed (3-RRS)+(3-SPR) serial-parallel dy-
namics simulator. The research provides a theoretical basis for
the novel series-parallel dynamics simulator, as well as a fea-
sible approach for establishing the dynamics for other S-PMs.
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Fig. 1. CAD model of (3-RRS)+(3-SPR) S-PM used for dynamics
simulator.

2. Conceptual design of the novel dynamics simulator

The general S-PMs are formed by two PMs connected in
serials. The traditional S-PMs adopt the upper and lower lay-
out [5-12]. This layout includes a lower PM and an upper PM
connected serially. Different from the traditional layout of S-
PMs, the concept of dynamics simulator in this paper adopts
an outer and inner layout. Fig. 1 shows a CAD model of the
novel (3-RRS)+(3-SPR) serial parallel dynamics simulator,
which consists of an outer 3-RRS PM and an inner 3-SPR PM.
The motion chair is fixed on the moving platform of the inner
PM, which can achieve various required motions such as
swinging, lifting, rotation. This device can be used as recrea-
tional facility in home theaters, entertainment places and so on.

Compared with traditional dynamics simulators, this con-
cept has these advantages:

(1) This concept has high rotation motion ability because
the rotation of the motion chair is the superposition of the
outer and inner PMs.

(2) Because the motion chair is located at the inner platform,
it has the advantage of compacted structure and small space-
occupancy.

3. Displacement analysis of the (3-RRS)+(3-SPR) S-
PM

The displacement analysis for the (3-RRS)+(3-SPR) S-PM
mechanism includes two parts: The direct displacement analy-
sis and the inverse displacement analysis. The direct dis-
placement analysis is to calculate the pose parameters of the
terminal platform relative to the base with the given actuated
joint parameters. The inverse position analysis aims to calcu-
late the actuated joint parameters from the given pose of the
terminal platform relative to the base. The forward displace-
ment of the (3-RRS)+(3-SPR) S-PM can be easily derived by
using superposing method based on the forward displacements
of two single PMs. However, the inverse displacement is a
difficult work. This section aims at solving the inverse dis-
placement of the (3-RRS)+(3-SPR) S-PM.

Fig. 2 shows the sketch of the (3-RRS)+(3-SPR) S-PM. Let
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Fig. 2. Sketch of (3-RRS)+(3-SPR) S-PM.

the PM from outer to inner is the i-th PM of the S-PM. Let n;
and n;; (i = 1, 2) be the base and moving platform of PM i,
respectively. Then n;yand n,; denote the base and terminal
platform of the whole S-PM, respectively. In structure, 7;; and
ny are fixed with their centers kept coincident (see Fig. 2).

The 3-RRS PM includes a base n,, a moving platform n,,
and three RRS type driving legs r;(j = 1, 2, 3). njo and n,, are
two equilateral triangles. The j-th RRS leg connects n,, with
ny; by a revolute joint R,; with a rotational actuator at 4,;, two
serial connected links dj; and dj, one revolute joint R, at
points Cy; and one spherical joint S at point B, The 3-SPR PM
includes a base n,,, a moving platform #,, and three SPR type
driving legs r(j = 1, 2, 3). ny and ny; are two equilateral tri-
angles. The j-th SPR leg connects ny, with n,; by using a
spherical joint S at A,; on 15, a prismatic joint P along r»;, and
arevolute joint Ry at By on ny;.

Let L be the perpendicular constraint and || be the parallel
constraint respectively. Establish coordinate frames {n} (i =
1,2;j=0, 1) at the center of n; with X, Y, and Z;(i =1, 2; j =
0, 1) are three orthogonal coordinate axes and some con-
straints (X;{|4,43, Y LAnAs, Zjlny) are satisfied in i-th PM.
The geometrical constraints in the 3-RRS PM can be ex-
pressed as follows:

Rl]] || Rl]2 H AIZAIS’ RIZI || R122 H AIIAIB’

G=1.2.3). (la)
R131 ||R13z H A11A12’ R, L djl R

1j1 1j1 J‘de

The geometrical constraints in the 3-SPR PM can be ex-
pressed as follows:

R211 H BZZB23’ R221 H BZ]B RZ}I || BZIB R J‘ rZ/‘ . (]b)

239 2250 M1

For the 3-RRS and the 3-SPR PM, the unit vectors R, of
Rj1(G=1,2,3)in {n;,} can be expressed as follows:
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For the i-th PM, the points 4,(j = 1, 2, 3) in n,, can be ex-

pressed as:
(x, ] X, 0
B il E Z
4,2 Y, 7 “d,=| 7, |=|E |,
z, 0 z, | [0
- (3a)
X, q
A, = YA,3 = _% l|,qg= \/g
Z, 0
The points B;(j =1, 2, 3) in n;; can be expressed as:
X, | X 0
my € ;1 — =
"B, = YB“ :E B, = YBQ =€
Z, Z,, 0
. (3b)
XEls e q
"B, = YB,; = _Ei 1
Z, 0

where E; denotes the distance from O, to A4;, ¢; denotes the
distance from o; to B,

Let’* R denote the rotational matrix of n;; relative to ny.
Let’" R be formed by XYX Euler rotations with «;, £; and /; are
three Euler angles; it leads to

io io nio
x[/‘ yl[ Zh
nio — | Mo nio nio
wmBR= "% Y "2,
nio nio i
xm yn/‘ Zm’ (3 )
C
, S84 5564
= sasﬁ Ca’C -S, C Sl 7culsl SaCﬁCﬂ,
*Ca’Sﬂ, Sa’C;L +CaCﬂ *S%S; +CaCﬂ’
where
o io io o 7o io io o o
( ‘x[i xmt xm’ y/i ymi yni Zh' ani Zm' )

are nine orientation parameters of R .
A composite rotational matrix "R from ny, relative to nyo
can be expressed as follows:

o o o
x[Z ylZ ZIZ
MR ="R™MR™R =| "x "o 5 (43)
m2

Mo
1y S gy TSy, m2 Y2
o Mo o
an ynZ ZnZ

where

1 00
mR=E; ,=/0 1 0 (4b)
0 01

The position vectors B (j =
be expressed as follows:

1,2, 3) in {n;} for each PM can

ng
X, my,
i — | "o — Mo iy nio i — 1| "o ( )
B, = ™Y, |="'R "B, +"0, "o =| "Y, |. Sa
i
nio Z Z
B Ki

The center of o, relative to base 1,y can be expressed as fol-
lows:

Mo 02 —"o 01 + ,”’mR "2002, "mR — ”mR “nR ”mR. (Sb)
20

0 i My

When "o, and ;"R are given, the position vectors By, (j =
1,2, 3) of the inner PM in {#n,o} can be expressed as follows:

no XBI ”I"X
j %
o —1| ™Mo — "o ny o Mo — 1| ™Mo
B, =| ™Y, |=R™B, +"0, "o,=| ™Y, |. (50)
Mo
Mo Z Z
By; )

3.1 The inverse kinematics analysis

From Egs. (1a) and (1b) it leads to,

WR, ("B, ~"A)=0(i=1,2;j=1,2,3). ©6)

When i = 1, from Egs. (3a), (3b), (5a) and (6),

”mXb‘“ — _q'noyb’“ R anB.z — ”m)(A]2 =0 ’"onBD — q"on (7)

When i =2, from Egs. (3a), (3b), (5a) and (6),

anE“ =8, 5, ”mYB“’
=[("x, + 61"2")/,2)"“’)(32 +(™x,, + q”wymz)"m}][?ﬂ
+("x,, + qnzoynz)anB V2%, +4™ ),
= (g™ %, +3%y, = =4y, ("X, +q™y,)),
(8a)
anb’lz =85y 1Sy ”mYb‘lz >
= (P, X+, Y, 4, ) P, (8)
Sy =—""x,, 1 "™x,,
an}z,3 =55+, anB,
Sy = [( - nmxlz + q”my/z)”m)(ﬁz3 - (nmxmz moymz)nlo
- (Hzoxnz - q”zoynz)nng23 ]/( - nzoxnz + qngoynz),
Sy = (qnmxlz _3”20)}12 + ”zoxmz _q”zoymz)/(_ ”wxnz +q"20yn2) .

(8¢)



5186 B. Hu et al. / Journal of Mechanical Science and Technology 30 (11) (2016) 5183~5195

When "o, and °Rare given, "B, can be easily solved
from Eq. (5¢) and then s,(i = 1,2,3; j = 1,2,3,4,5) in Egs. (8a)-
(8c) can be easily obtained.

The points By; have the dimensional constraints as follows:

(ntn - ntlz) : (nt” - ntlZ) = 3elz (%a)
(ntlz - ntlz) . (HIOBM - ntlZ) = 3elz (9b)
("B, —"B;) ("B, -"B;)= 3‘?12 . %¢)

By substituting Egs. (7), (8a)-(8c) into Egs. (9a)-(9c),

ulzanEZH +u, mYB,, +u, =0,
Uy = Piss Uy = P+ Py ”mY.e,z> Uy =P anBz,2 + Dy anB,1 + P>
Pis = 4+51227 P =1 +52223
Py =—2=28,,8,, P, ==25,(8,, =5, Piy = 25,(8,, = 5,,)s
Dy = (s, —S2])2 _38125
(10a)
iy, "‘”YBZH +u,, "‘“YBH +u,, =0,
Uy = Dyss Uy = Py3 + Py HIOYBIZ’ Uy = Doy "'"Y;‘lz + Dy ’710)7812 + Dys
Py = 4+S322’ Dy =1 +S222,
Py ==2=25,8,, Py =285 (S3 = S1)s Py = =25, (85, = 55,)
Py = (S31 _521)2 _3312’
(10b)
U, ”‘°YH2H +u,, ”'“YBB +u,, =0,
Uy, = Pis, Uy = D3y + Py ’IIOYBH’ Uy = D3y anBZ” + Py HIOYBH + Psoo
Pss :4+Sszza P :4+51223
Day = 425,805 = 25,(8;, = 8,,), Py =—28,(85, = 5,),
D3 = (55 _511)2 _3612'

(10¢c)

Here, ™Y, ,™Y, and ™Y, are three unknowns in Egs.

(10a)-(10c), u(i = 1, 2) are the polynomials in Y, > Uy are
the polynomials in "'Y, .
From Egs. (10b) and (10c),

moy4 o y3 noy2 "
by IOYB” +iy IOYBH +1y mYB,, +1, mYB,, 1, =0 (11)

where

L= u;zpi,, t, =, Pyt Py +205, D)),

t2 = u;z (p’izl + 2p30p34) - p34 (2u20u22u32 + u221u32)
Uy Uy (p33p3| + pzzp:m) - uzouzzpszs’

h = 2”22217301731 = 2,5, (P, Py Py,) — u221u32p3]
Uy, (P33 Dsg + PraPyi) + Uglly sy Dy

ly= (uzzpao - u20u3z)2 + (uzzpn - u32u21)(u21p30 —UyPx ):

here ¢ (j =0,1,...,4) are polynomials in ™Y, .
From Egs. (10a) and (11),

Fig. 3. Schematic representation of the RRS type leg.

_blsy—‘ i 0 0 0 ulZ ull Z'{]0
b{‘y 0 0 wu, u, u, O
M bf'y 0. M= 0 w, u, u, 0 0 (12)
bl u, u, u, 0 0 0
b, 0 t, t, t, t
1] 7 A A A

The necessary condition for Eq. (12) to have nontrivial solu-
tions is

det(M)=0. (13)

Eq. (13) is a nonlinear equation with regard to ™Y, . By us-
ing Matlab software, the unknown in Eq. (13) can be easily
solved. Expanding Eq. (13) results in an eighth-degree poly-
nomial in Y, . It follows that there are at most eight solu-
tions for YBIZM. When "0, and ;*Rare given, ™Y, can be
solved from Eq. (13) and then ™Y, and ™Y, can be solved
from Egs. (11b) and (11c), respectively. Other coordinate
parameters of B, (j = 1,2,3) can be derived from Eqs. (7), (8a)-
(8c).

After B (j = 1,2,3) are derived, the actuator angles of the 3-
RRS can be solved. Let ¢, be the rotational angle of Ry;.
Since d; LRy, O\4 LRy, 6, is the angle between d; and
0,4,, 0 can be expressed as:

0,=0, +6,, (14a)

Jr T Y

where 0;, denotes the angle between 4,,0, and B4, 0,
denotes the angle between B, 4;, and dj,.

From Fig. 3, 61, 01, 0, and 0, can be expressed as fol-
lows:



B. Hu et al. / Journal of Mechanical Science and Technology 30 (11) (2016) 5183~5195 5187

E+L-|0B,| d:+ L -d,

1
0., = arccos( AL ), 0,,, = arccos(— il ),
E+L-|0B,[ &+ L d,

0,=0,,+0,,=arccos(————————) +arccos(————"),

EERE 2E L, 2d,L,

d’+d,-L

6, =arccos(——2—2) .

’ 2d,d,

(14b)

For the 3-SPR PM, the length of ; (j = 1, 2, 3) can be de-
rived as follows:

-[=B,, . (15)

r, =

Mo A
2j

From Egs. (14b) and (15), the inverse displacement of the
3-RRS+3SPR S-PM can be solved.

3.2 The pose decoupling equations of the 3-RRS PM

For the 3-RRS PM, from Egs. (3a), (3b), (5a) and (6) it
leads to,

"X, =-¢"y, (16a)
anm =€ ("mym, =" x/,) /2 (16b)

o xm1 —"o y]l , ”\uxnl — _"o le s "lnyn1 — _"o Zml . (16C)

From Egs. (3¢) and (16c¢) it leads to,

@i (17a)

From Egs. (3c) and (17a), R for the 3-RRS PM can be
simplified as the following:

S 84,54, $4Ca
nyo _ 2 _ 2 _ _
"R=|s,s, € =S4 Cs €, 84 ~84CpC,, (17b)
2 2
€S SuCa FCyChSa -8’ +c.c,
From Egs. (16a)-(16¢) and (17b),
v X, =-€s,s, (18a)
n 2 2
°Y, =elc, —5,¢5 —Cy) /2 (18b)
Mo —Mo
z,="Z,. (18¢)

3.3 The pose decoupling equations for the 3-SPR PM
From Egs. (3a), (3b), (5a) and (6),

szm2 (3ym2 - x,Q) + 2™ anzlz

”anﬂ =
? ZZH‘
Ex (x, — -2Ey,x +2™7 z
anuz _ 12( A ymz) 222}}1Z 1y orm (192)
X, =V

2 2

" R for the 3-SPR PM can be

> my

From Egs. (3¢) and (19a)
simplified as follows:

cﬁz Sﬁzsflz S/’zcﬂfz
nyg _ 2 Q2 — —
MR =|s,s, €., —S.Cpy C,.S,, —8,.C5C, |- (19b)
2 2
_cazsﬁz Sllzca’z + Cazc/jzsa’z _Saz + cazc 2

From Egs. (19a) and (19b) it leads to,

2 2
_Eys, s, [3(c,, = 8,,05) =€, 1427 Z s,

my = "B
o: 2 2
: 2(75112 +cazcl,z)
_ a2 2 _ 2.2 _myg
my = Ezcﬁz (Cﬁ: Caz + Sﬂz Cﬁz) ZES‘ZZS/f: 2 Zazcllzsllz (1 + cﬂz)
0 .

2(- sjz + czzcﬂz)

(20)
4. Velocity analysis of the (3-RRS)+(3-SPR) S-PM

4.1 Velocity constraint and decoupling analysis of 3-RRS
PM

From Egs. (18a)-(18c¢), the linear velocity of n;; relative to
{nyo} of the 3-RRS PM can be expressed as:

a, —€,C, 5, —€,5,Cp 0
"y, =J, :Bl = —€,C4 S, (1+Cp,) €Sy (S; +D)/2 0.
an 0 0 1
1a)

From Egs. (3¢) and (17b), the angular velocity of n;; rela-
tive to {no}of the 3-RRS PM can be expressed as:

l+c, 0 0
" =""R, ¢, +"R,pB+"RA=J,"v . J,=| 5.5, c, 0
—C, Sy S 0
(21b)
1 0 ¢,
here, ™R, =|0|, "R, =|c, |, "R, =| s,5,
0 S, —C, Sy

where ™R, ," R, and "R, are the unit vectors of the axes
along a4, f; and 4, respectively.
From Egs. (21a) and (21b) it leads to,

Mo va a.] Jv
no 1 = Ju ﬂ s Jo = 1
m @ I [ ZI'DI 1 Jmu

(21c)
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Here, Jo, is a 6x3 form velocity decoupling matrix of the 3-
RRS PM.

For the 3-RRS and 3-SPR PMs, the constrained
forces/torques which restrain the velocity of the terminal plat-
form of PMs exist. The velocity constraint equations can be
obtained by analyzing the constrained forces/torques in the
PMs using geometrical approach [14]. From the geometrical
approach for determining constrained wrenches, one con-
strained force which is parallel with R); and passes through S
joint can be determined in each RRS leg. As the constrained
forces/torques do no work to the moving platform #;,, the ve-
locity constraint equation for the 3-RRS PM can be deter-
mined as the following [14]:

0 o v, " R1T11 ("mdn e Rm)T
= JA "’”w ’ J/ﬁ = nleTn (nmdlz X" 121)T (22)
" " R1T31 (”mdla X Rm)T
" du =" Bl/ =" 0,

Here, Jj; is a 3x6 form velocity constraint matrix for the 3-
RRS PM.

4.2 Velocity constraint and decoupling analysis of 3-SPR
PM

From Eq. (20), the linear velocity of n,; relative to {ny,} of
the 3-SPR PM can be expressed as follows:

[omx, omXx, o™X, |
) da, o, 0™Z,
az
. J ﬂ J a”onU aann a"on” (23 )
Y- ! ,J, = 2 2 2 a
) : da, ap, oz,
" 7 2
o 0 0 1

6”3“)("Z _ Ecazsljz (30;3 - 6x§3 - 95‘22(3/’2 —cy )—2" Z”lsﬂgsa2 + 4%3%2 1+ [ )"”XU2
oa, 2(=s;, +chey)

o™X, 3Es,c

2 2 2 2 iy 2 n
¢, tEs, (Bs, +1)(s, —c,)+2"Z, c,c, +2¢,5,"™X,

a, py - a
op, 2(- sil + cilc/,l)
o X W 54C,, o™ Yn2 _ cazsaz(l +cﬂ2)
o™z, - (—si2 + cizcﬂ:) ’ o™z, - (—s; +c§2cﬂl)

6””)/UZ _ Es%cm2 (c/;2 + cf,z - 235fz )" ZDZCM2 1+ C/f;) + 2sazca2 1+ [ ) YU2

2 2
oa, (—suZ +e,¢ /{2)
" 2 2 n 2o
o™y, B Esﬁztsa2 —2Es,c, (1435, )+2"Z, ¢, 5,8, +2¢,5,"™Y,
- 2 ‘Z A
op, 2(-s,, +c,cp)

The angular velocity of n,, relative to {ny} of the 3-SPR
PM can be expressed as:

a, I+, 0 0
y ny Co h oL ;o 5 _
m0=""R, a+ JRﬁzﬂZ"— '“R;:}'z"]m: B 3, =| 5.5, ¢, 01,
Iy 7
A S, S 0

1 0 Cﬂ:
g Ra: =[0], ™ R/?z =le, | o Riﬁ =| 5,5, (23b)
0 S“: _C”:S/":
From Egs. (23a) and (23b) it leads to,
", % J,
AN R (23¢)
(0] ' n ; Jzu
| 20 Z )

Here, Jo, is a 6x3 form velocity decoupling matrix of the 3-
SPR PM.

Based on the geometrical approach for determining the con-
strained wrenches, one constrained force which is parallel to
R,; and passes through S jointcan be determined in each SPR
leg. As the constrained forces/torques do no work to the mov-
ing platform n,, it leads to [14]

o
L]

"y Sy (X )
J/f{ ;)-:|=03xl’ I =™ i (P, x™ £, (24)
M (™ )
my /1, Y Rz,‘w Y tl/ — ™ 0,- my Az/
Here, Jj, is a 3%6 form velocity constraint matrix for the 3-
SPR PM.

4.3 Velocity analysis of the (3-RRS)+(3-SPR) S-PM

Referring to Fig. 3, the vector loop for the j-th link
0,4,,C\;By,0, for the 3-RRS PM can be expressed as:

Mo o Mo — "o Mo
O +™d, +"™d, ="0+"e,,

Mo —="Mo — Mo Mo — ™o — Mo Mo — ™Mo _
d,="C,-"4, " d, ="B -"C,"e, ="8,,

172

Based on the rules of vector derivation, by differentiating
both sides of Eq. (25a),

o Mo Mo Mo —"o Mo o
@, <", +" o, x"d, ="y, 4 loxN e, 25b)
o, =o, "R ,=0,"R

d d 151 112
wherew, and o, denote the vector and the scalar of the
angular velocity of dj, respectively. 6, denotes the velocity
of 6,.

Dot multiplying both sides of Eq. (25b) with"'d , ,

(”‘“vo1 + ::‘I‘a) X0 eu) . "‘”d/2
j1 = Mo Mo LMo
(R, > dy)-"d

mo JT oy o T no
B d, (e, x"d ,) ]: vol}
mo o . Mo o o . Mo o )
("R, x"d,)-"d, ("R, x"d,) "d, a)

m

(26a)

L
[
2
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Dot multiplying both sides of Eq. (25b) with"d , ,

my

nog T Moy s Mg )1 0
o -G b - d, (e, x"d ) v,
dpp — I T V2 T e o L mo o o o Mgy |’
(R, x"™d,)-"d, ("R ,x"d,) "d, )

(26b)
From Eq. (26a) it leads to,

mo T mo mo T
d, ( €, % dlz)
mo o . Mo o mo . Mo
( R, x dn) d, ( R, x dn) d,
T
J "y, J ”mdfz (nmelz x "m"lzz)T
y = =
i a| my %@ mo o LMo o o L Mo
m @ ( R, x du) dy, ( R, x le) dy,
"de o o T
e, x"d,)
j2 13 32

(ﬂmRm %0 d3|)' nmdu (o R, "o d3|)~ ”md}l

>

@, 0,
V, =10, | = 922
@, 6,

(27a)

From Eq. (27a), the actuation velocity of 3-RRS PM can be
solved.

The actuation velocity of 3-SPR PM can be expressed as
[14]

ny T 0 o T
"y, 0, e, X" 9,) Ve,
_ 02 — | mo 8T Ny N T -
v,=J, mg |7 .= 9, e, X" d,) |,v,= Ve,
n. 1y, T n. Y T
21 20 623 20 823 x'"20 623) )

23

o Bz/ Mo AZ/
o Bz, Mo A
(i = 15 25 3) .

o — 0 M0 Mo
6, = , e, =" B o

J 2j

(27b)

Letg =g g gz]T yh=1[h h, 1] be two arbitrary vec-
tors, S(g) be a skew-symmetric matrix defined as:

0 -g g
S@=| g 0 -g |, Sg=-Sk)", gxh=Sgh.

(28)

The velocity of the terminal platform can be expressed as
[20]:

Mo o 20 m ny
v, v v E -S(*R ™ 0,)
o | _ o 0y _ 33 1y 2
o ¢7) - Kl 0 g + K2 0 ¢ ’ K1 - 0 E >
) Nl a1 3x3 3x3

1
S SR
2 0 moR |7 X

33 my

=
_ o O

29)

From Egs. (22), (23¢) and (29),

5189
d2 n,
. l()v
B |=W,K'K.d,)" JMKI{ w} (30a)
o 220 21

Multiplying both sides of Eq. (30a) by J 5,

Mo
21

JJ{ ‘:Z},JJZ:J%(J/ﬁKIIKZJOZ)‘JAKII. (30D)

From Egs. (27a), (27b) and (30a),

”mv
v, =17, (J,@,KIIKZJUZ )" Jﬁ'Kllli "‘”(:)Z:l . (31a)
In the same way, we can obtain
"mv
v, =J,J, (J,K'KJ )T, Kz‘[ ., } (31b)
1 1 1 2 1 2 lﬂw

”mv ”mv
|: o Ul:l = Jsl l: gy ” :|’ Jsl = Jm(Jﬂz I<2711<|'101)71 J,ﬁz K;] . (310)
w w

Kl 21

From Egs. (31a) and (31b),

nyg o B !
v =J voz J= JmJO] (J/fsz KIJ"I) lJﬂZKE Vv = v”
\ g | J I, G,K'KI)YIK'[ |

(32)

Here, J is the inverse Jacobian for the S-PMs.

5. Inverse acceleration of the (3-RRS)+(3-SPR) S-PM

For the 3-RRS PM, by differentiating both sides of Eq.
(21c) with respect to time,

o a, Q,
[]J AECR AN,

mi Mo ZU] o Zu, (333)
T
hl = I:hll hIZ hl3 hM hIS hl6:|
es,s, —ec,c, 0
h,=|-ec,c, es,s, 0
0 0 0

=0y, 1+ cﬂl) —es, (sml +1)/2 0

h,= ec,s,s, ecy (s, +1)/2 0|,
0 0 0
000 0 00
h,=0 0 0| h,=[-s, 0 0,
000 0 0 0
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"B 7s(1| 0 @ p cal
h15 a By 0 0 > h 16 ) c/3|
0 0 0 0 0 0

For the 3-SPR PM, by differentiating both sides of Eq.
(23c¢) with respect to time,

a, a,
"0 . . . .
o0 | _ : g0
Iy - an ﬂz + |:0(2 ﬂz ' Zoz :|h2 ﬂz 33b
nyy LN Z 0 Z ( )
0y 22

,
h2:|:h2l h,, h, h, h, hzsjl

where
B aanX aZrlan aannX ]
0, 0, 0,
oa,0a, oa,0p, 0a,0Z,
aznznx az”qu az“qu
h21 — ] 02 ] s
op,oa, op,op, 0p,0™Z,
62"2")( 82"2"X (32”2“)(
] 02 ]
02,00, 37,08, 0%2,0"Z,
¥y ¥y oMy 1
oa,0a, oa,0p, 0a,0Z,
5y oMy ¥y
h, = 0, 0, 0, ,
op,oa, oB.op, op,oZ,,
oy oy oy
0y 0y 02
07, 0a, 07,08, 077,07,
[0 0 0 0 00
h,=/0 0 0|, h,=|-s, 0 0,
0 00 0 00
Cazsﬂz _s‘zz c‘Zz
h, = 8,,Cp 0 Of h,= €, Cp 0
0 0 0 0 0
-Es, s, (30,1 _65111 —95,;1% ¢)=2Z,5,¢,
0X,
X +(1 +ep, )(402%)(0; + fﬂsazcwl 2 ~—9Ec, S50, )
0 _ 2
da,0a, 2-sl +cic,) ’
350,,1%2 (c“: —25 )—Ecalcz/, (9s +1) 2Z, 0 Cp S
. 0X,
Pt X(,z e X“: +4sa C,, a1+ <, 8ﬂ —2 20[Z S, - o, - 45%%25;73)( o
oa,08, poa, 2=s2 +c2c,) ’
—3Es, s, c. +2Es, (s, + Ds,,
-2Z +2¢ ¢, X, +4c X,
Sp.Coy H2¢0C, X, +dcl s, —
rx, n e op,
BB, 2-sk+ce,) ’
GZX(,Z ’X _ 5%, +2s,¢,(1+c, )0X, /0Z,)
00,0z, oz, aa —s2 +clc, ’
62Xn2 3 6Xn2 _¢C, czsﬂ(GX /6202) 6ZXU2 _0
opoz, oz, 0p, sl +cc, 0,07,

BZYO’ ECMZ (C/‘: - 2s )+ 2Z, \S20, T Cogy YO + 85, ?Z:Z )1+ Cﬂz)
60:28&2 (=5, +¢o¢5) ’
—Es%caZ (sﬂ: + 3s%) + Zozcmzs/%_
Y, .. oL,
OZY(,Z 62Ym —smzsﬂlYo2 +5,,, (l+cﬂz)6—ﬂ;+co{zsﬂ2 60(;
0,08, OBoa, (=52 +cc,) ’
o,
v, &Y, =y, (1+¢, ) +2s,¢, (1+¢c,) (')Z’:
da02, 07,00, (=52 +ccp) :
Ecycl —2Ec,, (1435, )+2Z,¢,5,¢,
o,
oY, +20azcl,2Ya2 + 40%%2 aﬂ;
Bp. 2-s, +eicy) ’
07,
gy, oy, Clwtatims gy
Bz, 20 (v+cc,) = z,07,

By differentiating both sides of Eqgs. (22) and (24) with re-
spect to time,

Mo a

o
v
_ o moy T mo T oi
0., =3, nog +[ Vo oom®@ :|Hﬂ||:”mw:|’

My

r 0 0
H,=[0, 0, w, [.H, == >
L {0 SCvd,)SCR,,) |
(34a)
Hzoa Mg
0, J{ h w]“[ no }
n 0 _S ”1()R
H, :[Hﬂ» H,, Hﬂa]l’Hﬂa =| ¢ r " ( 2']11)
e e Bl B Zlsenr, ) —seor,pseua)
(34b)

Here, Hg;(i = 1,2; /= 1,2,3) is a 6x6 form matrix.
From Eq. (27a) it leads to,

a’n
Mo Mo
a=la l=J a4, +|:nmvT nmwT:|H Vol
i 2 @l Mog ol @ | mo

w} (35)

I, S("d,)S("e,) I, —Tp S('d,) I, —Tp S(e,)S("d ;) I

+AL, S, )SC0d ), 3T, SCUd )8 ,)

o R\,I »(”"’d” X "md“)

i

o

100000 000100
J.=[0 1000 0[,J =000010|
001000 000001

For the 3-SPR PM, the scalar accelerations a,; of r; j =1, 2,

3) have been derived as [14]:

am ny g
: " a, T 7 o,
— — 2 o o 2 -
a,=\a, _Jaz ny LV @ Hﬂ: n > H, Hﬂu a H“u ’
0 e 20
a n i
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S(J)S(e)

(36)

The acceleration of the terminal platform can be expressed
as [20]:

37
0 S("m )”m R ( )

33 my my

”m Mo 20
{ZS(W @R 0, 1 v,

S( o w)S( ::\Iv w) ’:,II(: R”zu
0 .

3x1

From Egs. (33a), (33b), (34a), (34b), (36) and (37),

i

1 dl
{ﬁl}—(Jﬂ,K;K,J,,,) ’J K; { } D-g-3,K'3[a 4 Z)}h{ﬁ.H
z ' Z,

é, v,
{40,,. K.‘K»J,,,)[J,,. K."{ ,,"‘“}L)—g‘—J,,‘K;'J{dg A, ZZJI{ H
. ? e ’

Z”l
(3%

S

N-=

When the velocity and the acceleration of 7,; relative to n
are given, by substituting Eq. (38) into Egs. (33a) and (33b),
"'a, and °¢ can be obtained. Then, by substituting this
result into Eqs (35) and (36), the inverse acceleration of this
S-PM can be derived.

”o

6. Inverse dynamics of the S-PM

The inverse dynamics analysis [23] is to determine the re-
quired forces of actuators from the given kinematics of the
terminal platform in given poses.

Let o, , ¢ be the angular velocity and angular acceleration
of the lower link in Jj-th leg of the i-th PM, respectively. Let
v, , a, and be the linear velocity and linear acceleration of the
mass-center of lower link in j-th leg of the i-th PM, respec-
tively. Let o, and £, be the angular velocity and angular
acceleration of the upper link in j-th leg of the i-th PM, respec-
tively. Let v, and a, be the linear velocity and linear accel-
eration of the mass-center of upper link in j-th leg of the i-th
PM, respectively.

From Eq. (26a), the angular velocity of d;; can be expressed
as:

mo mo g T
Rl,l d,z

Mo — ) Mo —
w/‘,_gﬂ R = o o
("R, x"d ) "d,

g N mg T mg
R,,l( e, x d[z) v,

™o ™o . Mo Mo
( Rlﬂ)< d/l) d/z ”Hw

(39a)

mo mo JT mo o mg T
;o R ,"d R, (e, x"d )
“n o o . Mo mo mo . Mo
i ( R, x d/l) d, ( R, x d/.l) d,

From Eq. (26b), the angular velocity of dj, can be expressed
as:

mo R Mgt

P 12 j
uy (an

1/2

Mo K Mo T o
J2 j1 lez( elj x djl) Vo
o . Mo Mo o . Mo o
x"d,)-"d, ("R ,x"d,) "d, )

(39b)
J _ "o R " ”de mo lez(”mel, x ”10d,1)T
Dy j (anI/Z %o d]z) . ﬂmdh (”luR”z %0 d]z) . ’Hod{1

For the RRS leg, the velocity of the mass-center of dj; can
be expressed as

n Mo
s(vd,)d, [V,

"y, =" e, x"d, 2= - P (40)

1j
(0]

i

From Egs. (39a) and (40),

o vll nmvm _S(”md”)Jmll /2
EI e = ' . 41

hj m 9y

For the RRS leg, the linear acceleration of the mass-center
of d;; can be expressed as

Mo

o " " " "
a, ="g x"d, [2+"0, x("o x"d,)2. 42)

b
For the RRS leg, the velocity of the mass-center of dj, can
be expressed as

wy =" x"d +"w, x"d,/2
U u; J1 u Jj2
Mo
v, (43a)
n
oSO, 121

ny

=[-S("d,)d
w

From Egs. (39a) and (43a),

my, "y, ~S(d,)J, ~S(*d,)d, 12
! = JU n > Jll = Y N
nyg wul 1 mw 1j J

(43b)
For the RRS leg, the linear acceleration of the mass-center
of dj, can be expressed as

Mg ="e x"d +"w x("w, x"d,))
Uy 1 J 1 1/ J

1) j J (43C)

o Mo Mo Mo o
+me, xMd, 12+ ", x (Mo, x"d,)] 2.
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Let v,; denote the velocity vector of the three vertices of the
moving platform relative to the corresponding base, @,,; de-
notes the angular velocity of r,for the 3-SPR PM. The veloc-
ity of three vertices of the moving platform relative to the
corresponding base can be expressed as:

(44a)

vy, = e, X1, M0, + 0,y
Cross-multiplying both sides of Eq. (44a) by ™4, , it leads
to

" 621' x"lﬂ v2_/ = r2jnmw7‘1/ _r'Q/”:ﬂélj(nzowy;Z - 52]) (44b)
For the SPR-type leg, the angular velocity satisfy:
0 wyz + sz 1"20 R2/1 — Z;(IA (453)

where gy is the velocity of joint Ry;. ™ o, is the angular
velocity vector of r,.

Since 7y LRy, dot-multiplying both sides of Eq. (45a)
by n0 62/_ s

g wrz/ 20 62/ — Z;‘w 120 62‘/‘ X (45b)

From Egs. (44b) and (45b) it leads to,

e, = 0y, XMy, 410, (0 d,) (46a)
2 ,

Eq. (462a) can be expressed as:

1y
n v(h
20 w — -
n, J(u 0 ’
2j ” -
2 0]

1

1 n n nyg ny0 0
Jw,w :r_[S( 2“62_/‘) =S( 1“62‘/.)5'( i ezf) T 62/ 6;/] ’
2j 2/

(46b)
Differentiating both sides of Eq. (46a) respect to time,

g o " 3 g mogT "
0y, X2 vy "0 0, X" W, v, "6, 0, @

N o ST o S N b0 § mo ST 20
1y, (08, 260+ 8, 0) M@+, 08,8 e —v, M

7 " nj n2j

j
r j

(47)

where ™9, =" @ x4,
: Y

. 20 20 20 N
nzovzj —"o a, + . &x"™ e2j + " w><(”” X" ez,‘ .

For the 3-SPR PM, Let rp; be the distance from the bottom

to the mass-center of the cylinder and 7,5, be the distance form
the mass-center to the top of the piston in the j-th leg.

For the 3-SPR PM, the velocity of the mass-center of the j-
th cylinder can be expressed as

0
19 — 139 "5 = S(S ) 2
= (4] X .= .
vlzl ’72, Y 2j 7}21 ( 2/) @,

/ (0]

(48a)

Thus, the velocity relation between the mass center of the j-
th cylinder and the moving platform of the 3-SPR PM can be
expressed as

Ny 0
v \4
L 0y

2 | _ J
20 1) b
]

b n 9
2j 21 @

=1, S("d,)J
= " (48b)

For the SPR leg, the linear acceleration of the mass-center
of the j-th cylinder can be expressed as

(48¢)

o o o
20 — 20 20
alz, T om 8@, X 513/12, + my a)rZ, x (”zl wrz, x 62/)’72,'

For the SPR leg, the velocity of the mass-center of the j-th
piston can be expressed as

o —_ 20 T — 0 o
Vi = m @, X0, (1, =1, )+ By 0

”zuv)
_ 7(}3[ _ ’Lz,)S(”mdl/)Jmm + [ nyg @/nz»éﬂl/ Hz»éz/nzvé;/S(”z“eZ/)]}{ o :| .

(0]

my

(49a)

From Egs. (46b) and (49a),

ny ny
vuZ, —J val

mo ) s
sz j m @

_(,-2/ — ,;lzl )S("méz/)"%, + [ ) 521”2“5;/ _ "o 52/"1"5;5(”2"82/)]

1.
2j J

o,

(49b)

For the SPR leg, the linear acceleration of the mass-center
of the j-th piston can be expressed as:

. m ’ ) m ’
”.na”“ = gr:/ X" 62/(”2/’ 1 )+ m wr:, X(m wr:, X" 52/’)("7 —7;42/)

2]

(49¢)
+ 62/"2/’ +2( 1 0),2/ X" 62/)”2./
For the 3-SPR PM, the following equation is satisfied:
M0 wlz —"0 wuz —"0 wrz ’”zn 812 —"0 8”2 —"0 8rz (49d)
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Let m,, I, f,,n,and G, be the mass, inertia matrix, in-
ertia force, inertia torque and the gravity of the moving plat-
form for i-th PM. Let F,,, T,, be the workloads applied onto
n2l atoy Let m,, 1, , f,,n and G, (i=1,2;7=1,2,3)be
the mass, inertia ,mat/rix,/iner/tia forco, inertia torque, and the

gravity of the lower link in j-th leg of the i-th PM, respectively.

Let m, .1, ., f,.n, and G, bethe mass, inertia matrix, iner-
tia force inertia torque and the gravity of the upper link in j-th
leg of the i-th PM, respectively.

The inertia force, torque, and the gravity can be derived as
follows:

n n n
0 — i0 i0 —
S, =—m "a "G =mg,
i ij i i i
i — _"o i o i o
== - x( )
m,=="1, ", = o x (] w,),
i — i i —
o f =-m "a )G =m g,
uy; u; u; uy; uy;
n n n n n n
.on :_,01 ’08 _yow X(’“I aw )’
iy iy iy iy iy iy

i — o K —
fo’— m,"a,, Gm.—muyg,

n o n n; n 4 n; __"io 10
'n, =—"1,"¢, - o, x("1, 0)01)’ I, =, R"I, (50)
j " n; n; " ij
UIIU =" R ’ II,/.’ OIM,/ i R Iu”’
Mo Iu, :”m R Mo IU‘ ”’10102 ::1;: R my 102’
"R=[R, & xR, 6]
ij ij ij ij ij
where "R denotes the rotational matrix of {jj} relative to

{mo}- {ij} is a coordinate frame with R, ,d,x R, and 9,
are the diction vectors corresponding to their three orthogo-
nal coordinate axes, which are used to express the inertia
matrices.

Let F},; be the active force applied on 77j. Based on the prin-

ciple of virtue work,

2 3 ”ruv ”»ﬂv
T mo £T | mog T g T ly mo £T | g7 g o) T L
Flv e Y3 (" f) + G n]{ SRR

==

N
-y
o 0y
+|:"w /;'lf 4o G“T' o n::l{ . }_'_[“a -/:rT Mo G“T2 o nl]|: . :|_ 0’

(51a)

From Egs. (30b), (31c), (41), (43b), (48b), (49b) and (51a),

£, 476G,
e D

H’

F u-»{iim[“ﬁ-
TN 5 I ny

LG )
L
i=1 =1 n,

My Mo My My
+" G +" G
| ™A g
63 J.e||i e n ' :| +[ "o g }}
o .

From Eq. (51b), the inverse dynamics of (3-RRS)+(3-SPR)
S-PM can be solved.

(51b)

7. Workspace

In this section, the workspace of the (3-RRS)+(3-SPR) S-
PM is constructed using CAD variation geometry approach
[20] and Matlab software. Generally, the workspace is con-
structed by a family of similar spatial boundary surfaces. For
the (3-RRS)+(3-SPR) S-PM, the points of the boundary sur-
faces can be achieved when four actuators reach their mini-
mum or maximum extensions and the other two actuators
change in the range of extensions. The construction steps of
the workspace are as follows:

Step 1. Construct the simulation mechanism of the (3-
RRS)+(3-SPR) S-PM in CAD software [20].

Step 2. Set £y = 1.20 mm, e¢;; = E5; = 0.80 m, e;; = 0.60 m
in the simulation mechanism. Set (6))mn = 95°, O 1)max =
125°,(720)min = 1.0 m,(75)max = 1.5 m, 560 =5°, 6r=0.05 m.

Step 3. Set 0,3 = (Gll)max: =70 = 13 = (F)max Set Oy =
(G]j)mm +G—=1)d0 (G = ., wp,where w; = [(01)max -
(011)min)/36.

Step 4. Set j = 1 and increase 6, by 6 at each increment
from (612)min t0 (£12)max- Solve the position components (’“OX(,Q
"0y, "°Z.,) using the simulation mechanism.

Step 5. Repeat the steps 4, except that set j = 2, . . .
other points of the boundary surface can be obtained.

Step 6. Repeat the steps 2-5, except set the other different
four of the six actuators to reach their limited values and by
varying the remaining two from the minimum extension to the
maximum extension, respectively.

Step 7. Based on the points obtained from the above steps,
construct the workspace boundary surfaces using the com-
mand for drawing surfaces in Matlab software.

The workspace of the (3-RRS)+(3-SPR) S-PM is con-
structed as shown in Fig. 4.

> Wi,

8. Analytic solved example

In this section, the inverse dynamics of the (3-RRS)+(3-
SPR) S-PM is computed by using the established dynamics
model. Set the dimension parameters of the (3-RRS)+(3-SPR)
S-PM as: E; = 1.2/g m, E, = e; = 0.8/gm, e, = 0.6/gm. Let the
rotation of n,; relative to ny, formed by XYX Euler rotations,
where a, f and 4 are three Euler angles parameters about cor-
responding axes.

Set the mass and inertial parameters as: m,; = 112.47Kg,

= 48.54 Kg, my, = my, = my3 = 47.62 Kg, mp, = mp, =
mps = 12.54 Kg, my = myp = my3 = 12.54 Kg, mp) = myp, =

My = 9.75 Kg, "I, = drag[l 14 1 14 2. 16] Kgm*,"I, =
diag[0.83 0.83 1.64] Kg'n’, “1,11 1,12 P15 = diag[6.052
6.052 0.037] Kg'm’, 211,21 1,22 Py = diag[2.886 2.886
0.004] Kg'm*,"' Iy, = "I1, = "I, = diag[6.052 6.052 0. 037]
Kgm?,*' Iy, =15, =1, = diag[0.475 0.475 0.006] Kg-m".

Set the workloads apphed onto n,; at o, as: F,, =[-20 -30 -
601", = [-30 -30 100]". Support the independent parame-
ters ("IOX,,Q, "0y 2. "Z s, @, B, A) varying according constant
accelerations with (-0.015 m/s” 0.015 m/s> -0.02 m/s” 0°/s’
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(a) The isometric view

Fig. 4. Workspace of the (3-RRS)+(3-SPR) S-PM.
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Fig. 5. (a) Inverse kinematics of outer PM; (b) inverse kinematics of inner PM; (c) inverse dynamics of outer PM; (d) inverse dynamics of inner

PM.

0°/s> 0°/s%) begin at initial pose (-0.19 m 0.16 m 0.45 m 5.8°
10.2° 2.6°) from immobile state. The inverse kinematics are
solved as shown in Figs. 5(a) and (b), the inverse dynamics
are solved as shown in Figs. 5(c) and (d).

From the analytic solved example, it can be seen that when
the displacement, velocity, and acceleration of the terminal
platform are varied smoothly, the inverse velocity, accelera-
tion and dynamics are varied smoothly in a large range. It
implies that the proposed series-parallel dynamics simulator
has good kinematics and dynamics characteristics.

9. Conclusion

The main contribution of this paper lies in the concept de-
sign and the establishment of inverse Jacobian, velocity, ac-
celeration, dynamics and workspace of the series-parallel dy-
namics simulator formed by the 3-RRS PM and 3-SPR PM.
The designed series-parallel dynamics simulator uses the outer
and inner layout. This concept has high rotation motion ability
and the advantage of compacted structure and small space-
occupancy. By choosing the proper position parameters and
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geometrical constraints, the inverse position solutions in close
form are derived. The formulae for solving the inverse veloc-
ity, acceleration and dynamics are derived in compact forms
by skillfully integrating the kinematics, constraint and cou-
pling information of the single PMs into the S-PM. The work-
space of the (3-RRS)+(3-SPR) series-parallel dynamics simu-
lator is constructed by CAD variation geometry approach. The
result shows that this series-parallel dynamics simulator has a
symmetric and large workspace.
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