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Abstract 
 
This paper is concerned with the stress recovery for the natural element method in which the problem domain is discretized with De-

launay triangles and the structural behavior is approximated with Laplace interpolation functions. Basically, the global and local patch 
recovery techniques based on the 2L -projection method are adopted. For the local patch recovery, the local element patches are defined 
by the supports of each Laplace interpolation function. For the comparison purpose, the local stress recovery is also performed using 
Lagrange-type basis functions that are used for 3- and 6-node triangular elements. The stresses that are recovered by the present global 
and local recovery techniques are compared each other and compared with the available analytic solution, in terms of their spatial distri-
butions and the convergence rates. As well, the dependence of the recovered stress field on the type of test basis functions that are used 
forbnov-Galerkin (BG) and Petrov-Galerkin (PG) natural element methods is also investigated.  

 
Keywords: Natural element method; Stress recovery techniques; PG-NE method; BG-NE method; Laplace interpolation functions; Smoothened stress 

field; Global and local patches; Convergence rate  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

The interpolation functions used in the symmetric Galerkin 
approximation should be square-integrable in order for the 
approximated behavior of continuum body to produce finite 
strain energy. Owing to this requirement on the interpolation 
function, both the trial and test functions in finite element 
methods should possess at least the 0C -continuity. But, it is 
well known that the 0C -continuity results in the approximate 
solutions in which strain and stress fields are discontinuous 
across the element interfaces. The occurrence of discontinuity 
in strain and stress fields not only deteriorates the numerical 
accuracy but also violates the physical constraint in continuum 
mechanics. In other words, strains and stresses as well as dis-
placement in a continuum body should be continuous as far as 
the body is not broken out. Hence, the post-processing of the 
bare strains and stresses that were approximated using 0C -
finite elements has been an inevitable job to obtain the accept-
able continuous ones. 

A simple stress recovery method is to obtain the globally 
continuous stress distribution by interpolating the stress values 
at Gauss integration points. It is of course based on the fact 
that the weighted residual approximation exhibits the super-
convergence at the integration points [1]. In two- and three-
dimensional finite element meshes, this simple concept for 

stress recovery is implemented by interpolating the nodal 
stress values using the stress values at Gauss integration points 
and by averaging the interpolated nodal stress values within a 
common element patch. In 1971, Brauchli and Oden [2] intro-
duced a global stress recovery technique based on the 2L -
projection method to obtain more accurate stress field which is 
continuous across the element interfaces. In 1992, Zien-
kiewicz and Zhu [3] introduced the Superconvergent patch 
recovery technique (SPR), for which the local element patches 
are constructed and the stress recovery is performed patch by 
patch to obtain the smoothened more accurate continuous 
stress field. Later, Blacker and Belytschko [4] also enhanced 
the superconvergent patch recovery technique by adding the 
squares of residuals of the equilibrium equation and the natu-
ral boundary conditions. Boroomand and Zienkiewicz [5] 
proposed an improved patch recovery technique, called the 
recovery in equilibrium (REP), in which the recovered stresses 
are equilibrated in the patch. 

Meanwhile, the meshfree methods have been in the spot-
light by many investigators since the early 1990s, as an alter-
native approximation method to overcome the inherent draw-
backs of finite element method such as the preservation of 
element connectivity and the numerical quality deterioration 
stemming from the excessive element distortion. The repre-
sentative meshfree methods are the Element free Galerkin 
method (EFGM) [6], the Reproducing kernel particle method 
(RKPM) [7], the h-p clouds [8], the Partition of unit method 
(PUM) [9] and the Meshless local Petrov-Galerkin (MLPG) 
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[10] method. These methods surely provide the highly smooth 
approximate solutions, but at the same time those suffer from 
the common difficulties in the essential boundary condition 
enforcement and the numerical integration. Differing from 
these grid-point based meshfree methods, the Natural element 
method (NEM) introduced originally by Braun and Sambridge 
[11] uses the basis functions called Laplace interpolation func-
tions which not only exhibit the high smoothness but also 
satisfy the Kronecker delta property [12, 13]. 

Thanks to the Kronecker delta property of Laplace interpo-
lation functions and the introduction of Delaunay triangulation 
for defining Laplace interpolation functions, the natural ele-
ment method does not require extra effort for imposing the 
essential boundary condition and employing the traditional 
Gauss quadrature rule for the numerical integration [14, 15]. 
Because of these merits, this method has been rapidly ex-
tended to solve the important engineering problems in linear 
and nonlinear solid mechanics by subsequent researchers [16-
20]. As is illustrated in Refs. [12, 21], it has been justified that 
the Laplace interpolation functions possess the sufficiently 
smooth 1C -interpolant characteristic to overcome shear lock-
ing without the need of extra numerical technique. Neverthe-
less, whether or not such a prominent feature of Laplace inter-
polation functions does also appear at the level of strain and 
stress fields has not been sufficiently investigated. In other 
words, it has not been fully justified whether the natural ele-
ment approximation leads to the acceptable accurate and 
smooth bare stress distribution without employing the stress 
recovery. Furthermore, it is questionable whether and how 
much the bare stress distribution could be improved by the 
stress recovery. 

In this context, this paper is concerned with the stress re-
covery techniques for the natural element method in 2-D lin-
ear elasticity. Basically, the 2L  projection-based global and 
local stress recovery techniques [2, 3] using Laplace interpola-
tion functions are adopted. The stress recovery itself may be 
thought of an old subject tracing back to the late 1990s. But, 
most studies on the natural element method focused on the 
application to major engineering problems so that the stress 
recovery has been rarely studied. In this regard, this subject is 
worthwhile and laid the basis for more advanced research 
subjects such as the error estimation and the adaptivity. 

For the local stress recovery, the supports of each Laplace 
interpolation function serve as individual local element patch-
es. As well, for the comparison purpose, the local stress re-
covery is also performed using Lagrange-type basis functions 
for 3- and 6-node triangular elements, for which each local 
element patch is constructed according to Zienkiewicz and 
Zhu [3]. The presented stress recovery techniques are evalu-
ated by comparing each other and by comparing with the ex-
isting analytic solution, in terms of the stress distributions and 
the convergence rates to the total number of grid points. Fur-
thermore, the dependence of the recovered stress field on the 
type of test basis functions used for the natural element ap-
proximation, that is the difference in the recovered stress 

fields between Bubnov-Galerkin (BG-NEM) and Petrov-
Galerkin natural element methods (PG-NEM), is also investi-
gated. 

 
2. Natural element approximation of 2-D linear elas-

ticity problem 
Let us consider a 2-D linear elastic body shown in Fig. 1 

which occupies an open bounded domain 2WÎÂ  with the 
boundary D N¶W = G ÈG , where DG  is the displacement 
boundary while NG  denotes the traction boundary. Assum-
ing the small deformation, the displacement field ( )u x  is 
governed by the static equilibrium given by 

 
0 insÑ × + = Wb                             (1) 

 
with the displacement and traction boundary conditions: 

 
ˆ Don= Gu u                                 (2) 

ˆ .n t Nons × = G                               (3) 
 
In which s  indicates the Cauchy stress, b  the body 

force, n  the outward unit vector normal to ¶W  and t̂  the 
surface traction. 

The virtual work principle converts the boundary value 
problem Eq. (1) to the weak form: Find ( )u x  such that 

 
( ) ( ) ˆ:

N
d d dse s

W W G
W = × W + ×ò ò òv u b v t v               (4) 

 
for every admissible displacement field ( )v x . In order for the 
natural element approximation using a given natural element 
grid NEMÁ  composed of N  nodes shown in Fig. 2(a), and 
trial and test displacement fields ( )u x  and ( )v x  are ex-
panded as 

 

( ) ( )
1

N

h J J
J

j
=

= = Fåu x u x u , ( ) ( )
1

N

h I I
I

y
=

= = Yåv x v x v   (5) 

 
with Laplace interpolation functions ( )Jj x  and ( )Iy x  
shown in Fig. 2(b). As is well known, the approximation is 
classified into Buvnov-Galerkin and Petrov-Galerkin depend-
ing on whether the both basis functions are the same or not. In 
addition, F  and Y  are ( )2 2N´  matrices containing N  

 
 
Fig. 1. A 2-D linear elastic body under small deformation. 
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trial and test basis functions Jj  and Iy  and u  and v  
denote the ( )2 1N ´  nodal vectors, respectively. 

Introducing Eq. (5) into Eq. (4) leads to 
 

N N

I I
I I

=å åK u F                               (6) 

 
with the node-wise matrices IK  and vectors IF  defined by 

 
( ) ( )

 I
v

T

I d
W

= Y F WòK L E L                       (7) 

  
ˆ

I I
v N v

T T
I d ds

W G ÇW
= Y W + Yò òF b t                   (8) 

 
where L  is the ( )3 2´  divergence-like operator defining 
Cauchy strain tensor and E  indicates the ( )3 3´  material 
constant matrix of linear elasticity. The numerical integration 
in natural element method is carried out over the supports 

( )( )I
I
v supp yW = x  of each test basis function. 
The numerical integration for calculating IK  and IF  in 

most meshfree methods is made by applying the conventional 
Gauss quadrature rule to the extra background mesh. It is also 
performed by the Gauss quadrature rule in the natural element 
method, but the additional effort to construct a background 
mesh is not needed any more because Delaunay triangles gen-
erated in the process for defining the Laplace interpolation 
functions serve as a background mesh. However, the numeri-
cal integration accuracy in the natural element method is in-
fluenced by the type of test basis functions. Differing from the 
Buvnov-Galerkin natural element (BG-NE) method in which 
Laplace interpolation functions ( )Jj x  are used for both the 

test and trial functions, the Petrov-Galerkin natural element 
(PG-NE) method in the current study uses the 3-node triangle-
based Constant-strain finite element (CS-FE) basis functions 

( )Jy x  for the test functions. Figs. 3(a) and (b) comparatively 
represent the supports of trial and test basis functions and their 
intersection int

IJW  in BG- and PG-NE methods, respectively. 
In case of BG-NE method, neither the support of Ij  nor 

the intersection int
IJW  between Ij  and Jj  does not coincide 

with a union of Delaunay triangles within ( )Isupp j  to which 
the regular Gauss quadrature rule is applied. Thus, one en-
counters the numerical difficulty in calculating IK  and IF , 
because the numerical integration accuracy and the conver-
gence rate of the Gauss quadrature rule deteriorates if the sup-
port of integrand function does not coincide with a regular 
integration region in background mesh, as pointed out in a 
book by Strang and Fix [22]. Differing from the BG-NE 
method, the support ( )Isupp y  of test basis function in the 
PG-NE method is composed of a union of Delaunay triangles, 
so that the discrepancy between the regular Gauss integration 
domain and the test function support does not occur any more. 
Furthermore, the intersection region int

IJW  between the CS-FE 
basis function Iy and Laplace basis function Jj  is always 
contained within the support ( )Isupp y  of the trial basis 
function Iy . 

 
3. Stress recovery techniques 

In order to explore the recovery characteristics of stresses 
which are approximated by the natural element method, two 
representative stress recovery techniques using Laplace inter-
polation functions are employed, the global 2L -projection 
method [2] and the local patch recovery technique (SPR) [3]. 
For the comparison purpose, the local patch recovery is also 
performed using the Lagrange-type basis functions used for 3- 
and 6-node triangular elements. In case of the finite element 
approximation, it is well known that the direct differentiation 
of approximate solution hu  leads to inaccurate non-smooth 
strain and stress fields. Furthermore, by virtue of the weighted 
residual method, the approximate solution hu  shows the 
super-convergence in h¢u  at Gauss integration points. The 
basic motivation of these stress recovery techniques is to in-
terpolate the enhanced stress field ( )ŝ x  which can minimize 
the difference between hs  and ŝ  in the 2L -norm sense, 

  
(a) 

 

 
(b)            

                               
Fig. 2. Laplace interpolation functions [15]: (a) Supports; (b) shapes. 

 

       
              (a)                            (b) 
 
Fig. 3. Intersection int

IJW  between trial function and test function [15]: (a) 
Ij  and Jj  in BG-NEM; (b) Iy  and Jj  in PG-NEM. 
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either over the entire domain W  or within each element 
patch sW . Based upon the super-convergence characteristic 
of finite element approximation, the stress recovery by these 
techniques is numerically implemented using the same Gauss 
integration points which are used to obtain the approximate 
solution hu . 

We first consider the stress recovery by the local patch re-
covery technique, for which two types of local grid patches 
are considered. Referring to Fig. 4(a), a local grid patch sW  
for node J  in NEM grid is defined either by ( )Jsupp j  in 
type A or by 

 
( )1 ,

i i

m
s i m m Jsupp j=W = W W ÌU                   (9) 

 
in type B with a total of mm  Delaunay triangles within the 
support of Jj . Referring to Fig. 4(b), the stress field ( )*

ss x  
to be recovered within the local grid patch sW  is interpolated 
by 

 
* ,ss = Pa   

2
, , ,

nm mj j jé ù= × × ×ë û1mP                  (10) 

 
with a  being a set of unknown parameters and a total of nm  
Laplace interpolation functions which have non-vanishing 
values within a local grid patch sW . As shown in Fig. 4(a), 
the total number nm  is greater than the total number mm . 
Then, the recovered enhanced stress filed could be obtained 

by minimizing 
 

( ) ( )2* .
s

h sF dAs s
W

= -òa                         (11) 

 
Substituting Eq. (10) into Eq. (11) leads to 
 
ˆ ˆ=Ka F                                      (12) 

 
with the local stiffness matrix K̂  and the local load vector 
F̂  defined by 

 
ˆ

s

T dA
W

= òK P P ,  ˆ .
S

T
hdAs

W
= òF P                 (13) 

 
The local patch recovery is carried out node by node within 

a NEM grid until the nodal recovered stresses are completely 
determined in sequence. 

Meanwhile, in the global stress recovery, individual local 
patches sW  are extended to the whole problem domain W  
and the recovered stress field ( )*

ss x  is interpolated with all 
the Laplace interpolation functions in a NEM grid. In other 
words, a set P  of interpolation functions in Eq. (10) and the 
residual functional ( )F a  in Eq. (11) become as follows: 

 

1 2, , ,
nNj j jé ù= × × ×ë ûP ,     ( ) ( )2* .h sF dAs s

W
= -òa     (14) 

 
Thus, the global stress recovery ends up with an extended 

matrix system of simultaneous Eq. (11) to compute a set a  
of nodal parameters defined by 

 

( ) ( ) ( ){ }1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , ,T

xx yy xy xx yy xy xx yy xy N
s s s s s s s s s= × × ×a   (15) 

 
as Eq. (6) for computing the nodal displacement vector u . 

Next, Fig. 5 represents the element patches for linear and 
quadratic triangular elements when Lagrange-type basis func-
tions, instead of Laplace interpolation functions, are used for 
the local stress recovery. Except for replacing Laplace interpo-
lation function with Lagrange-type basis function, theses ele-
ment patches are identical with the type B of local grid 
patches shown in Fig. 4(a). In case of linear element patches, 
only the interior nodal values are determined for each element 
patch, as in the local patch recovery using Laplace interpola-
tion functions. Meanwhile, in case of quadratic element 
patches, the nodal values of the internal side nodes as well as 
an internal vertex node are determined at each patch recovery 
computation. Since the nodal values of side nodes could be 
calculated more than once, two options would be considered 
to determine their values. One is to update their values along 
with the patch recovery, the other is to take the averaged val-
ues. In the current study, the former option is taken to deter-
mine the nodal values of side nodes. The strains are also re-
covered in the same manner, and the recovered stress and 

 
(a) 

 

 
(b) 

 
Fig. 4. (a) A local patch sW  for node J ; r Gauss points; ˜ nodal 
values determined by recovery procedure; š patch assembly points;
(b) locally recovered stress. 
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strains field over the problem domain are interpolated using 
either Laplace interpolation functions or Lagrange-type finite 
element basis functions. 

In the current study, the accuracy of recovered strain and 
stress fields is estimated in terms of the energy-norm error 
defined by 

 

( ) ( ) ( )2 ˆˆ ˆref ref refE
dAe e s s

W W
- = - × -òu u            (16) 

 
with ( )ref

×  being the analytic solutions. The recovered strain 
ê  is also obtained by the same recovery procedure as for the 
stress. The calibration of this absolute error by the total strain 
energy ( )refU u  leads to the global relative error defined by 

 

( )
( )

( ) ( )

1/2
ˆ ˆ/ 2 / .G ref ref refE E E

Ux
W W W

= - = -refu u u u u u  (17) 

 
4. Numerical experiments 

Two numerical examples are taken to compare the stress re-
covery techniques considered in this study, in terms of the 
stress distributions before and after stress recovery and the 
global errors of recovered stresses with respect to the exact 
analytical ones. Two kinds of NEM grids, uniform and locally 
refined, are constructed and 13 Gauss integration points are 
used for both the natural element approximation and the stress 
recovery. 

Fig. 6(a) represents a revisited plane strain plate problem 
with an internal circular hole under uniform unidirectional 
tension, where a darkened quarter at the right upper is taken 
for the numerical simulation from the problem symmetry. The 
reader may refer to a book by Timoshenko and Goodier [23] 
for the exact analytic solution for 1.0xt Pa= . The width b  
and the hole diameter 2a  are taken by 10.0 m  and 1.0 ,m  
respectively. Fig. 6(b) shows a locally refined NEM grid gen-
erated with the total of 1537 nodes, where the local region 
along the hole boundary is refined to effectively capture the 
stress singularity stemming from the boundary layer effect 
[24]. In the narrow thin region along the boundary of thin 
elastic structure, the strains and stresses exponentially grow up 
in the normal direction towards the boundary. 

The problem was solved by the PG-NE method and the 
stresses were recovered by the global and local recovery tech-
niques using Laplace interpolation functions. The local stress 
recovery was basically carried out using the type A of local 
grid patches. The distributions of stress xxs  along the vertical 
line A-B are comparatively represented in Fig. 7(a), where 
those of the analytic solution and bare stress are also included 
for the comparison purpose. Here, the term bare is used to 
indicate the stresses that were directly calculated from the 
approximate solution hu  without the stress recovery. It is 
observed that both the bare and the globally recovered stresses 
are in good agreement with the exact solution, but the local 
stress recovery shows the remarkable discrepancy near two 
end points A and B. These features of three methods can be 
also observed from Fig. 7(b) representing the effective stress 
distributions along the circular path C-A. The local stress re-
covery is shown to be in a good agreement with the analytic 
solution like the global stress recovery, but it produces the 
remarkable discrepancy at both ends C and A. Meanwhile, 
one can see the slight fluctuation through a whole range of the 
bare effective stress distribution. It has been observed that 
these features remain the same when the grid density is in-
creased. 

The stress distributions obtained by the local stress recovery 
techniques using the patch type B are comparatively repre-
sented in Fig. 8, where 3- and 6-node indicate that the stress 
recovery was made by the Lagrange-type finite element basis 
functions. First, it is found for the Laplace interpolation func-
tion that the patch type A shows a slightly more accurate dis-

 
 
Fig. 5. Element patches for linear and quadratic triangular elements 
(Zienkiewicz and Zhu, 1992); r Gauss points; ˜ nodal values deter-
mined by recovery procedure; š patch assembly points. 

 

 
(a) 

 

 
(b) 

                                           
Fig. 6. (a) Plate with a circular hole subject to unidirectional tension 
(plane strain condition); (b) locally refined non-uniform NEM grid 
( 1537).N =  
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tribution than type B, but the improvement is shown to be 
insignificant. In case of Lagrange-type FE basis functions, the 
3-node linear function leads to the stress distributions much 
higher than all the other cases including the exact analytic 
solution. It is because the constant-strain finite element basis 
functions are not smooth enough to appropriately interpolate 
the bare stress approximated by Laplace interpolation func-
tions. The big difference in the stress distributions becomes 
significantly smaller when the 6-node quadratic basis func-
tions are used, but nevertheless a big discrepancy still remains 
in a local region. 

Next, a rectangular plate shown in Fig. 9(a) with symmetric 
edge cracks is considered, which is in the plane strain state 
and subject to uniform vertical distributed load s¥ . This 
problem was tested by Tracey [25] and later studied by Bar-
soum [26] using singular quadratic iso-parametric finite ele-
ments, and the stress distributions along the circular path G  
near the crack tip are concerned for the current study. The 
relative radius of G  is set by / 0.0139r a =  and the material 
properties are the same as the previous example. A darkened 
quarter is taken for the natural element analysis from the 

symmetry of problem, and a gradient NEM grid having the 
highest grid density at the crack tip is used as shown in Fig. 
9(b) to capture the 1 / r  stress singularity near the crack tip 
as accurate as possible. The stress intensity factor for this type 
of problem is expressed by (with the correction factor C  of 
1.02 (ASTM [27]), 

   
(a) 

 

 
(b) 

 
Fig. 7. Comparison of stress distributions for locally refined NEM grid 
( 1537):N =  (a) Normal stress xxs  along the vertical line A-B; (b) 
effective stress along the circular path C-A. 
 

 
(a) 

 

   
(b) 

 
Fig. 8. Comparison between patch types A and B (locally refined NEM 
grid with 1537):N =  (a) Normal stress xxs  along the vertical line 
A-B; (b) effective stress along the circular path C-A. 

 

         
                    (a)                         (b) 
 
Fig. 9. (a) A plane strain rectangular plate with symmetric edge cracks;
(b) a gradient NEM grid ( 2516).N =  
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( )
1
2

2 tan .
2I

b aK a C
a b

ps p
p¥

æ ö
= ×ç ÷

è ø
                (18) 

 
The problem was solved by the PG-NE method using 13 

Gauss integration points and the recovered stresses were ob-
tained by both the global and local recovery techniques using 
the Laplace interpolation functions. The stress distributions 
along the circular path G  near the crack tip are compara-
tively represented in Fig. 10. First of all, it is found that the 
present gradient NEM grid used for the crack analysis pro-
vides the stress level lower than the exact value, but the recov-
ered stresses show the distributions similar to the exact ones. 

But, it is observed that the bare stresses lead to the significant 
fluctuation in their distributions, which is contrary to the stress 
distributions shown in Fig. 7 along the boundary of internal 
hole and the vertical line in the previous example. It is noted 
that the paths taken in the previous example are placed on the 
edges of fine Delaunay triangles but the circular path in the 
current example traverse the coarse Delaunay triangles. Dif-
fering from the bare stresses, the recovered stresses lead to the 
smoothened distributions and no remarkable difference is 
observed between the global and local recovery techniques. 
From the comparison of stress distributions through two ex-
amples, it has been observed that the bare stresses provide the 
accurate and smooth distributions only when the path is placed 
on the edge of fine Delaunay triangles. Both the global and 
local recovery techniques using Laplace interpolation func-
tions provide the improved smoothened stress distributions, 
except for the occurrence of remarkable discrepancy near the 
end points of path in the local recovery technique. Meanwhile, 
the local recovery techniques using Lagrange-type FE basis 
functions lead to the stress distributions showing both the 
remarkable discrepancy and the local fluctuation. 

Next, the parametric experiments with respect to the total 
number N  of grid points were performed, in order to com-
pare the convergence rates in the global error sense for the 
stress recovery techniques. The parametric experiments were 
carried out by the PG-NE method using the previous plate 
problem with an internal circular hole shown in Fig. 6(a). Uni-
form and locally refined NEM grids are used and the locally 
refined ones are generated by increasing the grid density in the 
vicinity of the internal hose, as illustrated in Fig. 6(b). The 
total numbers of grid points which are set for the parametric 
experiments are as follows: 131, 371, 736, 1338 and 2312 for 
the uniform grids, and 56, 204, 427, 1537 and 2668 for the 
locally refined grids. The convergence rates of the global rela-
tive energy-norm errors Eq. (17) in log-log scale are compara-
tive represented in Fig. 11. As shown in Fig. 11(a) for uniform 
NEM grids, the global and local recovery techniques using 
Laplace interpolation functions show almost the same conver-
gence rates as the bare stress, but 3- and 6-node finite element 
basis functions exhibit lower convergence rates. Meanwhile, 
for the locally refined NEM grids shown in Fig. 11(b), the 
convergence rates of the bare stress and the global recovery 
technique using Laplace interpolation functions are much 
higher at course grids, but those are observed to be slow down 
with the increase of grid density. Meanwhile, the remaining 
three local recovery techniques provide almost the uniform 
convergence rates which are slightly higher than those of uni-
form NEM grids. Thus, it is confirmed that the bare stresses 
approximated directly by the PG-NE method provide the con-
vergence rates higher than those of the local recovery tech-
niques, in particular at locally refined NEM grids. In addition, 
the convergence rates are improved only by the global stress 
recovery using Laplace interpolation functions even though 
the improvement is not remarkable. 

The global relative errors and the convergence rates were 

 
(a) 

 

 
(b) 

                               

 
(c) 

 
Fig. 10. Comparison of stress distributions along the circular path 
( )/ 0.0139 :r a =  (a) xxs ; (b) yys ; (c) .xyt  
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also evaluated for the BG-NE method in which Laplace inter-
polation functions, instead of Lagrange-type finite element 
basis functions, are used for the test basis functions. The com-
parison of the global relative errors between PG-NE and BG-
NE methods is also represented in Fig. 11 for uniform and 
locally refined NEM grids. It is observed that the global rela-
tive errors of BG-NE method are as a whole larger than those 
of PG-NE method for both uniform and locally refined NEM 
grids. The relative differences are apparent at the bare stress 
and the global stress recovery, while those at three local re-
covery techniques are negligible. As represented in our previ-
ous paper [15], together with the discussion on two NEM 
methods in Sec. 3, the approximation accuracy of the BG-NE 
method deteriorates owing to the numerical integration inac-
curacy. Thus, both the bare stresses and the global stress re-
covery of the BG-NE method produce the apparently larger 
errors. But, such numerical accuracy deterioration does not 
apparent at three local stress recovery techniques, because the 
error contribution by the numerical integration inaccuracy in 
the BG-NE method is relatively smaller than one caused dur-
ing the process of local stress recovery. 

5. Conclusions 

The stress recovery for the natural element method in 2-D 
solid mechanics has been addressed in this paper, in order 
to explore whether and how much the bare stresses could be 
improved by the stress recovery. The global and local stress 
recovery approaches based on the 2L -projection method 
were considered, in which the recovered stress field was 
basically interpolated by Laplace interpolation functions. 
Here, for the local stress recovery, two types of element 
patches were considered and Lagrange-type finite element 
basis functions were additionally employed to interpolate 
the recovered stress field. The characteristics of the stress 
recovery techniques were investigated in terms of the stress 
distributions and the global energy-norm errors, with re-
spect to the type of NEM grid and the total number of grid 
points. 

From the comparison of stress distributions along the spe-
cific paths in two representative examples, a plate with an 
internal circular hole and a rectangular plate with symmetric 
edge cracks, the following main observations were made: 
The bare stresses approximated by the natural element 
method provide the acceptable and smooth distributions only 
when the path is placed on the edges of fine Delaunay trian-
gles, if not those produce the significantly fluctuating stress 
distributions. Meanwhile, both the global and local stress 
recovery techniques using Laplace interpolation functions 
lead to the improved smoothened stress distributions, except 
for the occurrence of remarkable discrepancy near the end 
points of path in the local recovery technique. In the local 
stress recovery using Laplace interpolation functions, the 
patch type A shows a slightly better distribution than type B, 
but the improvement is not remarkable. On the other hand, 
the local stress recovery techniques using Lagrange-type FE 
basis functions seem inappropriate for the natural element 
method because those lead to less accurate and locally fluctu-
ating stress distributions. 

From the comparison of the global relative errors, it has 
been observed that the convergence rates of the bare stress c 
ould be improved only by the global stress recovery using 
Laplace interpolation functions. The local recovery techniques 
show the convergence rates worse than the bare stress, for 
both uniform and locally refined NEM grids. It has been also 
observed, from the comparison of two natural element meth-
ods, that the global relative errors of the BG-NE method are as 
a whole larger than those of the PG-NE method, owing to the 
inherent numerical integration inaccuracy in the BG-NE me-
thod. 

The current study is limited to 2-D linear elasticity, but it 
could be extended to 3-D problems with thin domain, such as 
plate- and shell-like structures, by introducing the assumed 
displacement field in the thickness direction. It would be 
worthwhile, and which represents a topic that deserves future 
work. 

 

 
(a) 

 

   
(b) 

                                  
Fig. 11. Comparison of the convergence rates (─ PG-NEM, --- BG-
NEM; ˜ bare, ™ global (Laplace), £ local (Laplace), △ local (3-
node), à local (6-node)): (a) Uniform grid; (b) locally refined grid. 
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