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Abstract 
 
This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfec-

tions. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a 
one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modi-
fied Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates 
with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the 
stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which 
showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the 
results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.  
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1. Introduction 

A thin plate stiffened by ribs in one or two directions can 
achieve greater strength with relatively less material. There-
fore, stiffened plates are widely used in ships, aircrafts, 
bridges, etc. Due to the extensive use of the stiffened plates, 
the vibration characteristics of stiffened plates are of consider-
able importance to mechanical and structural engineers. 

The dynamic behaviour of stiffened plates has been the sub-
ject of intensive study for many years, numerous studies have 
been reported in open literature. Among the well-known solu-
tion techniques to the vibration of stiffened plates, there are 
grillage model [1], Rayleigh-Ritz method [2, 3], finite element 
method [4, 5], finite difference method [6, 7], differential 
quadrature method [8], meshless method [9] and other meth-
ods [10-12].  

When the deflection of structure is under a great time-
varying load which may lead to large deformations of struc-
ture, geometrical nonlinear vibrations will occur. At large 
deflection level, membrane stresses are produced which give 
additional stiffness to the structure, moreover the strain-
displacement relationship becomes nonlinear in this range. 
Extensive researches on nonlinear vibration analysis of plates 
have been done. For example, see Haterbouch and Benamar 

[13], Nerantzaki and Katsikadelis [14], Celep and Guler [15]. 
Presently, the common analytical methods for the nonlinear 
vibration of plates include Ritz method, Galerkin method, 
perturbation method, successive approximation method, finite 
difference method, Runge-Kutta integration and so on [16-22]. 

Recently, Li et al. [23] obtained the analytic free vibration 
solutions of corner point supported rectangular plates by an 
up-to-date symplectic superposition method. Nikkhoo et al. 
[24] studied the vibration of a rectangular plate under multiple 
moving inertial loads by employing eigenfunction expansion 
method. Joshi et al. [25] studied the free vibration and geomet-
rically linear thermal buckling phenomenon of a thin rectan-
gular isotropic plate by an analytical model. Breslavsky et al. 
[26] investigated the static and dynamic analyses of hyperelas-
tic plates by a method for building a local model, which ap-
proximates the plate behavior around a deformed configura-
tion. Naghsh and Azhari [27] analyzed the large amplitude 
free vibration of point supported laminated composite skew 
plates by the Element-free Galerkin (EFG) method. Razavi 
and Shooshtari [28] studied the nonlinear free vibration of 
symmetric magneto-electro-elastic laminated rectangular 
plates with simply supported boundary condition, and solved 
the nonlinear ordinary differential equations by using the Ga-
lerkin method. Hassanabadi et al. [29] studied the vibration of 
a thin rectangular plate carrying a moving oscillator, the trans-
verse vibration of a thin rectangular plate under a traveling 
mass-spring-damper system is revealed by eigenfunction ex-
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pansion method. Hassanabadi et al. [30] studied the dynamic 
behavior of a circular thin plate traversed by a moving mass, a 
series of the plate natural shape functions is used to discretize 
the spatial domain, and a novel effective computational opti-
mization is developed. Viswanathan et al. [31] studied the free 
vibration of symmetric angle-ply laminated truncated conical 
shell by using the spline method. 

Geometric imperfections have been recognized since a long 
time for having a major effect on the linear and non-linear 
characteristics of thin-walled structures such as plates and 
shells [32]. The influence of geometric imperfections on the 
behaviour of plates has also been reported by many researches, 
such as Amabili [33], Alijani [34], Hui [35], and so on.  

However, even if a large number of theoretical studies on 
nonlinear vibration of plates are available in the scientific 
literature, results of stiffened plates considering geometric 
imperfections are very scarce. 

The aim of this paper is to analyze the strongly nonlinear 
free vibration of four edges simply supported stiffened plate 
with initial geometric imperfections. In the paper, the initial 
geometric imperfections of the plate taken into account are 
considered only in z direction. The nonlinear vibration of stif-
fened plate is reduced to a one-degree-of-freedom nonlinear 
system by assuming mode shapes. The Multiple scales 
Lindstedt-Poincare method (MSLP) and Modified Lindstedt-
Poincare method (MLP) are used to solve the governing equa-
tions of vibration. Some numerical example are presented to 
demonstrate how the initial geometric imperfections of plate 
influence the strongly nonlinear free vibration of stiffened 
plate. 

 
2. Derivation of the governing equation  

Consider a stiffened plate in Fig. 1, which is composed of x-
stiffeners, y-stiffeners and a plate. In order to simplify the 
problem, material nonlinearity is not considered in this paper. 
In the following computation, the plate and its stiffeners are 
made of the same material, and the material of stiffened plate 
is isotropic. The nomenclature is as follows: a and b are the 
lengths in x-direction and y-direction, respectively; ρ, E and μ 
are the mass density, Young’s modulus and Poisson ratio of 
the stiffened plate, respectively; Nx and Ny are the numbers of 
x-stiffeners and y-stiffeners, respectively; the coordinates of 
the ith x-stiffener and y-stiffener are y = yi and x = xi , respec-
tively; b1 and a1 are the distances between neighboring x-
stiffeners and y-stiffeners, respectively; Ax and Ay are the 
cross-section areas of x-stiffeners and y-stiffeners, respec-
tively; EIx and EIy are the flexural rigidity of x-stiffeners and 
y-stiffeners with respect to the neutral surface, respectively; h 
is the thickness of plate; dx is the distance between the neutral 
plane of x-section and the bending neutral plane of the com-
pound section; dy is the distance between the neutral plane of 
y-section and the bending neutral plane of the compound sec-
tion; the flexural rigidity of plate is: D = Eh3/[12(1-μ2)]. 

A stiffened plate with four edges simply supported is inves-

tigated in this paper. u and v denote the displacements of the 
middle surface of the plate along the x-direction and the y-
direction, respectively, and w denotes the deflection of the 
plate. Taking geometric nonlinearity and initial geometric 
imperfections of the plate into consideration, according to von 
Karman’s theory, the middle surface strain-displacement rela-
tionships and changes in the curvature and torsion are given 
by [36]: 
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       (1c) 

 
where the initial geometric imperfections of the plate associ-
ated with zero initial tension are denoted by out-of-plane dis-
placement w0. 

The boundary conditions of the stiffened plate with four 
edges simply supported are: u = v = w = Mx = ∂2w/∂x2 = 0 at x 
= 0, a; u = v = w = My = ∂2w/∂y2 = 0 at y = 0, b. Then, for sin-
gle mode analysis, the displacement can be assumed as: 

 

( ) ( ) 2, , sin sint
mn

m x n yu x y t u t
a b
p p

=   (2a) 

( ) ( ) 2, , sin sint
mn

m x n yv x y t v t
a b
p p

=   (2b) 

( ) ( ) 0, , sin sint
mn ij

m x n yw x y t w t w
a b
p pé ù= +ë û   (2c) 

 
where m and n are the numbers of half-waves in x and y direc-
tions, respectively. 

According to Eqs. (1a)-(1c) and (2a)-(2c), using the method 
of Ref. [37] which based on the Lagrange equation and the 
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Fig. 1. Structure of the stiffened plate. 
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energy principle, ignoring the effect of damping, then, the (m, 
n) th nonlinear free vibration differential coefficient equation 
can be obtained as follows: 

 

( ) ( )2 3

1 2 3
ˆ ˆ ˆ 0mn mn mn mnw w w wa a a+ + + =&&          (3) 

 
where mnw&  is the derivative of mnw with respect to t , mnw&&  is 
the second derivative of mnw  with respect tot , mnw  and t  
are the dimensionless quantities of mnw  and t , which based 
on the following transformation: 2 2 ,t D h a bt r=  mnw =  

,mnw h  respectively. The dimensionless coefficient 1â ~ 3â  
are given as follows: 

 
( )2 2 0 0

1 1
ˆ

mn mna b h w w G Da r c= Z +                 (4a) 

( )2 2 0 2
2 2 3

ˆ 3 4mna b w G h Da r d c= +               (4b) 

( )2 2 3
3 3 4

ˆ 4a b G h Da r z c= +                   (4c) 

 
where 
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3. Solution procedure 

For Eq. (3), if the value of 2 1
ˆ ˆa a or 3 1

ˆ ˆa a is far less than 1, 
the Eq. (3) will be considered as the weakly nonlinear equa-
tion. Otherwise, it turns into the case of strong nonlinearity. 

This paper considers the Eq. (3) as the strongly nonlinear 
case, and solves it through the Multiple scales Lindstedt-
Poincare method (MSLP). 

According to MSLP method, a parameter ε should be intro-
duced so that the linear and nonlinear terms appear in the 
same perturbation equation. Suppose 2 2

ˆ ,a ea=  3 3
ˆ ,a ea=  

ˆ= ,t tW and substituting them into Eq. (3), we obtain: 
 

( ) ( )2 32 2 2
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where 2

0 1
ˆw a= , 0w  is the natural frequency, W  is the 

nonlinear frequency, mnw&&  is the second derivative of mnw  
with respect to t̂ . 

Introducing the time scales: 0 ˆ= ,T t  1 ˆ= ,T et  2
2 ˆ= .T e t  An 

approximate solution can be given by 
 

( ) ( ) ( ) ( )2
0 0 1 2 1 0 1 2 2 0 1 2ˆ, , , , , , , .mnw U T T T U T T T U T T Tt e e e= + +  

 (7) 
 
Suppose: 

2 2 2
0 1 2 .w e eW = + W + W                             (8) 

 
Substituting Eqs. (7) and (8) into Eq. (6), and equating the 

coefficients of ε0, ε1 and ε2 in both sides of the equation, we 
obtain 

 
2 2 2

0 0 0 0D U UW +W =                              (9) 



3472 Z. Chen et al. / Journal of Mechanical Science and Technology 30 (8) (2016) 3469~3476 
 

 

2 2 2 2 2
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The complex solution of Eq. (9) can be written as 
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where A is unknown complex function, and A is the conjugate 
complex of A. 

Substituting Eq. (12) into Eq. (10) yields: 
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where CC is the complex conjugate part to the preceding 
terms. The secular terms are eliminated by: 
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Therefore the solution of Eq. (13) is: 
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Substituting Eqs. (12) and (15) into Eq. (11) yields: 
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where CC is the complex conjugate part to the preceding 
terms, and NST stands for non-secular terms. The secular 
terms are eliminated by: 
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In order to solve Eq. (17), The complex function A can be 

expressed as 
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where ( )2Tl and ( )2Tg are real functions with respect to T2. 
Substituting Eq. (18) into Eq. (17), and separating the real and 
imaginary part, respectively, then we obtain: 
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For the steady response, it demands 2 0D l = and 2 0D g = , 

thus: 
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Substituting Eq. (21) into Eq. (8), the nonlinear frequency 

can be solved as follows: 
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4. Numerical results and discussion 

4.1 Example A 

The fundamental parameters of the stiffened plate with four 
edges simply supported are as follows: a = 3 m, b = 2 m, E = 
2.06×1011 Pa, r = 7.85×103 kg/m3, h = 0.014 m, Nx = Ny = 1, μ 
= 0.3, Ax = 7.2×10-4 m2, Ay = 6.0×10-4 m2, EIx = 1.78×105 N·m2, 
EIy = 1.03×105 N·m2. 

According to the analysis of parameters mentioned above, 
the (2, 2)th mode of the stiffened plate is of strong nonlinear-
ity, so this paper investigated the influence of the initial geo-
metric imperfections of plate through the (2, 2)th mode. Four 
cases are analyzed including: 0

1 0,w =  0
2 0.001 ,w m=  0

3w =  
0.002 m  and 0

4 0.003 .w m=  
Meanwhile, for verifying the accuracy of the method of this 

paper, the results calculated by the Modified Lindstedt-
Poincare method (MLP) which is suitable for application in 
strongly nonlinear case [38] are listed. The results calculated 
by the Multiple scales method (MS) which is suitable for ap-
plication in weakly nonlinear case [39] are also listed for 
comparison. 

The following Figs. 2-7 are about the amplitude λ-
frequency ratio f curve, where frequency ratio f is 0wW  
which calculated by Eq. (22). 

Figs. 2-5 shows that the results calculated by MSLP method 
are very close to MLP method, and the Eq. (22) deduced by 
this paper is correct. However, the results calculated by the 
MS method are very different from MSLP and MLP method. 
It shows that the MS method can not be applied to calculate 
strongly nonlinear case. 

From Fig. 6, it can be observed that the initial geometric 
imperfections of plate affect the frequency ratio. Given the 
changes of imperfection within 0 to 0.003 m, the frequency 
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ratio reduced as the initial geometric imperfections of plate 
increased, and the ratio declined about 4% at most. In other 
words, the increase of the initial geometric imperfections of 
plate can lead to the decrease of nonlinear effect.  

From Fig. 7, the results calculated by MS method also show 
that the increase of the initial geometric imperfections of plate 
will lead to the decrease of nonlinear effect. However, with 
the imperfection changes from 0 to 0.003 m, the frequency 
ratio reaches declined about 85% at most. Comparing the re-
sults calculated by MSLP method, it is easy to see that using 
MS method to study strongly nonlinear vibration can lead to 
serious mistakes. 

4.2 Example B 

The fundamental parameters of the stiffened plates with 
four edges simply supported are as follows: a = 3 m, b = 2 m, 
E = 2.06 × 1011 Pa, r = 7.85 × 103 kg/m3, h = 0.014 m, Nx = Ny 
= 3, μ = 0.3, Ax = 4.8×10-4 m2, Ay = 3.6×10-4 m2, EIx = 5.27 × 
104 N·m2, EIy = 2.22 × 104 N·m2. 

According to the analysis of parameters mentioned above, 
the (1, 2)th mode of this stiffened plate is of strong nonlinear-
ity, so the (1, 2)th mode is investigated. Similarly, four cases 
are analyzed including: 0

1 0,w = 0
2 0.001 ,w m=  0

3 0.002w m=  
and 0

4 0.003 .w m=  

 
 
Fig. 5. The λ-f curve 0

4( 0.003 ).w m=  
 

 
 
Fig. 6. The results calculated by MSLP method. 
 

 
 
Fig. 7. The results calculated by MS method. 

 

 
 
Fig. 2. The λ-f curve 0

1( 0).w =  
 

 
 
Fig. 3. The λ-f curve 0

2( 0.001 ).w m=  
 

 
 
Fig. 4. The λ-f curve 0

3( 0.002 ).w m=  
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As the same as Fig. 6, it can be observed from Fig. 8 that 
the initial geometric imperfections of plate affect the fre-
quency ratio. The frequency ratio reduces about 10% with the 
imperfection changes from 0 to 0.003 m.  

Similarly, it can be observed from Figs. 8 and 9 that using 
MS method to study strongly nonlinear vibration can lead to 
serious mistakes. 

 
4.3 Example C 

Using the fundamental parameters of example B, and set-
ting Nx = Ny = 5. The (1, 2)th mode is investigated. 

As the same as Figs. 6 and 8, it can be observed from Fig. 
10 that the initial geometric imperfections of plate affect the 
frequency ratio. The frequency ratio reduces about 7% with 
the imperfection changes from 0 to 0.003 m.  

From Figs. 10 and 11, it can be observed that there is a huge 
difference among the results by using MSLP method and MS 
method, which indicates that serious mistakes can be occurred 
if using MS method to study strongly nonlinear vibration. 

 
5. Conclusions 

This paper investigated the strongly nonlinear free vibra-
tion of four edges simply supported stiffened plate with initial 

geometric imperfections. The Multiple scales Lindstedt- 
Poincare method (MSLP) and the Modified Lindstedt-
Poincare method (MLP) are used to solve the governing 
equations of vibration. Numerical examples for stiffened 
plates with different initial geometric imperfections are pre-
sented in order to discuss the influences to the strongly 
nonlinear free vibration of the stiffened plate, which yields 
the following conclusions: 

(1) The results calculated by MSLP method are very close 
to MLP method. It supported that the equations deduced by 
this paper is correct. 

(2) The frequency ratio reduced as the initial geometric im-
perfections of plate increased, which showed that the increase 
of the initial geometric imperfections of plate can lead to the 
decrease of nonlinear effect. 

(3) There is a huge difference among the results by using 
MSLP method and MS method. It indicates that using MS 
method to study strongly nonlinear vibration can lead to seri-
ous mistakes. 
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Fig. 8. The results calculated by MSLP method. 

 
 

 
 
Fig. 9. The results calculated by MS method. 

 

 
 
Fig. 10. The results calculated by MSLP method. 
 
 

 
 
Fig. 11. The results calculated by MS method. 
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