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Abstract 
 
A method based on optimal control theory is presented in this paper to solve path-tracking problems in inverse vehicle handling dy-

namics. The idea behind is to identify the optimal steering torque input along a prescribed path to generate an expected trajectory that 
guarantees minimum clearance. Based on this purpose, the path-tracking problem, treated as an optimal control problem, is first con-
verted into a nonlinear programming problem by Gauss pseudospectral method (GPM) and is then solved with Sequential quadratic pro-
gramming (SQP). Finally, a real vehicle test is executed to verify the rationality of the proposed model and methodology. Results show 
that the minimum lateral position error of the generated path-tracking trajectory can be a good solution for path-tracking problem in in-
verse vehicle handling dynamics for GPM. The algorithm has higher calculation accuracy compared with other methods to solve path-
tracking problems. The study could help drivers identify safe lane-keeping trajectories and areas easily.  
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1. Introduction 

Human driving characteristics are complex combinations of 
physical and mental processes in response to perceived motion, 
visual, and acoustic cues. With different motion perceptions, 
drivers perform as a controller to satisfy key guidance and 
control requirements for vehicle system [1]. 

The growing mobility of people and goods has a signifi-
cantly high societal cost. Several studies show that drivers are 
responsible for most accidents, which occur mainly due to 
distraction, and wrong perception and judgment of the traffic 
and environmental situations around vehicles [2]. 

The study of inverse vehicle handling dynamics plays an 
important role in stability research, with advantage of ignoring 
the driver model. Thus, the study of inverse vehicle handling 
dynamics is proposed in this paper. 

The general path-tracking control for inverse problem of 
vehicle handling dynamics scenario is shown in Fig. 1, where 
a vehicle travels along a prescribed path. The vehicle is ex-
pected to generate trajectory with minimum lateral distance 
error while tracking the prescribed path. Then, the optimal 
steering torque, steering rate, and as yaw rate are calculated. 

A brief review of path-tracking problems in literatures is 
presented in this section. 

Toshihiro et al. [3] proposed an automatic path-tracking 

controller of a four-wheel steering (4WS) vehicle based on the 
sliding mode control theory. 

Bektache et al. [4] developed a module that focused on the 
estimation of vehicle parameters, such as speed, direction, and 
position, using a kinematic model of each vehicle to generate 
trajectory estimations. 

Ju [5] proposed a Linear-matrix-inequality (LMI)-based H
∞ control algorithm and utilized the fusion of look-ahead and 
look-down sensors to solve lateral control problems of 
autonomous vehicles. 

Kim et al. [6] utilized a Model predictive controller (MPC) 
method to solve path-tracking problems of autonomous vehi-
cles. Calculation results indicate that the proposed MPC struc-
ture better matches the target criteria. 

Taehyun et al. [7] described a development of a collision 
avoidance controller for autonomous vehicles to track the 
desired collision avoidance path. Simulation results confirm 
that the control system can perform collision-free maneuvers 
effectively. 

Xu et al. [8] proposed a pedestrian localization method 
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Fig. 1. Double lane change test road(● stands for stake). 
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based on extended Kalman filter to estimate the possibility of 
pedestrian-vehicle collision, which includes collision predic-
tion, pedestrian detection, and localization. 

Anderson et al. [9] described a method to deal with semi-
autonomous hazard avoidance problems in the presence of un-
known moving obstacles and unpredictable driver inputs. The 
method was used to predict the motion and to anticipate inter-
section of the host vehicle with both static and dynamic hazards, 
excluding projected collision states from a traversable corridor. 

Amir et al. [10] presented a non-linear adaptive dynamic 
surface sliding control method for a simultaneous vehicle-
handling and path-tracking improvement. 

Xu et al. [11] developed a receding-horizon formulation that 
reduced the overall burden of path-planning computations and 
made it suitable for highly large domains.  

Ghaffari et al. [12] selected lane change maneuver as the 
object behavior and proposed novel, adaptive neuro-fuzzy 
inference models. The models were able to simulate and pre-
dict the behavior of a driver-vehicle-unit in a lane change ma-
neuver for various time delays. 

Jin et al. [13] redefined the equation of Time-to-collision 
(TTC) using visual angle information, taking lateral separation 
into account.  

The Gauss pseudospectral method in its current form is one 
of the newest numerical approaches in today’s literature [14], 
although it bears resemblance to work done in 1979 [15]. The 
method has the potential of solving real-time optimal control 
problems with fewer parameters and higher accuracy advan-
tages [16, 17]. 

This paper aims to present a method based on optimal con-
trol theory for path-tracking problems in inverse vehicle han-
dling dynamics. The method is used to calculate optimal con-
trol input, such as steering torque for driving in a desired path 
without striking neighboring obstacles or deviating from the 
prescribed path. The rest of the paper is organized as follows: 
Sec. 2 presents the model of vehicle path-tracking problem; 
Sec. 3 presents the solution for the proposed model; Sec. 4 
illustrates the numerical simulation and experimental verifica-
tion; and Sec. 5 summarizes the conclusions and suggests 
future research directions. 

 
2. Model of vehicle path-tracking problem 

2.1 Mathematical model of vehicle path-tracking problem 

The longitudinal force acting on the front wheels is assumed 
to be small. The influence on the tire cornering characteristics 
affected by ground tangential force is ignored within linear 
range. The vehicle movement can be simplified as a 4-DOF 
vehicle model, depicted in Fig. 2. The vehicle model has the 
following rotary motion of the steering system, longitudinal 
and lateral motion and yawing motion degree-of-freedom. The 
main model composed by the rotary motion of the steering 
system, the lateral and longitudinal motion, and the yawing 
motion can be manifested in the simplified model. Thus, the 
model has greater practical significance for theoretical analy-

sis. In state space form, it is: 
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where m  is vehicle mass; zI is moment of inertia around the 
z axis; v  and u  are lateral and longitudinal speed, respec-
tively; w  is yaw rate of the vehicle, q  is heading angle of 
the vehicle, a  and b  are distances of front and rear axles 
from the center of gravity, respectively; wI  is moment of 
inertia of the steering system; i  is transmission ratio of the 
steering system; 1x  is front wheel aligning arm of force; wc  
is drag coefficient; swT  is steering torque, and fyF  and ryF  

are lateral forces of front and rear tires, respectively. In 
fF mgf= , g  is gravity acceleration and f  is coefficient of 

rolling resistance. In 
2

w 21.15
DC AuF = , DC  is coefficient of air 

resistance and A is frontal area. p  is steering rate, fxF  and 

rxF  are the traction or brake forces of front and rear wheels, 
respectively, wk  is synthesized cornering stiffness, d  is 
front steering angle, and 1k  is synthesized stiffness of front 
tires. 

Considering the effect of the traction/brake force, the lateral 
forces of the front and rear tires are: 
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Fig. 2. 4-DOF vehicle model. 
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where 2k  is synthesized stiffness of rear tires and m  is co-
efficient of friction. 

Considering the longitudinal load transfer on the front axle 
and the rear one, the vertical forces of the front and rear 
wheels are: 
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where gh  is height of the center gravity. 

The state variables are lateral and longitudinal velocity in 
the body frame, yaw rate, front steering angle, steering rate, 
lateral and longitudinal vehicle coordinates in the inertial 
frame, and heading angle.  

To calculate the vehicle positions defined by x  and y  
coordinates, the vehicle velocity in the body coordinate is 
projected as: 
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According to Eqs. (1) and (4), state equation can be de-

scribed as:  
 

[ ( ), ( )]f t t=&x x z                 (5) 
 

where ( )tx  and ( )tz  are state and input, respectively, 
T( ) ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )t u t v t ω t t p t x t y t θ td= é ùë ûx

T( ) [ ( )]swt T t=z . 

 
2.2 Constrains 

The initial and terminal states are described as: 
 

0 0( ) [ ,0,0, 0,0, 0, 0,0]Tt u=x               (6) 

2 3 4 5 8[ ( ), ( ), ( ), ( ), ( )] [0,0,0,0,0]T T
f f f f fx t x t x t x t x t = .    (7) 

 
Since it is required that rollover should be avoided for the 

vehicle, the path constraint is imposed as [18]: 
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where D  is wheel base and K  is stability factor. 

When the vehicle is driven by the front wheels, the con-
straints on fxF  and rxF  are imposed as [19]: 
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When the brakes are applied to decelerate the vehicle and 
all the wheels are assumed in lock-brake, the constraints on 

fxF  and rxF  are as follows: 
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The boundary constraint of the control variable is decided 

by the driver's physiological limit as: 
 

min max£ £z z z                  (11) 
 

where minz  and maxz  are the lower and upper limit values of 
the steering torque, respectively. 

 
2.3 Optimal control object of path tracking problem 

Vehicle path-tracking problem can be regarded as an opti-
mal control problem. Lateral and longitudinal velocity in the 
body frame, yaw rate, front steering angle, steering rate, lateral 
and longitudinal vehicle coordinates in the inertial frame, and 
heading angle are determined as the state variables. Steering 
torque is set as the control variable. Minimum lateral distance 
error throughout the process of tracking the prescribed path is 
determined as control object. 

The cost function is: 
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where 0t  is initial time, ft  is final time, and dy is pre-
scribed path. Ê  is standard threshold of lateral distance error 
of dy y- , Ê = 0.3 m. ŝwT  is standard threshold of the steer-
ing torque, ŝwT = 8 N·m. 

The double lane change test road is described in Fig. 1 [19]. 
where 0 1 2 4 2s s s s u= = = = , 3s u= , 5 5s u=  and 6 3s u= . B 
is the distance of lane-change, B = 3.5 m. B1, B2, and B3 are 
distances between the stakes, B1 = 1.1L+0.25 = 2.12 m, B2 = 
1.2L+0.25 = 2.29 m, B3 = 1.3L+0.25 = 2.46 m, where L is 
width of the vehicle, L = 1.7 m. 

 
3. GPM of solving vehicle path-tracking problem 

For the sake of convenience, the path-tracking problem is 
transformed into a Bolza problem. 

Bolza cost function is: 

0
0 0( ( ), , ( ), ) ( ( ), ( ), ) .ft

f f t
J t t t t g t t t dty= + òx x x z      (13a) 

 
The dynamic constrain is: 

( ( ), ( ), )f t t t=&x x z 0[ , ] .ft t tÎ          (13b) 

 
The boundary constrain is: 
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0 0( ( ), , ( ), ) .f ft t t tj = 0x x            (13c) 

 
The inequality path constraint is: 

0[ ( ), ( ), ] [ , ]fC t t t t t t£ Î0x z          (13d) 

 
where ( ) nt RÎx  is state and ( ) mt RÎz  is input. 

In Eqs. (13a)-(13d), functions y , g , f , j  and C  are 
defined as follows: 

 
: n nR R R R Ry ´ ´ ´ ®  
: n mg R R R R´ ´ ®  
: n m nf R R R R´ ´ ®  
: n n qR R R R Rj ´ ´ ´ ®  
: n m cC R R R R´ ´ ® . 

 
The main idea of the GMP algorithm is given as: 
Step 1: Time discretization 
The independent variable can be mapped to the general in-

terval [ 1,1]t Î -  via affine transformation as [16]: 
 

0 0 02 / ( ) ( ) / ( )f f ft t t t t t tt = - - + -         (14) 

 
where 0[ , ] .ft t tÎ  

Step 2: Approximating state and control variables 
The state and control variables are approximated by differ-

ent Lagrange interpolating polynomials ( ) ( 0,1, , )iL i Nt = L  
and *( ) ( 0,1, , )iL i Nt = × × ×  in each subinterval, 
where 
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Step 3: Determining the constrain conditions 
The kinematic differential equation constraint is converted 

by the algebraic constraint, and the terminal state constraint is 
solved by including an additional constraint. 

Step 4: Solving the nonlinear programming problem. 

 
3.1 Interval change 

The minimization problem can be redefined by substituting 
Eq. (14) into Eqs. (13a)-(13d) as: 

 
10

0 1
min ( ( 1), , (1), ) ( ( ), ( ), )

2
f

f

t t
J t t g dy t t t t

-

-
= - + òx x x z  

 (17a) 

    0subject to ( ( ), ( ), )
2

ft t
f t t t

-
=&x x z        (17b) 

0( ( 1), , (1), )ft tj - = 0x x             (17c) 
[ ( ), ( ), ]C t t t £ 0x z .               (17d) 

Problems in Eqs. (17a)-(17d) are referred to as the trans-
formed continuous Bolza problem. 

 
3.2 Global interpolation polynomial approximation of the 

state and control variables 

The Gauss pseudospectral method, like Legendre and Che-
byshev methods, is based on state and control trajectory ap-
proximations, using interpolating polynomials. The state is 
approximated using a basis of N+1 Lagrange interpolating 
polynomials ( )iL t  as follows [14]: 
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where ( ) ( )i it t=X x  and ( 0, , ) .i N= L  

Additionally, the control is approximated using a basis of N 
Lagrange interpolating polynomials *( ) ( 0,1, , )iL i Nt = × × ×  as: 
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It can be seen from Eqs. (15) and (16) that 
( )( 0,1, , )iL i Nt = × × ×  and *( )( 0,1, , )iL i Nt = × × ×  satisfy the prop-
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3.3 The kinematic differential equation constraint converted 

by the algebraic constraint 

Differentiating Eq. (18), Eq. (20) is expressed as: 
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The derivative of each Lagrange polynomial on Legendre-

Gauss (LG) points can be represented in a differential ap-
proximation matrix, ( 1)N N

ki R ´ +ÎD . The elements of the differ-
ential approximation matrix are determined offline as follows: 
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where 1,2, ,k N= L  and 0,1, , .i N= L   
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The dynamic constraint is transcribed into algebraic con-
straints, using the differential approximation matrix as fol-
lows: 
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3.4 The terminal state constraint in the discrete conditions 

The set of nodes includes the N interior LG points, 
1 2, , Nt t tL , the initial point, 0 1t º - , and the final point  

1ft º . Since fX  is absent in the state approximation, it 
must be controlled by including an additional constraint that 
relates the final state to the initial state via a Gauss quadrature 
to meet the state dynamic equation of Eq. (17b). According to 
the state dynamics: 
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which can be discretized and approximated as: 
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where kw  is Gauss weights. 
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Next, Eq. (17c) is expressed as: 
 

0 0( ( ), , ( ), )f ft tj t t =X X 0 .              (25) 

 
Furthermore, Eq. (17d) is evaluated at the LG points as: 
 

0[ ( ), ( ), ; , ] ( 1, , )k k k fC t t k Nt t t £ = × × ×X Z 0 .    (26) 

 
3.5 Calculating border control variables  

Obtaining the accurate values of the border control variables 
is highly important. In the paper, they are solved by the 
method provided in Ref. [20]. 

 
3.6 Approximating performance index function 

The integral term in the cost functional of Eq. (17a) can be 
approximated with a Gauss quadrature as before, resulting in: 
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The optimal control problem of vehicle path tracking is de-

fined as a nonlinear programming problem by the cost func-
tion of Eq. (27) and the algebraic constrains of Eqs. (22) and 

(24)-(26). The solution of the nonlinear programming problem 
is an approximate answer to the transformed continuous Bolza 
problem. 

Sequential quadratic programming (SQP) algorithm is used 
to solve the nonlinear programming problem [21]. 

SQP method solves the nonlinearly constrained problem by 
a sequence of Quadratic programming (QP) subproblems. It is 
assumed that an approximate solution kx  and a Lagrange 
multiplier vector kl  are known when the thk  iteration starts. 
According to kx  and kl , the thk  QP subproblem kP  is 
obtained. Then, a new approximate solution 1kx +  is attained 
by solving kP  and determining Lagrange multiplier vector 
correspondent 1kl + . The process is repeated until the ap-
proximate optimal solution of the nonlinear programming 
problem is obtained. 

  
4. Numerical simulation and experimental verifica-

tion 

4.1 Simulation result 

Results of optimum path tracking of inverse problem of ve-
hicle handling dynamics with the proposed method are con-
firmed by simulation. For the simulation, the calculation pa-
rameters are shown in Table 1.  

The simulation conditions such as initial and final condi-
tions and boundary constraint are shown in Table 2. The op-
timization is calculated by SQP algorithm and MATLAB 
software, using a 2.8 GHz/Pentium IV computer and Window 
XP operating system.  

Realistically, drivers’ ideal target trajectory should be a 
low-level, continuous and smooth curve. The double lane 
change test road is described as a third-order curve, where 
first-order derivative is continuous, transformed with cubic 
splines fitting shown in Fig. 3. 

Fig. 3 shows the simulation result of the lateral distance 
while tracking the prescribed path. The figure indicates that 

Table 1. Simulation parameters. 
 

Parameter Value 

m/ kg 1265 

Iz/ kg﹒m2 1800 

a/ m 1.170 

b/ m 1.195 

k1/N﹒rad-1 60042 

k2/N﹒rad-1 109295 

i 20 

m  0.8 

Iw/ kg﹒m2 16.38 
-1/ N m radwc s× × ×（ ） 140 

-1/ N m radwk × ×（ ） 0 

1 / mx  0.021 

hg/ m 0.53 
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the vehicle can track the double lane change test road well 
with an initial speed of 105 km/h. 

Fig. 4 describes the calculation result of the absolute error 
between the simulation result of the lateral distance and the 
prescribed path. It shows that the maximum value of the abso-
lute error is about 0.12 m. The absolute error calculated with 
optimum control method is very small. Thus, the vehicle can 
travel along the prescribed trajectory with good tracking per-
formance under optimum control condition. 

Fig. 5 shows the result of the steering torque with different 
longitudinal distance. It shows that the steering torque has 
peak values at 60 m, 100 m, 150 m and 190 m, which indi-
cates the hard sledding for the driver to manipulate the car. 

Fig. 6 describes the calculation result of the steering rate. 
From the figure it is shown that the steering rate has bigger 
response values at 75 m and 210 m, which indicates the higher 
busyness degree for the driver to manipulate the car. 

 
4.2 Evaluation of calculation accuracy 

To compare the calculation accuracy of GPM with the nu-
merical integration algorithm, the control variable obtained by 
calculating GPM algorithm is substituted into Eq. (1). Then, 

another optimal trajectory is calculated by the numerical inte-
gration algorithm. Finally, the absolute error between the re-
sults of the two optimal trajectories, which are calculated by 
the numerical integration algorithm and GPM algorithm re-
spectively, and the result of the prescribed path are acquired. It 
is shown that the maximum value of the absolute error given 
by the calculation of GPM is about 0.12 m. However, the 
same value given by the calculation of the numerical integra-
tion algorithm is about 0.21 m. Thus, the solution used has a 
higher accuracy advantage in GPM algorithm compared with 
other traditional methods in solving path-tracking problems . 

 
4.3 Experimental result 

4.3.1 Test objectives 
The ground test is conducted to obtain the related test data 

such as lateral distance and steering torque, with the purpose 
of verifying the feasibility of the simulation results. 

 
4.3.2 Test ground and conditions 

The overall length of the ground is 2212 m. At each end of 
the ground, the U-turn ring has a radius of 36 m. The longitu-
dinal and lateral slopes of the ground are less than 2%. In or-
der to satisfy the experimental conditions, the wind velocity 
must be less than 5 m/s, and the ambient temperature should 
be between 0°C and 40°C. 

 
4.3.3 Block diagram of test system and measurement equip-

ments 
The block diagram of test system is shown in Fig. 7.  
The measurement equipment is described as follows: 
(1) RACELOGIC VBOX speed instrument, which is used 

to measure the vehicle speed precisely, is shown in Fig. 8(a); 
(2) Steering torque/angle tester, which is used to measure 

the steering torque or the steering angle, is shown in Fig. 8(b); 

Table 2. Simulation conditions. 
 

 Initial 
conditions 

Final 
conditions  Boundary 

constraint 

(km/h)u  105  ( )min N m×z  -8 

(km/h)v  0 0 ( )max N m×z  8 

(rad/s)w  0 0   
o( /s)p  0 0   
(m)x  0    

(m)y  0    
o( )q  0 0   
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Fig. 3. Lateral distance. 
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Fig. 5. Steering torque. 
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Fig. 6. Steering rate. 
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(3) Angular rate gyroscope, which is used to measure the 
yaw rate and the lateral and longitudinal acceleration, is 
shown in Fig. 8(c); 

(4) DEWESoft digital signal acquisition, which is used to 
collect and record different types of data simultaneously, is 
shown in Fig. 8(d); 

(5) Other auxiliary equipment, such as stopwatch, battery, 
and wire, are also required for the test. 

 
4.3.4 Test procedure 

The test procedure in accordance with ISO/TR3888-1999 is 
as follows: 

Step 1: As shown in Fig. 1, stakes are arranged and a pre-
scribed path is painted exactly on the ground according to the 
double lane change test road (solid line shown in Fig. 3). 

Step 2: Equipment shown in Fig. 7 is warmed up to normal 
operating temperature. 

Step 3: A water injector is installed at the center of the front 
axle to record the real travelling trajectory in the form of water 
trace. With an initial velocity of 105 km/h, the tested vehicle 
travels along the initial lane, which is marked as the solid line 
AB shown in Fig. 3. At the same time, the water injector is 
opened to report the vehicle trajectory. A rapid lane change 
maneuver is implemented, which is marked as the solid line 

CD shown in Fig. 3. As the vehicle returns to the initial lane 
quickly and without touching any part of the stakes, a solid 
line EF shown in Fig. 3 is marked. The time history curves of 
the measured variables are recorded. 

Step 4: Step 3 is repeated 12 times. 
The test values are shown in Figs. 9(a)-(c). Figs. 9(a)-(c) 

shows errors between simulation value and experimental 
value caused by the subjective feeling and driving skill of the 
driver. However, the trend of the simulation value is similar 
with the experimental value, verifying the accuracy of the 
optimal control model and the feasibility of simulation results. 

 
5. Conclusions 

In this paper, the path-tracking scenario is analyzed, while 
using the Gauss pseudospectral method, to identify steering 
torque input for driving a desired path. Accordingly, a 4-DOF 
simplified vehicle model is used to describe the motion of the 
vehicle. Then, the problem of the path-tracking maneuver is 
formulated as a nonlinear programming problem by GPM. 
Finally, the optimal control problem is solved via SQP method. 
The calculation accuracy of GPM is evaluated by comparing 
with the numerical integration algorithm. Simulation results, 
which are verified to be correct with test driving a vehicle, 
show that the maximum value of the absolute error between 

 
 
Fig. 7. Block diagram of test system. 

 

  
               (a)                         (b) 
 

  
               (c)                         (d) 
 
Fig. 8. Measurement equipments: (a) RACELOGIC VBOX speed 
instrument; (b) steering torque/angle tester; (c) angular rate gyroscope;
(d) DEWESoft digital signal acquisition. 
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Fig. 9. Comparison of simulation and test value. 
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the optimal trajectory and the prescribed trajectory is about 
0.12 m. This indicates the errors through the optimal control 
are small. Furthermore, the results obtained in this paper dem-
onstrate the viability of the Gauss pseudospectral method as a 
means of obtaining accurate solutions to path tracking optimal 
control problem.  

The trajectory design is an important factor drafting control 
laws for lane changes in the future. The solution to the path 
tracking optimal control problem provides valuable insight 
into the lane changes design work. 
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