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Abstract 
 
This theoretical study investigates three types of basic flows of viscous incompressible Herschel-Bulkley fluid such as (i) plane Cou-

ette flow, (ii) Poiseuille flow and (iii) generalized Couette flow with slip velocity at the boundary. The analytic solutions to the nonlinear 
boundary value problems have been obtained. The effects of various physical parameters on the velocity, flow rate, wall shear stress and 
frictional resistance to flow are analyzed through appropriate graphs. It is observed that in plane Poiseuille flow and generalized Couette 
flow, the velocity and flow rate of the fluid increase considerably with the increase of the slip parameter, power law index, pressure gra-
dient. The fluid velocity is significantly higher in plane Poiseuille flow than in plane Couette flow. The wall shear stress and frictional 
resistance to flow decrease considerably with the increase of the power law index and increase significantly with the increase of the yield 
stress of the fluid. The wall shear stress and frictional resistance to flow are considerably higher in plane Poiseuille flow than in general-
ized Couette flow.   
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1. Introduction 

Recently, non-Newtonian fluid flows attracted several re-
searchers due to its growing applications in various fields of 
science and engineering, such as bio-fluid mechanics, bio-
medical engineering, chemical engineering, food processing 
technology, polymer extrusion processes, drilling operations, 
metallurgy etc [1]. Herschel-Bulkley (H-B) fluid is classified 
as non-Newtonian fluid with yield stress, since the relation-
ship between the shear stress and rate of strain of this fluid 
model is nonlinear [2, 3]. Due to its distinct physical proper-
ties, it finds applications in the manufacturing of bioengineer-
ing products, paints, synthetic lubricants and also in the bio-
logical fluid flows such as blood, synovial fluids etc [4-6]. 

The studies on the incompressible fluid flow with slip ve-
locity at the boundary of the flow region was proposed by 
Navier [7] in 1823 and he propounded that the tangential ve-
locity of the fluid at any point on the surface of the solid 
boundary is proportional to the tangential stress acting at that 
point. The contributions of Basset [8] and O’Neil et al. [9] are 
some sample studies for the existence of the slip velocity at 
the boundary of the flow region. It is well understood that in 

most of the flow problems studied at the micro scale, the as-
sumption of no-slip velocity at the boundary is true only if the 
surface of the boundary is very rough, since the no-slip veloc-
ity conditions in this case cannot not derived from the first 
principle [10, 11]. Goldstein [12] and Batchelor [13] reported 
that the use of no-slip velocity at the boundary stems from the 
necessity that the theoretical predictions need to agree with the 
experimental observations. But, if the surface of the boundary 
is smooth, then the usual assumption of no-slip velocity at the 
boundary is not valid, indeed the fluid slips at the smooth 
boundary as this is more evident from the studies of Lauga et 
al. [10], Denn [14], Potente et al. [15], Mitsoulis et al. [16]. 
Denn [14] propounded that in molecular studies such as in 
polymer melts and polymer extrusion process, at the boundary 
the slip effects are found at the macro scale which leads to 
flow instabilities.  

The aforementioned wealthy background on the slip veloc-
ity at the boundary of fluid flow attracted the attention of sev-
eral researchers to do further investigations in this field with 
applications to various disciplines of engineering and technol-
ogy [17-20]. The analytical solutions of shear flow problems 
with slip velocity at the boundary play a major role not only in 
solving the relevant industrial problems, but also to under-
stand the complexity of many flow problems. Indeed there are 
many analytical solutions available in the literature for slip 
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shear flow problems and of these, some of them are very triv-
ial and others involve more complex rheological parameters 
[21-26]. Although the simple shear flow solutions seem to be 
trivial, they are very useful for the better understanding of 
more complex solutions and even these solutions lead to novel 
methods to solve advanced level problems [27-29]. 

Wu et al. [30] obtained analytical solutions to the pressure 
driven unsteady flow of Newtonian fluid in micro-tubes with 
slip velocity as defined by Navier [7]. In an analytical study 
on the flow through a pipe, Mathews and Hill [24] used the sip 
boundary conditions proposed by Thompson and Troian [31], 
while Yang ang Zhau [23] used the slip velocity condition of 
Navier [7] in their theoretical studies to the squeeze flow in a 
pipe. Hakeem et al. [32] investigated the effects of slip veloc-
ity in the peristaltic motion of power law fluid through an 
inclined tube. Chen and Zhu [33] performed analytical studies 
on the Couette-Poiseuille flow of Bingham fluid between two 
parallel porous plates. Abelman et al. [34] obtained numerical 
solutions for their computational study on the steady Couette 
flow of thermodynamic third grad fluid through porous me-
dium, using rotating frame of reference. Noor et al. [35] inves-
tigated the effects of slip velocity in the mixed convection 
stagnation flow of micropolar nanofluid along a vertically 
stetching surface. Devakar and Ramesh [36] analytically in-
vestigated the Couette flow, Poiseuille flow and generalized 
Couette flow of Casson fluid between parallel plates.  

 The (i) plane Couette flow (ii) plane Poiseuille flow and 
(iii) generalized Couette flow of viscous incompressible fluid 
are some of the simple shear flows in the axial (horizontal) 
direction and although the analytical solutions of these flows 
are simple, these solutions are the building blocks for the easy 
understanding of more complex fluid flows. Since the Her-
schel-Bulkley (H-B) fluid model has one more parameter 
namely the power law index n than the Casson fluid model, it 
is hoped that the use of H-B fluid model rather than Casson 
fluid model in these types of flows would yield more informa-
tion on flow characteristics. As mentioned by Chaturani [37] 
and Tu and Deville [2], Casson fluid model can be used for 
flow at moderate shear rates, whereas, the H-B fluid model 
can still be used at low shear rates. Hence, it is appropriate to 
model the incompressible fluid used in these kinds of flow as 
H-B fluid model rather than Casson fluid model.  

The mathematical modeling of H-B fluid for the (i) plane 
Couette flow, (ii) plane Poiseuille flow and (iii) generalized 
Couette flow between parallel plates was not studied by any 
one so far, to the knowledge of the author. Hence, in this 
mathematical analysis, we investigate the steady, laminar and 
fully developed flow of viscous incompressible fluid between 
parallel plates, considering the flow to be (i) plane Couette 
flow, (ii) plane Poiseuille flow and (iii) generalized Couette 
flow, the flowing fluid is modeled as H-B fluid model. It is 
noted that for particular values of the parameters n and τy, the 
H-B fluid model reduces to Bingham fluid model, power law 
fluid model and Newtonian fluid model which are widely used 
in the modeling of industrial engineering problems. When n = 

1, H-B fluid model reduces to Bingham fluid model, when τy 
= 0, it reduces to the power law index and when n = 1 and τy = 
0, it reduces to Newtonian fluid model. When n < 1, the H-B 
fluid model behaves as shear thinning fluid and when n < 1, it 
exhibits the character of shear thickening fluid. Since the wall 
shear stress and frictional resistance to flow are important flow 
measurements which are widely used to analyze the flow pat-
terns and also in the design of flow channels in industrial en-
gineering. In addition to the studies on the effects of slip ve-
locity on the velocity distribution and volumetric flow rate, the 
present study also discusses the effects of slip velocity on the 
wall shear stress and frictional resistance to flow which are not 
studied by Devakar and Ramesh [35]. Hence, it is felt that the 
present study will have more scope than the earlier studies in 
applications point of view. The layout of the paper is given 
below: 

In Sec. 2, the three types of flows such as (i) plane Couette 
flow, (ii) plane Poiseuille flow and (iii) generalized Couette 
flow are mathematically formulated and then the analytical 
solutions to velocity distribution, flow rate, frictional resis-
tance to flow and wall shear stress are obtained for each of the 
flow considered. The variation of the aforementioned flow 
quantities with yield stress, slip parameter, power law index 
and pressure gradient are discussed through appropriate 
graphs in Sec. 3. The main findings of this investigation are 
summarized in the conclusion Sec. 4.  

 
2. Mathematical formulation and solution method 

2.1 Basic governing equations 

For the laminar and fully developed flow of viscous incom-
pressible fluid, the equations of continuity and momentum 
reduce to the following form:  

 
0qÑ × =

r
  (1) 

( ) , 1,2,3i
ij

j

Du i
Dt x

r s¶
= =
¶

  (2) 

 
where ( )1 2 3, ,q u u u=

r  is the velocity vector, r is the fluid’s 
density, D/Dt is the material derivative; ( )1 2 3, ,x x x  is the 
Cartesian coordinate system; σij is the Cauchy’s stress tensor. 
The modified constitutive equation (in the tensor form) of the 
generalized Newtonian fluid model which establishes the rela-
tionship between the stress and the rate of strain is given be-
low [38, 39]: 

 
22 ( )ij ij ijp J Vs d m= - +   (3) 

 
where p is the pressure; 2J  and ijV  are the second invari-
ant of the stress tensor and deformation tensor respectively; δij 
is the Kronecker delta; 2( )Jm is the variable viscosity of the 
generalized Newtonian fluid. Herschel-Bulkley (H-B) fluid is 
a non-Newtonian (generalized Newtonian) fluid with yield 
stress and for this fluid, the viscosity coefficient 2( )Jm  is 
defined as below: 
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where n

HK m= ; Hm  and yt  are the H-B fluid’s coeffi-
cient of viscosity and yield stress respectively; n is the power 
law index and 
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For the uni-directional steady, laminar and slow flow of vis-

cous incompressible fluid in the horizontal direction in a 
channel between parallel flat plates, let us use Cartesian coor-
dinate system ( ) ( )1 2 3, , , ,x x x x y z= to analyze the flow. We 
denote the velocity vector by ( ) ( )1 2 3, , ,0,0q u u u u= =

r . For 
this flow, the aforesaid governing equations of motion reduce 
to the following equation: 

 

1 1
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  (7) 

 
2.2 Plane Couette flow 

Let us consider the steady, laminar and fully developed 
flow of viscous incompressible H-B fluid in a channel be-
tween two infinitely long horizontal parallel plates which are 
at distant 2h. The pressure gradient between the plates is taken 
as zero, i.e. the pressure p  between the plates is assumed as 
constant. The lower plate y h= - is held fixed, while the 
upper plate y h= is jerked suddenly with constant velocity 
U  in the horizontal direction. The fluid flow in the channel is 
in the x  direction and is due to the movement of the upper 
plate. This kind of flow is known as plane Couette flow. The 
geometry of this flow is shown in Fig. 1(a). Assume that the 
relative velocity between the plate and fluid is proportional to 
the plate’s shear rate and thus, the governing equation of mo-
tion Eq. (7) reduces to 

 
1 1

0 .
n
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t
-é ùì ü
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The slip boundary conditions of this flow are 
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where b is the slip parameter. Let us introduce the following 
non-dimensional variables: 

 

; ; ; .
n n

y
y n n

hy u K Uy u
Uh K U U h

t bt g= = = =   (10) 

 
Using the non-dimensional variables Eq. (10) into Eq. (8), 

we get the dimensionless form of the equation of motion as 
 

1

0 .
n

y

d du
dy dy

t
é ù
æ öê ú+ =ç ÷ê úè øê úë û

  (11) 

 
The non-dimensional form of the boundary conditions Eqs. 

(9a) and (9b) are given below: 

 
(a) Plane Couette flow 

 

 
(b) Plane Poiseuille flow 

 

 
(c) Generalized Couette flow 

 
Fig. 1. Pictorial description of flow geometries between parallel plates. 
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Integration of Eq. (11) yields  
 

1
n

y

du A
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t
æ ö

+ =ç ÷
è ø

  (13) 

 
where A is the constant of integration to be determined. Using 
Eq. (13) in Eqs. (12a) and (12b), we obtain 

 
( )1u Ag- =   (14a) 

( )1 1 .u Ag= -   (14b) 

 
From Eq. (13), one can obtain the expression for fluid ve-

locity as  
 
( )u y Ry B= +   (15) 

 
where 

 

( )n

yR A t= -   (16) 
 

and B is the constant of integration to be determined. Using 
the boundary conditions Eqs. (14a) and (14b) in Eq. (15), we 
obtain  
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R A
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g= -

=
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Substitution of R and B values in Eq. (15) yields 
 

( ) ( )1 1 1 2 .
2

u y A ygé ù= + -ë û   (18) 

 
From Eqs. (16) and (17), one can get  
 

( )2 2 1 0 .
n

yA At g- + - =   (19) 
 
Eq. (19) is a non-linear equation for the unknown A. For a 

given set of values of τH and γ, Eq. (19) can be solved by ap-
plying Newton-Raphson method. The non-dimensional flow 
rate is obtained with the help of Eq. (18) as below:  

 

( )
1

1

1 .Q u y dy
-

= =ò   (20) 

2.3 Plane Poiseuille flow 

Consider the steady, laminar and fully developed flow of 
viscous incompressible H-B fluid through a channel which is 
bounded by two infinitely long horizontal parallel plates 
which are at distant 2h and are at rest. It is assumed that the 
fluid flow is due to the applied constant pressure gradient in 
the x direction. This kind of flow is generally called as plane 
Poiseuille flow. The geometry of this flow is depicted in Fig. 
1(b). To this flow conditions, the governing equation of mo-
tion Eq. (7) remains unchanged and is restated below: 
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For this flow, the slip boundary conditions are 
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where β is the slip parameter. Let us introduce the following 
dimensionless variables (the non-dimensional variables that 
are defined in Eq. (10) are used here too): 
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The non-dimensional form of the governing equation of 

motion Eq. (21) and the boundary conditions Eqs. (22a) and 
(22b) are obtained as below respectively: 
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where /G dp dx= - . Integrating Eq. (24), one can get 
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where C is a constant of integration to be determined. The use 
of Eq. (26) simplifies the boundary conditions Eqs. (25a) and 
(25b) to the following form respectively: 

 
( ) ( )1u G Cg- = +   (27a) 

( ) ( )1 .u G Cg= -   (27b) 

 
Simplifying Eq. (26) and then integrating it, we obtain 
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where D is the constant of integration to be determined. Ap-
plying the boundary conditions Eqs. (27a) and (27b) in Eq. 
(28), one can get 
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From Eqs. (29a) and (29b), we obtain the following nonlin-

ear algebraic equation in the unknown C.  
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For a given set of values of the parameters τy, γ, n and G, Eq. 

(30) can be solved numerically, using the Newton-Raphson 
method. The non-dimensional flow rate per unit width of the 
plates is obtained with the help of Eq. (28) as below:  
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The skin friction or wall shear stress at the lower wall 

(plate) and upper wall (plate) are defined respectively as 
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Note that the subscripts LW and UW in Eqs. (32a) and (32b) 

denote the lower wall and upper wall, respectively. The fric-

tional resistance to flow is defined as 
 

/ .G QL =   (33) 
 

2.4 Generalized Couette flow 

Let us consider again the steady, laminar, fully developed 
flow of viscous incompressible H-B fluid between two infi-
nitely long horizontal parallel plates that are at distant 2h. This 
flow is similar to the plane Couette flow, but, a constant pres-
sure gradient is also applied in the x direction. This kind of 
flow is called as generalized plane Couette flow. The geome-
try of this flow is depicted in Fig. 1(c). For the generalized 
plane Couette flow, the governing equation of motion Eq. (7) 
remains the same and is restated below:  
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The slip boundary conditions of this flow are 
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where β is the slip parameter. The dimensionless variables 
defined in Eq. (23) are used to obtain the non-dimensional 
form of Eqs. (34) and (35) as below, respectively:  
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where G dp dx= - . Integrating Eq. (36), one can obtain  
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where E is a constant of integration to be determined. Apply-
ing Eq. (38) in the boundary conditions Eqs. (37a) and (37b), 
one can obtain 

 
( ) ( )1u G Eg- = +   (39a) 
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( ) ( )1 1 .u G Eg= - +   (39b) 
 
From Eq. (38), one can obtain the expression for velocity as 

below: 
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where F is the constant of integration to be determined. Using 
the boundary conditions Eqs. (39a) and (39b) in Eq. (40), we 
get 
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From Eqs. (41a) and (41b), one can get the following 

nonlinear algebraic equation in the unknown E: 
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For a given set of values of the parameters τy, γ, n and G, 

one can numerically solve the nonlinear Eq. (42) using the 
Newton-Raphson method. The non-dimensional flow rate per 
unit width of the plates is obtained with the help of Eq. (40) as 
below: 
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The skin friction or wall shear stress at the lower plate and 

upper plate are defined respectively as  
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where the subscripts LW and UW denote the lower wall and 
upper wall respectively. The frictional resistance to flow is 
defined as 

 

.G
Q

L =   (45) 

 
As mentioned in the introduction section, for particular val-

ues of the parameters (yield stress τy and power law index n), 
the H-B fluid model reduces to Newtonian fluid model, power 
law fluid model and Bingham fluid model. For each of these 
reduced fluid models, the non-dimensional form of the gov-
erning equation of motion, boundary conditions, expressions 
for velocity, flow rate, wall shear stress and frictional resis-
tance to flow in the (i) plane Couette flow, (ii) plane Poiseuille 
flow and (iii) generalized Couette flow are summarized in 
Appendix. 

 
3. Numerical simulation of results  

Three types of basic flows such as (i) plane Couette flow, 
(ii) plane Poiseuille flow and (iii) generalized Couette flow of 
viscous incompressible H-B fluid between parallel plates are 
considered in this study, treating the flow as steady, laminar 
and fully developed. The analytical solutions to velocity dis-
tribution, wall shear stress, flow rate and frictional resistance 
to flow have been obtained. The values of the arbitrary con-
stants A, C and E appearing in these analytical solutions are 
found numerically, using Newton-Raphson method. The vari-
ation of these flow quantities with various physical parameters 
such as power law index, yield stress, slip parameter and pres-
sure gradient are discussed in this section through appropriate 
graphs. Matlab program code is developed to compute the 
data from the analytical solutions obtained for plotting the 
graphs. To validate the present study, some results are com 
pared with that of Ramesh and Devakar [36]. The range of 
parameters used in this study is listed below [36, 40, 41]: 

Power law index n: 0.75 - 1.5; Yield stress yt : 0 - 0.2; Slip 
parameter g : 0 - 0.5; Pressure gradient P: 4 - 10. 

 
3.1 Velocity distribution 

Figs. 2(a)-(c) depict the velocity distribution in (i) plane co-
quette flow, (ii) plane Poiseuille flow and (iii) generalized 
Couette flow respectively, for different values of the power 
law index with 0.5g = , 10G = and τy = 0.1. In plane Couette 
flow, the velocity increases linearly in the y direction, whereas 
in plane Poiseuille flow and generalized Couette flow, para-
bolic velocity profiles are obtained. For a given set of values 
of the parameters γ, G and τy, the fluid velocity is marginally 
higher in generalized Couette flow than in plane Poiseuille 
flow and the fluid velocity in these flows is significantly 
higher than that of plane Couette flow. In the plane Couette 
flow, the velocity of the fluid decreases with the increase of 
the power law index n in the lower half of the flow region 
(from 1y = -  to 0y = ) and this behavior is reversed with 
the increase of the power law index n in the upper half of the 
flow region (from 0y = to 1y = - ), whereas in plane 
Poiseuille flow and generalized Couette flow, the fluid veloc-
ity increases significantly with the increases of the power law 
index n. 

Velocity distributions for different values of the pressure 
gradient in plane Poiseuille flow and generalized Couette flow 
are shown in Figs. 3(a) and (b), respectively. It is noticed that 
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the fluid velocity increases significantly with the increase of 
the pressure gradient. Figs. 4(a)-(c) depict the velocity distri-
bution for different values of the slip parameter g  with 

1n = , 10G = and τy = 0.1 in (i) plane Couette flow, (ii) plane 
Poiseuille flow and (iii) generalized Couette flow, respectively. 
It is seen that the velocity of the fluid increases considerably 
with the increase of the slip parameter in all the types of flows. 
The velocity distribution for different values of the yield stress 
τy with 1n = , 10G = and 0.5g = in (i) plane Couette flow, 
(ii) plane Poiseuille flow and (iii) generalized Couette flow 
sketched in Figs. 5(a)-(c), respectively. It is observed that in 
all the types of flows, the fluid velocity decreases very slightly 
with the increase of the yield stress parameter τy when all the 

other parameters are held fixed. When τy = 0 and 1n = , the 
Herschel-Bulkley fluid model reduces to Newtonian fluid 
model. It is of interest to note that the velocity profiles ob-
tained for the Newtonian fluid model in all the three types of 
flows are in good agreement with Figs. 5(a)-(c) of Ramesh 
and Devakar [35] and this validates the present study.   

 
3.2 Flow rate 

The variation of flow rate with the pressure gradient for dif-
ferent values of n and g  with τy = 0.1 in plane Poiseuille 
flow and generalized Couette flow are shown in Figs. 6(a) and 
(b), respectively. It is observed that for a given set of values of  

      
                         (a) Plane Couette flow                                    (b) Plane Poiseuille flow 
 

 
(c) Generalized Couette flow 

 
Fig. 2. Velocity distribution for different values of power law index n with γ = 0.5, G = 10 and τy = 0.1. 

 

      
                         (a) Plane Poiseuille flow                             (b) Generalized Couette flow 
 
Fig. 3. Velocity distribution for different values of pressure gradient G with with γ = 0.5, n = 1 and τy = 0.1. 
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                       (a) Plane Couette flow                                     (b) Plane Poiseuille flow 
 

 
(c) Generalized Couette flow 

 
Fig. 4. Velocity distribution for different values of slip parameter γ with G = 10, n = 1 and τy = 0.1. 

 
 

      
                        (a) Plane Couette flow                                     (b) Plane Poiseuille flow 
 

 
(c) Generalized Couette flow 

 
Fig. 5. Velocity distribution for different values of yield stress τy with G = 10, n = 1 and γ = 0.5. 

 



 D. S. Sankar and U. Lee / Journal of Mechanical Science and Technology 30 (7) (2016) 3203~3218 3211 
 

  

the parameters, the flow rate of the fluid increases slowly with 
the increase of the pressure gradient G from 5 to 7 and then it 
increases linearly with the further increase of the pressure 
gradient from 7 to 10. One can note that the flow rate of the 
fluid increases considerably with the increase of either the 
power law index n or the slip parameter g . It is also found 
that for a given set of values of the parameters, the flow rate of 
the fluid is marginally higher in generalized Couette flow than 
in plane Poiseuille flow. 

 
3.3 Wall shear stress 

The variation of wall shear stress with slip parameter g  
for different values of n and τy with G = 5 in plane Poiseuille 
flow and generalized Couette flow are shown in Figs. 7(a) and 
(b). It is seen that the wall shear stress decreases rapidly with 
the increase of the slip parameter g  from 0 to 0.25 and then 
it decreases slowly with the further increase of the slip pa-
rameter g  from 0.25 to 5. It is also noticed that for a given 
value of the power law index n, the wall shear stress increases 
considerably with the increase of the yield stress τy of the fluid 
and this behavior is reversed when the power law index n 
increases when the yield stress τy is kept as constant. For a 

given choice of the parameters, the wall shear stress is consid-
erably higher in plane Poiseuille flow than in generalized 
Couette flow. 

 
3.4 Frictional resistance to flow  

Figs. 8(a) and (b) show the variation of frictional resistance 
to flow with slip parameter for different values of the power 
law index n with G = 10 and τy = 0.1 in plane Poiseuille flow 
and generalized Couette flow, respectively. It is seen that 
when the fluid is of shear thinning nature ( 1n £ ), the frictional 
resistance to flow decreases rapidly (nonlinearly) with the 
increase of the slip parameter g  from 0 to 0.25 and then it 
decreases slowly with the increase of the slip parameter g  
from 0.25 to 0.5, whereas, if the fluid is of shear thickening 
nature, then the frictional resistance to flow decreases very 
slowly (almost constant) with the increase of the slip parame-
ter g . It also noted the frictional resistance to flow decreases 
significantly with the increase of the power law index n of the 
fluid when all the other parameters were kept as invariables. 
One can also notice that for a given set of values of the pa-
rameters, the frictional resistance to flow is marginally lower 
in generalized Couette flow than in plane Poiseuille flow.  

      
                       (a) Plane Poiseuille flow                                (b) Generalized Couette flow 
 
Fig. 6. Variation of flow rate with pressure gradient for different values of n and γ witn τy = 0.1. 

 

      
                       (a) Plane Poiseuille flow                                  (b) Generalized Couette flow 
 
Fig. 7. Variation of wall shear stress with slip parameter for different values of n and τy with G = 5. 
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4. Discussion  

4.1 Physical significance of Herschel-Bulkley fluid model   

H-B fluid is a non-Newtonian fluid model with three pa-
rameters such as the power law index, yield stress and consis-
tency index (coefficient of viscosity). The constitutive equa-
tion of H-B fluid model which expresses the relationship be-
tween the shear stress and shear rate is defined as below: 

 

( )1 ,n

yt mg t= - +                       (46) 

 
where du dyg = is the shear rate, u is the velocity in the 
horizontal direction, t is the shear stress in the x y direction 
(in Cartesian plane), n is the power law index, Hm is the 
coefficient of viscosity which is shear dependent and yt is the 
yield stress of the fluid. The shear stress of this fluid model is 
nonlinearly proportional to the shear rate (rate of strain/ veloc-
ity gradient). The nonlinear relationship between the shear 
stress and shear rate is dependent on all of the aforesaid three 
fluid parameters.   

An advantage of using H-B fluid model for fluid flow is 
that the flow characteristics of the other fluid models such as 
Newtonian fluid model, power law fluid model and Bingham 
fluid model can also be obtained from H-B fluid model by 
assigning particular values to the fluid parameters. H-B fluid 

model reduces to Newtonian fluid model when 1n =  and 
0yt = , Bingham fluid model when 1n =  and 0yt ¹ , and 

power law fluid model when 1n ¹  and 0yt = . The power 
law index parameter n  plays an important role in the major 
classification of non-Newtonian power law fluids. When 

1n < , it behaves like shear thinning fluids and when 1n > , it 
exhibits the characteristics of shear thickening fluids. In shear 
thinning fluids, the fluid viscosity decreases with the increase 
of the shear stress whereas this behavior is reversed in shear 
thickening fluids.   

Polymer solutions, molten polymers, suspensions like 
ketchup, whipped cream, blood, paint and nail polish are some 
examples of shear thinning fluids. When a modern paint is 
applied on a wall, the shear created by the brush or roller will 
allow them to thin and wet out the surface evenly. Once ap-
plied, the paints regain their higher viscosity which avoids 
drips and runs. 

Corn starch, silica and polyethylene glycol, quicksand and 
dilatant fluids are some of the well known examples for shear 
thickening fluids. Cornstarch is a good shear thickening agent 
used in cooking. When a force is applied to a mixture of corn-
starch and water, the cornstarch acts as a solid and resists the 
force.  

The variation of shear stress with shear rate for different 
values of the coefficient of viscosity m  and yield stress yt  
for (i) 0.75n = , (ii) 1n =  and (iii) 1.25n = is delineated in 
Figs. 9(a)-(c). Fig. 9(a) exhibits that in shear thinning fluids 
( )1n < , the shear stress increases rapidly (nonlinearly) with 
the increase of the shear rate from 10 s- to 10.5s- and then it 
increases linearly with the increase of the shear rate from 

10.5s- to 11s- . This trend indicates that the shear stress be-
comes almost constant with the further increase of the shear 
stress which confirms the shear thinning behavior of fluid for 
high shear rates.  

Fig. 9(b) indicates that the shear stress increases linearly 
with the increase of the shear rate of the fluid when the power 
law index 1n =  which is the character of Newtonian fluid 
when the yield stress 0yt =  and Bingham fluid when the 
yield stress 0yt ¹ .  

Fig. 9(c) illustrates that the shear stress of the shear thicken-
ing fluid increases linearly with the increase of the shear rate 
from 10 s- to 10.5s- and then it increases rapidly (nonlinearly) 
with the increase of the shear rate from 10.5s- to 11s- . This 
trend predicts the fact that the shear stress increases very rap-
idly with the further increase of the shear stress which proves 
the shear thickening characteristic of the fluid for high shear 
rates. From Figs. 9(a)-(c), it is also clear that the shear stress 
increases considerably with the increase of the coefficient of 
viscosity Hm and yield stress yt of the fluid.  

The variation of shear stress with shear rate for different 
values of the power law index n with the yield stress      

0.1yt = (Poise) and viscosity coefficient 1.5Hm =  (Poise 
second) is depicted in Fig. 10. One can easily understand the 
shear thinning and shear thickening character of H-B fluid 
when 1n <  and 1,n >  respectively.    

     
(a) Plane Poiseuille flow 

 

 
(b) Generalized Couette flow 

 
Fig. 8. Variation of frictional resistance to flow with slip parameter for 
different values of power law index with G = 10 and τy = 0.1. 
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4.2 Some applications of Herschel-Bulkley fluid model  

From the Refs. [1-4], it is evident that the plane Poiseuille 
flow, plane Couette flow and generalized Couette flow are 
some of the basic flow types which are widely used to under-
stand many complex flow problems. Some physical flows of 
these kinds with slip at the wall are polymer extrusion process, 
polymer melting, gross melt fracture, sharkskin, stick-slip, 
bio-fluid (blood, synovial fluids, lymphatic fluids etc.) flow in 
clinical devices used for diagnostics [14, 42, 43]. From the 
above discussion, it is clear that H-B fluid model has the abil-
ity to explain these kinds of physical phenomena. 

As an example, let us consider the plane Poiseuille flow 

(pressure driven flow) of blood (treated as viscous incom-
pressible non-Newtonian H-B fluid) in a channel between 
parallel plates (clinical devises used for diagnosis of bio-
fluids) which has the characteristics of laminar, axi-symmetric 
and fully developed unidirectional flow. Fig. 11 exhibits the 
velocity profiles of H-B fluid for different values of its pa-
rameters such as power law index n and yield stress yt . One 
can notice the difference between the flow patterns of the 
shear thinning fluid ( )1n < and shear thickening fluid ( )1n >  
and also the difference between the flow patterns of the fluids 
with yield stress ( )0yt ¹ and fluids without yield stress 
( )0yt = . One can also realize the fact that shear thickening 
fluids ( )1n > have the flattened parabolic velocity profile and 
shear thinning fluids have velocity profiles which are almost 
parabolic.     

 
5. Conclusions 

This mathematical analysis brings out many important and 
useful results in the steady, laminar and fully developed flow 
of viscous incompressible Herschel-Bulkley fluid between 
parallel plates, considering three types of flows such as (i) 
plane Couette flow (ii) plane Poiseuille flow and (iii) general-
ized coquette flow. The main findings of this theoretical inves-

 
(a) 0.75n =  

 

 
(b) 1n =  

 

 
(c) 1.25n =  

 
Fig. 9. Variation of shear stress with shear rate for different values of 
coefficient of viscosity Hm  and yield stress yt with (a) n = 0.75; (b) 
n = 1.0; (c) n = 1.25. 

 
Fig. 10. Variation of shear stress with shear rate for different values of 
the power law index n with coefficient of viscosity 1.5Hm =
( )secPascal ond´ and yield stress ( )0y Pascalt = . 

 

 
 
Fig. 11. Velocity distribution of Herschel-Bulkley fluid model in the 
plane Poiseuille flow between parallel plates for different values of the 
power law index n and yield stress yt . 
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tigation are summarized below: 
·In plane Couette flow, the fluid velocity increases margin-

ally with the increase of the slip parameter, power law in-
dex and decreases marginally with the increase of the 
power law index. 

·In plane Poiseuille flow and generalized Couette flow, the 
velocity and flow rate of the fluid increase considerably 
with the increase of the slip parameter, power law index, 
pressure gradient. 

·The fluid velocity is significantly higher in plane 
Poiseuille flow than in plane Couette flow. 

·The wall shear stress and frictional resistance to flow of 
the fluid decrease considerably with the increase of the 
power law index n and these are increasing significantly 
with the increase of the yield stress of the fluid. 

·The wall shear stress and frictional resistance to flow de-
crease rapidly with the increase of the slip parameter g  
from 0 to 2.5 and then they decrease slowly with the in-
crease of the slip parameter from 0.25 to 0.5. 

·The fluid velocity and flow rate are considerably higher in 
generalized Couette flow than in plane Couette flow. 

·The wall shear stress and frictional resistance to flow are 
considerably higher in plane Poiseuille flow than in gen-
eralized Couette flow. 

From the recorded outcomes of this investigation, it is found 
that there are significant difference between the flow quanti-
ties obtained in the generalized Couette flow, plane Poiseuille 
flow and plane Couette flow. The present study could be ap-
plied to analyze some industrial flow problems such as poly-
mer extrusion process and polymer melting process in which 
the wall slip occurs essentially. Since some physical flow 
through parallel plates is unsteady, the present steady flow 
analysis can be extended to unsteady case, this mathematical 
analysis would be carried out in the near future.  
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Nomenclature------------------------------------------------------------------------ 

( ), ,x y z  : Cartesian coordinate system in dimensional form 
( ), ,x y z  : Cartesian coordinate system in dimensionless form 
q
r

      : Velocity vector 
p      : Fluid pressure 

2J     : Second invariant of the stress tensor 
ijV     : Deformation tensor 

 n     : Power law index 
,u u    : Axial component of velocity in dimensional and 

non-dimensional form 
U     : Applied Constant velocity 

,h h    : Semi-width of the channel in dimensional and non-
dimensional form 

G     : Non-dimensional pressure gradient 
Q     : Flow rate 

Greek symbols 

r    : Fluid’s density 
g    : Shear rate 

ijs    : Cauchy’s stress tensor 
ijd    : Kronecker delta 
m    : Variable viscosity of generalized Newtonian fluid 

Hm   : Viscosity coefficient of Herschel-Bulkley fluid 
yt    : Yield stress of Herschel-Bulkley fluid 
yt    : Dimensionless yield stress of Herschel-Bulkley 

fluid 
b    : Dimensional slip parameter 
g    : Dimensionless slip parameter 
L    : Frictional resistance to flow 

LWt   : Wall shear stress at the lower wall 
UWt  : Wall shear stress at the upper wall 
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Appendix 

For steady, laminar and fully developed plane Couette flow 
of viscous incompressible (i) Newtonian fluid, (ii) power law 
fluid and (iii) Bingham fluid, the non-dimensional form of the 
governing equation of motion, boundary conditions, expres-
sions for velocity and flow rate are obtained and are summa-
rized in Table A.1.  

In the case of plane Poiseuille flow and generalized Couette 
flow of these fluid models, the governing equations of motion, 
boundary conditions, expression for velocity, flow rate, wall 
shear stress and frictional resistance to flow are obtained and 
summarized in Tables A.2 and A.3, respectively. 

 
Table A.1. Governing equations and the analytic solutions to plane 
Couette flow. 
 

Case 1. Newtonian fluid  
(Reduced from H-B fluid when τy = 0 and n = 1) 

Governing 
differential 
equation 

0d du
dy dy

æ ö
=ç ÷

è ø
                 (A.1)

Boundary 
conditions 

( )
1

1 0
y

duu
dy

g
=-

æ ö
- - =ç ÷

è ø
                   (A.2a)

( )
1

1 1
y

duu
dy

g
=

æ ö
+ =ç ÷

è ø
                      (A.2b)

Velocity ( ) ( )
1 1
2 1

yu y
g

é ù
= +ê ú

+ê úë û
                     (A.3)

Flow rate 1Q =                                       (A.4)

Case 2. Power law fluid  
(Reduced from H-B fluid when τy = 0) 

Governing 
differential 
equation 

1

0
n

d du
dy dy

æ ö
=ç ÷

è ø
                            (A.5)

Boundary 
conditions 

( )
1

1

1 0
n

y

duu
dy

g
=-

é ùæ ö
ê ú- - =ç ÷
ê úè øë û

              (A.6a)

( )
1

1

1 1
n

y

duu
dy

g
=

é ùæ ö
ê ú+ =ç ÷
ê úè øë û

                 (A.6b)

Velocity 

( ) ( )1 1 1 2
2

u y A ygé ù= + -ë û                  (A.7)

where the value of the arbitrary constant A is obtained by 
solving Eq. (A.8) numerically. 

2 2 1 0nA Ag+ - =                          (A.8)

Flow rate 1Q =                                       (A.9)

Case 3. Bingham fluid  
(Reduced from H-B fluid when τy = 0 and n = 1) 

Governing 
differential 
equation 

0y

d du
dy dy

t
é ùæ ö

+ =ê úç ÷
ê úè øë û

                       (A.10)

Boundary 
conditions 

( )
1

1 0y

y

duu
dy

g t
=-

é ùæ ö
- - + =ê úç ÷

ê úè øë û
           (A.11a)

( )
1

1 1y

y

duu
dy

g t
=

é ùæ ö
- + + =ê úç ÷

ê úè øë û
            (A.11b)

Velocity ( ) ( )
( )

1 21 1
2 1

y y
u y

gt

g

é ù-
ê ú= +
ê ú+
ë û

               (A.12)

Flow rate 1Q =                                      (A.13)

 
Table A.2. Governing equations and the analytic solutions to plane 
Poiseuille flow. 
 

Case 1. Newtonian fluid  
(Reduced from H-B fluid when τy = 0 and n = 1) 

Governing 
differential 
equation 

d du G
dy dy

æ ö
= -ç ÷

è ø
                            (A.14)

Boundary 
conditions 

where dpG
dx

= -                           (A.15)

( )
1

1 0
y

duu
dy

g
=-

æ ö
- - =ç ÷

è ø
                   (A.16a)

( )
1

1 0
y

duu
dy

g
=

æ ö
+ =ç ÷

è ø
                     (A.16b)

Velocity ( ) ( )
2 1 2 1

2 2
Gyu y Gg= - + +                (A.17)

Flow rate ( )2 1
3
GQ Gg= - + +                       (A.18)

Wall shear 
stress 

1

LW

y

du G
dy

t
=-

æ ö
= =ç ÷
è ø

                      (A.19a)

1

UW

y

du G
dy

t
=

æ ö
= = -ç ÷
è ø

                     (A.19b)

Frictional 
resistance  

to flow 
/G QL =                                  (A.20)

Case 2. Power law fluid  
(Reduced from H-B fluid when τy = 0) 

Governing 
differential 
equation 

1 n
d du G
dy dy

æ ö
= -ç ÷

è ø
                          (A.21)

Boundary 
conditions 

( )
1

1

1 0
n

y

duu
dy

g
=-

é ùæ ö
ê ú- - =ç ÷
ê úè øë û

              (A.22a)

( )
1

1

1 0
n

y

duu
dy

g
=

é ùæ ö
ê ú+ =ç ÷
ê úè øë û

                 (A.22b)

Velocity 

( ) ( ) ( ) 11
1

nu y Gy C D
G n

+
= - - + +

+
      (A.23)

where the value of the arbitrary constant C is obtained  by  
solving the following Eq. (A.24) numerically 

( ) ( ){ }
( )

1 1

2 1 0

n nC G C G

n GCg

+ +
+ - -

+ + =
                (A.24)
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And D is obtained form Eq. (A.25). 

( ) ( ) ( )
( )

1
1

1

nC G n G G C
D

n G
g

+
- + + -

=
+

      (A.25)

Flow rate 
( ) ( )

( )( )

2 2

2 2
1 2

n nC G C G
Q D

n n G

+ +
- - +

= +
+ +

        (A.26)

Wall shear 
stress 

1

1

1

n

LW y

y

du C G
dy

t t
=-

=-

é ùæ ö
ê ú= = = +ç ÷
ê úè øë û

    (A.27a)

1

1

1

n

UW y

y

du C G
dy

t t
=

=

é ùæ ö
ê ú= = = -ç ÷
ê úè øë û

     (A.27b)

Frictional 
resistance  

to flow 
/G QL =                                 (A.28)

Case 3. Bingham fluid  
(Reduced from H-B fluid when τy = 0 and n = 1) 

Governing 
differential 
equation 

y

d du G
dy dy

t
é ùæ ö

+ = -ê úç ÷
ê úè øë û

                     (A.29)

Boundary 
conditions 

( )
1

1 0y

y

duu
dy

g t
=-

é ùæ ö
- - + =ê úç ÷

ê úè øë û
           (A.30a)

( )
1

1 0y

y

duu
dy

g t
=

é ùæ ö
+ + =ê úç ÷

ê úè øë û
             (A.30b)

Velocity ( ) ( ) ( )
2 1 1 2

2 1 2
y yGyu y

gt
g

g
= - - + +

+
       (A.31)

Flow rate ( )2 1
3
GQ g= - + +                         (A.32)

Wall shear 
stress 

( )

1

1
2 1

LW y

y
y

y

du G
dy

t t

t
t

g

=-

=-

=

é ùæ ö
= + = +ê úç ÷

+ê úè øë û

    (A.33a)

( )

1

1
2 1

UW y

y
y

y

du G
dy

t t

t
t

g

=

=

=

é ùæ ö
= + = -ê úç ÷

+ê úè øë û

     (A.33b)

Frictional 
resistance  

to flow 
/G QL =                                 (A.34)

 
Table A.3. Governing equations and the analytic solutions to general-
ized Couette flow. 
 

Case 1. Newtonian fluid  
(reduced from H-B fluid when τy = 0 and n = 1) 

Governing 
differential 
equation 

d du G
dy dy

æ ö
= -ç ÷

è ø
                            (A.35)

Boundary 
conditions 

( )
1

1 0
y

duu
dy

g
=-

æ ö
- - =ç ÷

è ø
                   (A.36a)

( )
1

1 0
y

duu
dy

g
=

æ ö
+ =ç ÷

è ø
                     (A.36b)

Velocity ( ) ( )
( )2 2 1 1

2 2 1 2
GGy yu y

g
g

+ +
= - + +

+
   (A.37)

Flow rate ( )2 1 1
3
GQ Ggé ù= - + + +ë û                  (A.38)

Wall shear 
stress 

( )1
1

1
2 1LW y

y

du G
dy

t t
g=-

=-

æ ö
= = = +ç ÷

+è ø
   (A.39a)

( )1
1

1
2 1UW y

y

du G
dy

t t
g=

=

æ ö
= = = -ç ÷

+è ø
     (A.39b)

Frictional 
resistance  

to flow 
/G QL =                                  (A.40)

Case 2. Power law fluid  
(Reduced from H-B fluid when τy = 0) 

Governing 
differential 
equation 

1 n
d du G
dy dy

æ ö
= -ç ÷

è ø
                          (A.41)

Boundary 
conditions 

( )
1

1

1 0
n

y

duu
dy

g
=-

é ùæ ö
ê ú- - =ç ÷
ê úè øë û

              (A.42a)

( )
1

1

1 1
n

y

duu
dy

g
=

é ùæ ö
ê ú+ =ç ÷
ê úè øë û

                 (A.42b)

Velocity 

( ) ( ) ( ) 11
1

nu y Gy E F
G n

+
= - - + +

+
       (A.43)

where the value of the arbitrary constant E is obtained by  
solving the following equation numerically: 

( ) ( ){ }
( ) ( )

1 1

1 2 1 0.

n nE G E G

n G Eg

+ +
+ - -

+ + - =
                 (A.44)

and F is obtained from the following equation: 

( ) ( ) ( )
( )

1
1

.
1

nE G n G G E
F

n G
g

+
+ + + +

=
+

      (A.45)

Flow rate 
( ) ( )

( )( )

2 2

2 2
1 2

n nC G C G
Q D

n n G

+ +
- - +

= +
+ +

       (A.46)

Wall shear 
stress 

1

1

1

n

LW y

y

du E G
dy

t t
=-

=-

é ùæ ö
ê ú= = = +ç ÷
ê úè øë û

    (A.47a)

1

1

1

n

UW y

y

du E G
dy

t t
=

=

é ùæ ö
ê ú= = = -ç ÷
ê úè øë û

     (A.47b)

Frictional 
resistance  

to flow 
/G QL =                                 (A.48)

Case 3. Bingham fluid  
(Reduced from H-B fluid when τy = 0 and n = 1) 

Governing 
differential 
equation 

y

d du G
dy dy

t
é ùæ ö

+ = -ê úç ÷
ê úè øë û

                     (A.49)

Boundary 
conditions 

( )
1

1 0y

y

duu
dy

g t
=-

é ùæ ö
- - + =ê úç ÷

ê úè øë û
           (A.50a)

( )
1

1 1y

y

duu
dy

g t
=

é ùæ ö
+ + =ê úç ÷

ê úè øë û
             (A.50b)
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Velocity 
( ) ( )

( )
( )

2 1 2

2 2 1

1 2 1
2 2

y y yGyu y

G

gt

g

g

-
= - +

+

+
+ +

            (A.51)

Flow rate ( )2 1 1
3
GQ G g= - + + +                    (A.52)

Wall shear 
stress 

( )
( )

1

1

1 2

2 1

LW y

y

y

y

du G
dy

t t

t
t

g

=-

=-

=

+é ùæ ö
= + = +ê úç ÷

+ê úè øë û

   (A.53a)

( )
( )

1

1

1 2

2 1

UW y

y

y

y

du G
dy

t t

t
t

g

=

=

=

+é ùæ ö
= + = -ê úç ÷

+ê úè øë û

    (A.53b)

Frictional 
resistance  

to flow 
/G QL =                                 (A.54)

              

D. S. Sankar received his B. Sc. degree 
in Mathematics from the University of 
Madras, Chennai, India in 1989. He then 
received his M. Sc., M. Phil. and Ph.D. 
degrees from Anna University, India in 
1991, 1992 and 2004, respectively. Cur-
rently, he is a Professor of Engineering 
Mathematics Unit, Faculty of Engineer-

ing, Universiti Teknologi Brunei, Brunei. His research interest 
includes Mathematical Modeling, Applied Fluid Dynamics, 
Biomechanics, Differential Equations and Numerical Analysis. 

 
Usik Lee received his B.S. degree in 
Mechanical Engineering from Yonsei 
University, Korea in 1979. He then re-
ceived his M.S. and Ph.D. degrees in 
Mechanical Engineering from Stanford 
University, USA in 1982 and 1985, 
respectively. Currently, he is a professor 
of the Department of Mechanical Engi-

neering, Inha University, Korea. His research interests include 
structural dynamics, biomechanics and computational me-
chanics. 

 


