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Abstract 
 
The multi-objective collaborative optimization problem with multi-objective subsystems has a bi-level optimization architecture, that 

consists of the system and subsystem levels. Combining the multi-objective optimization algorithm with a bi-level optimization structure 
can obtain a satisfactory solution. Given that the preference-based algorithm requires minimal running time, the Linear physical pro-
gramming (LPP) method, one of the typical preference-based algorithms, is adopted. Considering that setting the preference values for 
the incompatibility function is difficult, the weighted incompatibility function is added to the piecewise linear function of the LPP model. 
An expression of dynamic weight is also presented according to the inconsistency among the subsystems, which is caused by the sharing 
and auxiliary variables relative to the different subsystems. Using an engineering example, this study reveals that the interdisciplinary 
consistency is satisfactory when the dynamic weight is used in the LPP model, which thereby demonstrates the effectiveness of the pre-
sented method.   
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1. Introduction 

Multi-disciplinary design optimization (MDO), a tool of 
concurrent engineering for large-scale and complex system 
design, has gained considerable research attention and applica-
tion [1]. The MDO methods are classified into single-level 
and multi-level methods. The single-level methods include 
simultaneous analysis and design, the multi-disciplinary feasi-
ble, and the individual discipline feasible. For complex cou-
pling problems, the key approaches are the multi-level MDO 
methods that mainly include Collaborative optimization (CO), 
Concurrent subspace optimization (CSSO), bi-level integrated 
system synthesis, and analytical target cascading [2]. These 
MDO methods are mainly presented for single-objective 
MDO problems. 

In many industrial environments, however, the engineering 
design of complex systems is inherently multi-disciplinary and 
multi-objective. Therefore, multi-objective optimization algo-
rithms must be combined with these existing MDO methods. 
This characteristic increases the complexity to obtain a satis-
factory solution. Hence, some studies have been conducted to 
effectively deal with multi-objective MDO problems. Re-

searchers have paid attention to multi-objective CSSO [3, 4] 
and Multi-objective CO (MOCO) [5-15] and have made some 
important contributions to generating one Pareto solution. 
Other relevant multi-objective MDO methods, such as the 
multi-objective decomposition algorithm [16] and Pareto fron-
tier analysis [17], are also developed. 

Compared with other MDO methods, the CO method re-
quires less information exchange among subsystems and al-
lows more flexibility in subsystem optimization. Given the 
high degree of disciplinary autonomy, CO becomes an attrac-
tive method [18, 19]. The basic idea in the CO method is the 
decomposition of the design problem into two levels: the sys-
tem and subsystem levels. The system level objective is min-
imized under the consistency requirements of the disciplines 
by enforcing equality constraints that coordinate interdiscipli-
nary couplings. 

The original CO method was presented for system design 
problems with a single-objective function at the system level, 
while the subsystems do not have any design objective [20]. 
Hence, some researchers have investigated the MOCO prob-
lems. For instance, Tappeta and Renaud [5] used the 
weighted-sum method to resolve the MOCO problem. A sys-
tem-level objective function is formulated as the weighted 
sum of the subsystem-level objective functions. This formula-
tion has the shortcomings of the weighting method. The goal 
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programming and Linear physical programming (LPP) ap-
proaches were also introduced to resolve the MOCO problems 
[6-8]. These MOCO frameworks allow designers to express 
their preferences for multiple conflicting objectives using 
physically meaningful parameters. Li et al. [9] adopted the 
LPP method in multi-objective subsystem optimization and 
transformed the incompatibility function into a disciplinary 
constraint to avoid providing preference values. Huang et al. 
[10] applied the fuzzy satisfaction degree and fuzzy suffi-
ciency degree methods to address the MOCO problem. Their 
work provided a MOCO framework with the capability to 
handle fuzzy information. Li et al. [11] adopted the LPP 
method and the Non-dominated sorting in genetic algorithm 
(NSGA-II) at the multi-objective system and subsystem levels, 
respectively. They provided an interdisciplinary incompatibil-
ity function and physical objectives with different priority 
levels to avoid the difficulty in the process of NSGA-II. Vik-
rant and Shapour [12] used the Multi-objective genetic algo-
rithm (MOGA) to solve the multi-objective optimization prob-
lems at the system and subsystem levels. Four strategies were 
provided to select a single solution from its Pareto set in each 
subsystem. Sébastien et al. [13] combined the MOGA with 
CO to address the MOCO problem using a “posteriori” choice. 
Hu et al. [14] adopted the genetic algorithm in system-level 
and subsystem-level problems and used the online approxima-
tion method to build meta-models for each subsystem. 

The methods adopted in the above MOCO problems can be 
classified into two categories: the preference-based multi-
objective optimization algorithm and the Multi-objective evo-
lutionary algorithm (MOEA). The MOCO problems [5-10] 
using the preference-based multi-objective optimization algo-
rithm need more preference information than the MOCO 
problems [11-14] using the MOEA method. However, the 
calculation efficiency of the former is higher than that of the 
latter. If the preference information is available, then the pref-
erence-based multi-objective optimization algorithm is a good 
choice for MOCO problems. Therefore, the LPP method, one 
of the typical preference-based algorithms, is adopted in this 
study. 

In the original CO framework, the sole objective function in 
the subsystem is to minimize the incompatibility function [7]. 
Hence, subsystem optimization is not related to physical ob-
jectives and aims to minimize interdisciplinary incompatibili-
ties. However, studies on MOCO problems with physical 
objectives in subsystem is important because a subsystem 
instead of the system level sometimes involves one or more 
physical objectives. For example, in the design of an aircraft, 
the wing subsystem has weight and deflection as physical 
objectives, whereas the system level has total weight and 
stress as the system-level objectives [15]. MDO problems 
with multi-objective subsystems are really involved in some 
engineering problems. 

Previous works have paid rare attention to the multi-
objective subsystem [5-15]. Therefore, this study investigates 
the MOCO problem with multi-objective subsystems, while 

the LPP method is adopted in the multi-objective subsystem. 
The contributions of this study concentrate on two aspects. 
First, the weighted incompatibility function is added to the 
piecewise linear function of the LPP model in the multi-
objective subsystem. This proposed method can avoid the 
difficulty in setting the ranges of desirability for the incom-
patibility function when the preference-based multi-objective 
optimization algorithm is adopted. Second, a reasonable dy-
namic weight for the incompatibility function is presented 
according to the inconsistency among the subsystems. The 
value of the incompatibility function gradually tends to zero as 
the bi-level optimization proceeds, which leads to the diffi-
culty in setting an ideal fixed weight. Therefore, this proposed 
dynamic weight is necessary. 

 
2. Formulation of CO with multi-objective subsystems 

The CO proposed by Kroo et al. [20] is a bi-level optimiza-
tion architecture that consists of the system and subsystem 
levels. The system-level optimizer minimizes the overall ob-
jective function subject to the interdisciplinary compatibility 
constraints obtained from the optimization results of the sub-
system level. The action of the system-level optimization is to 
determine the target values for the subsystem level. The sub-
system-level optimizer minimizes the incompatibility function 
subject to the disciplinary constraints. 

The system level attempts to optimize the design objective 
function F subject to n interdisciplinary compatibility con-
straints Ji

*. 
 
min ( )F z  (1) 

* *s.t. ( , ( )) 0i iJ =z x z , 1,2, ,i n= L , 
 

where xi
*(z) (i.e., the optimal value of the subsystem i) is the 

function with respect to the system-level design vector z. An 
overall compatibility constraint was introduced in the system 
level by Li et al. [9] to decrease the influence on the optimiza-
tion result caused by the starting point. 

In the multi-objective subsystem level, the objective func-
tions include physical objectives, aside from the incompatibil-
ity function, which is the sole objective function in the original 
CO framework. The expression of the multi-objective subsys-
tem i is then given as follows: 

 
* 2

1
min ( ) ( )

is

i i ij j
j

J x z
=

= -åx , (2) 

{ }1 2min ( ), ( ), , ( )
si i i i in if f fLx x x  (3) 

s.t. ( ) 0i ic £x , 
 

where Ji (xi) is the incompatibility function of the subsystem i, 
si is the number of the sharing and auxiliary variables, 

1( ) ~ ( )
si i in if fx x  denote the physical objectives of the subsys-

tem i, ins denotes the number of physical objectives, zj
* is the 

jth target value allocated by the system level, and ci (xi) is the 
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disciplinary constraint. 

 
3. Multi-objective subsystem optimization 

The LPP is one of the typical preference-based algorithms 
that require less running time than the MOEA method. For 
smoothness of performance and convenience in this study, we 
concentrate on the LPP for the multi-objective subsystem 
optimization. 

 
3.1 LPP description 

LPP is an engineering method that addresses multi-
objective optimization problems using the preference of the 
designer [21]. With the LPP procedure, the designer expresses 
his/her preference with respect to each criterion using the fol-
lowing four different classes: (i) Smaller-Is-Better (1S), (ii) 
Larger-Is-Better (2S), (iii) Value-Is-Better (3S), and (iv) 
Range-Is-Better (4S). Fig. 1 presents the depiction. Zp is the 
class function that is smaller-better to each class. fp is the value 
of the criterion under consideration. 

The designer should decide which class to adopt and select 
the range targets (i.e., 1 5p pt t+ +: ). Given that decisions are 

made in a multi-objective environment, an implicit or explicit 
inter-criterion preference should be provided, which is guaran-
teed with the One vs. Others rule [21]. 

 
3.2 Formulation of the weighted LPP model 

Considering that LPP is a preference-based algorithm, we 
should set the ranges of desirability for all the objective func-
tions. The incompatibility function is used to make the opti-
mal value match the target value allocated by the system level 
as closely as possible, the value of which gradually tends to 
zero as the bi-level optimization proceeds. Given that setting 
the ranges of the desirability of the incompatibility function is 
difficult, the weighted incompatibility function is added to the 
piecewise linear function of the LPP model. The formulation 
of the LPP model is then given as follows: 

 
5

1 2
min ( ) ( ( ))

sn

i ps ps ps ps i i
p s

J w d w d Jg- - + +

= =

= + +åå% % % x  (4) 

( 1)s.t. ( )ip i ps p sf d t+ +
-- £x , 5( )ip i pf t+£x , 0psd + ³  

(Classes 1S, 3S, 4S) 
( 1)( )ip i ps p sf d t- -
-+ ³x , 5( )ip i pf t-³x , 0psd - ³  

(Classes 2S, 3S, 4S) 
( ) 0i ic £x , 

 
where ns denotes the number of physical objectives, psd -  de-
notes the negative deviation value between ipf and ( 1)p st- - , 
and psd +  denotes the positive deviation value between ipf and 

( 1)p st+ - . The calculation process of the weight psw-%  and psw+%  is 
given in Ref. [21].  

 
3.3 Setting of dynamic weight 

The value of Ji in Eq. (4) gradually tends to zero as the bi-
level optimization proceeds. Therefore, an ideal fixed weight γ 
is difficult to obtain. Instead, a dynamic weight γ is built using 
the inconsistency among the subsystems. The expression is 
given as 

 
1( 10 )

10
k

k
m

mg a
e

= +
+

, (5) 

 
where k denotes the inconsistency among the subsystems, and 
μ and ε are given by the designer. The values of these parame-
ters are set as follows: 

(1) μ: Its value is given according to the requirements of in-
terdisciplinary consistency. The initial value of μ can usually 
be set using the final accuracy of the inconsistency among the 
subsystems. For example, assuming that the final accuracy of 
the inconsistency among the subsystems is 10tk t-= , the 
initial value of μ can be 10log tkm t= - = . If the final inter-
disciplinary consistency is not satisfactory, then we can set 
μ:=μ+1. 
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(c) Class-3 
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Fig. 1. LPP class function regions. 
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(2) ε: In the late stage of bi-level optimization, the value of 
10 km  may be small. In this case, the value of ε can control the 

maximum value of 1
10 km e+

 to prevent γ from being too 

large, that is, if 10 0km ® , then 1g
e

» . Therefore, the value 

of ε is usually a small positive value, such as 0.01 and 0.001. 
(3) α: If the initial value of k is large, 10 km  may increase 

the value of γ. The factor α can avoid a too large value of γ. 
Given that k takes a large value only at the earlier stage of bi-
level optimization, the value of α on (0, 1] increases as the 
iteration number increases. The expression is given as 

 
1

( 1)
10

i

n

ss
ss

m
a

-
-

= , (6) 
 

where ssi denotes the current iteration number of bi-level op-
timization, and ssn denotes the estimated value of the maxi-
mum iteration number. 

At the first iteration (i.e., ssi = 1), the value of weight γ is 
given by 

 

0

1 1( 1)

1( 10 )
10

1 1   (10 )( 10 ) 10 ( 10 )
10 10

nss

k
k

k k
k k

m
m

m
m m m

m m

g a
e

e e

-
-

-

= +
+

= + = +
+ +

. 

  (7) 
 
If the initial value of k is large, then the initial value of 

weight γ is obtained as follows: 
 

0
110 ( 10 ) 10 (0 10 )

10
k k k

k
m m m m

mg
e

- -= + » + =
+

. (8) 

 
In the last iteration (i.e., ssi = ssn), the value of weight γ is 

given by 
 

1
( 1)1 1( 10 ) (10 )( 10 )

10 10
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k
k

m
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» +
+

 

 (9) 
 

4. Parameter design of rolling mill stand 

The parameter design of the rolling mill stand is modeled as 
an MDO problem [9, 22, 23] with multi-objective subsystems. 
The formulation is given as follows: 

 
6 3
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where x1(h1) and x2(b1) are the height and width of the cross-
section of the column, respectively; x3(h2) and x4(b2) are the 
height and width of the cross section of the upper beam, re-
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spectively; x5(h3) and x6(b3) are the height and width of the 
cross section of the lower beam, respectively; and x7(D1) is the 
diameter of the backup roll. The diagram of the simplified 
rolling mill stand is given in Fig. 2. 

The core goal of the problem is to optimize the stiffness of 
the rolling mill stand, which can been represented by the fol-
lowing seven objective functions: the sum of the bending de-
flection caused by the bending moment of the upper and lower 
beams (f1), the sum of the bending deflection caused by the 
shearing force of the upper and lower beams (f2), the tensile 
deformation of the column (f3), the sum of the bending deflec-
tion caused by the bending moment of the backup roll (f4), the 
sum of the bending deflection caused by the shearing force of 
the backup roll (f5), the sum of the elastic flattening between 
the working roll and backup roll (f6), and the weight of the 
stand (f7). In addition, the design is subject to 16 inequality 
constraints. The constraints are the diameter restrictions of the 
backup roll body (g1 and g2), the contact strength restriction of 
the roll (g3), the bending strength restriction of the dangerous 
section of the roll neck on the juncture of the body and neck of 
the backup roll (g4), the composite strength restriction of the 
bending and tensile strengths of the column (g5), the bending 
strength restrictions of the upper and lower beams (g6 and g7), 
the geometric restrictions of the column and beam (g8-g15), 
and the weight restriction of the stand (g16). 

The decomposed formulation consists of one system-level 
subproblem (i.e., weight) and three subsystem-level subprob-
lems (i.e., column, beam, and backup roll). The objective in 
the system-level subproblem is to minimize objective f7. The 
column subproblem is to minimize objective f3 with con-
straints g5, g8, and g11. The beam subproblem is to minimize 
objectives f1 and f2 with constraints g6, g7, g9, g10, and g12-g15. 
The backup roll subproblem is to minimize objectives f4, f5, 
and f6 with constraints g1-g4. The expressions are given below. 

System-level optimization: 
 

7min  ( )= ( )F fz z  (17) 
* * 2 * 2 * 2
1 1 11 2 12 3 13

* 2 * 2 * 2
4 14 5 15 6 16

* * 2 * 2 * 2
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s.t. ( ) ( ) ( ) ( )

                   ( ) ( ) ( ) 0

      ( ) ( ) ( ) ( )

                   ( ) ( ) ( ) 0

    

J z x z x z x

z x z x z x

J z x z x z x

z x z x z x

= - + - + - +

- + - + - =

= - + - + - +

- + - + - =

z

z

* * 2 * 2
3 2 31 7 32   ( ) ( ) ( ) 0J z x z x= - + - =z

. 

 
Subsystem optimization of the column: 
 

* 2 * 2 * 2
11 1 11 1 12 2 13 3

* 2 * 2 * 2
14 4 15 5 16 6

min ( ) ( ) ( ) ( )

                     ( ) ( ) ( )

f x z x z x z
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= - + - + - +

- + - + -

x
 (18) 

12 1 3 1min  ( )= ( )f fx x  (19) 

1s.t. ( ) 0jg £x ,  j = 5,8,11. 
 
Subsystem optimization of the beam: 
 

* 2 * 2 * 2
21 2 21 1 22 2 23 3

* 2 * 2 * 2
24 4 25 5 26 6

min ( ) ( ) ( ) ( )

                      ( ) ( ) ( )

f x z x z x z
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- + - + -

x
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22 2 1 2min  ( )= ( )f fx x  (21) 

23 2 2 2min  ( )= ( )f fx x  (22) 

2s.t. ( ) 0jg £x ,  j = 6,7,9,10,12,13,14,15. 

 
Subsystem optimization of the backup roll: 
 

* 2 * 2
31 3 31 2 32 7min ( ) ( ) ( )f x z x z= - + -x  (23) 

32 3 4 3min  ( )= ( )f fx x  (24) 

33 3 5 3min  ( )= ( )f fx x  (25) 

34 3 6 3min  ( )= ( )f fx x  (26) 

3s.t. ( ) 0jg £x ,  j = 1,2,3,4. 

 
The Class-1 of the LPP method is adopted for the multi-

objective subsystem optimization. The dynamic weighted 
incompatibility function is added to the piecewise linear func-
tion of the LPP model. The preference values of the physical 
objectives are listed in Table 1 with the data provided by Cui 
[22]. 

 
4.1 Analysis of the interdisciplinary consistency 

On the one hand, the interdisciplinary consistency is the 
most important property of the MDO algorithm. On the other 
hand, the proposed dynamic weight of the incompatibility 
function in the LPP model affects the interdisciplinary consis-
tency. Therefore, the interdisciplinary consistency is an impor-
tant factor. 

The inconsistency among the subsystems is expressed by 
 

* * * * * *
1 1 1 2 2 2 3 3 3( , ) ( , ) ( , )k J J J= + +x z x z x z , (27) 

 
where z1

*-z3
* are the target values allocated by the system level. 

x1
*-x3

* are the optimal values of the subsystems. 

Table 1. Desirable ranges of each criterion for the beam and backup 
roll disciplines. 
 

Objective f1 (mm) f2 (mm) f4 (mm) f5 (mm) f6 (mm) 

tp1
+ 0.0100 0.0100 0.1500 0.0500 0.1000 

tp2
+ 0.0253 0.0309 0.3000 0.1200 0.2200 

tp3
+ 0.0278 0.0367 0.4900 0.1500 0.2900 

tp4
+ 0.0400 0.0500 0.5400 0.2000 0.3500 

tp5
+ 0.0550 0.0600 0.6500 0.2500 0.4500 
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Fig. 2. Diagram of the simplified stand. 
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The initial target value allocated by the system level is z0 = 
[0,0,0,0,0,0,0]. In the piecewise linear function of the LPP 
model, the fixed and dynamic weights are both adopted to 
illustrate the effectiveness of the proposed dynamic weight. 

Given the small magnitudes of the piecewise linear function 
and the incompatibility function, the value of the fixed weight 
should be small. Figs. 3(a)-(d) show the convergence curves 
for the inconsistency among the subsystems when the values 
of the fixed weight are 50, 1, 0.01 and 0.001, respectively. 

The results in Figs. 3(c) and (d) present that the values of 
interdisciplinary inconsistency obtained with γ = 0.01 and 
0.001 cannot be treated as zero, which indicate that the inter-
disciplinary consistency is not satisfactory. The too small 
weight of the incompatibility function in the LPP model may 
lead to a large value of the incompatibility function, which 
causes an unsatisfactory  interdisciplinary consistency. 

The results presented in Figs. 3(a) and (b) imply that the 
values of interdisciplinary inconsistency obtained with γ = 50 
and 1 can be treated as zero, which indicate that the interdisci-
plinary consistency is satisfactory. However, the convergence 
curve of interdisciplinary inconsistency has a jitter. When the 
weight of the incompatibility function in the LPP model is too 
large, the optimizer of MATLAB may cause this jitter. 

A reasonable weight in the LPP model is difficult to deter-
mine because the value of the incompatibility function gradu-
ally tends to zero as the bi-level optimization proceeds. 

The proposed dynamic weight is then used in the LPP mod-
el. The value of ε in Eq. (5) is set ε = 0.001. Figs. 4(a)-(d) 
show the convergence curves for the inconsistency among the 
subsystems when the values of μ in Eq. (5) are 4, 5, 6 and 7, 
respectively. 

The convergence curves of the inconsistency among the 
subsystems in Figs. 4(a)-(d) are better than those presented in 
Fig. 3. The expression of the dynamic weight is built with the 
inconsistency among the subsystems, and the extremum of the 

dynamic weight is controlled in its expression. Therefore, the 
convergence curves of the interdisciplinary inconsistency 
obtained from the dynamic weight are better than those ob-
tained from the fixed weight. 

The values of the interdisciplinary inconsistency obtained 
from the dynamic weight are rounded to 10−4, which can be 
treated as zero. Therefore, the interdisciplinary consistency is 
satisfactory when the dynamic weight is used in the LPP model. 
The accuracy of interdisciplinary consistency may be affected 
by the optimization toolbox and the optimization algorithm. 

 
4.2 Analysis of the system-level optimization 

The four initial points listed in Table 2 are selected as the 
target points allocated by the system level. The experimental 
data and analysis [24, 25] imply that CO obtains different 
solutions from several initial points. This phenomenon indi-
cates that CO is sensitive to the initial point for some problems. 
Li et al. [9] introduced an overall compatibility constraint into 
the system-level optimization to reduce the influence of the 
initial point on the optimization result. In this study, the over-
all compatibility constraint is also adopted for this MOCO 
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           (c) γ = 0.01                   (d) γ = 0.001 
 
Fig. 3. Inconsistency among the subsystems from the fixed weight. 

 

Table 2. Design of the initial points. 
 

Initial point 1 2 3 4 

x1(m) 0.0000 1.0000 0.5000 0.0800 

x2(m) 0.0000 1.0000 1.0000 0.2600 

x3(m) 0.0000 1.0000 0.5000 0.0800 

x4(m) 0.0000 1.0000 1.0000 0.0800 

x5(m) 0.0000 1.0000 0.5000 0.0800 

x6(m) 0.0000 1.0000 1.0000 0.0800 

x7(m) 0.0000 1.0000 0.5000 0.4095 
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             (a) μ = 4                   (b) μ = 5 
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             (c) μ = 6                   (d) μ = 7 
 
Fig. 4. Inconsistency among the subsystems from the dynamic weight. 

 



 H. Li et al. / Journal of Mechanical Science and Technology 30 (2) (2016) 763~770 769 
 

  

problem. The optimization results obtained from the two cases 
(i.e., with the overall compatibility constraint adopted and not 
adopted) are compared. 

Figs. 5(a) and (b) present the convergence curves for the 
system-level objective function and the inconsistency among 
the subsystems when the overall compatibility constraint is 
not adopted in the system level. Figs. 6(a) and (b) present the 
convergence curves for the system-level objective function 
and the inconsistency among the subsystems when the overall 
compatibility constraint is adopted in the system level. 

Figs. 5(a) and 6(a) indicate that the interdisciplinary incon-
sistency curves converge to zero, and the interdisciplinary 
consistency requirements are satisfied. This phenomenon in-
dicates that the proposed dynamic weight in the LPP model 
can guarantee the interdisciplinary consistency. 

Fig. 5(b) illustrates that the solutions of the system-level ob-
jective function starting from points 2 and 4 are the worst with 
a value of 49.6552 and the best with a value of 5.4953, respec-
tively. The maximum difference between these two solutions 
is 44.1599. Therefore, the solution of the system-level objec-
tive function is affected by the initial point when the overall 
compatibility constraint is not adopted in the system level. 

Fig. 6(b) implies that the solutions of the system-level ob-
jective function starting from points 4 and 3 are the worst with 
a value of 6.0011 and the best with a value of 5.5942, respec-
tively. The maximum difference between these two solutions 
is 0.4069, which is smaller than 44.1599 (i.e., the maximum 
difference obtained without the overall compatibility con-
straint in the system level). Therefore, the overall compatibil-
ity constraint should be adopted in the system level to reduce 
the influence of the starting point on the optimization result. 

5. Conclusions 

An improved MOCO strategy is presented for MDO prob-
lems with multi-objective subsystems. The LPP method is 
adopted to resolve the multi-objective subsystem optimization, 
and the weighted incompatibility function is added to the 
piecewise linear function of the LPP model. An expression of 
the dynamic weight in the LPP model is also presented ac-
cording to the inconsistency among the subsystems. In the 
engineering example of the parameter design of the rolling 
mill stand, the dynamic weight dominates the fixed weight. 
The interdisciplinary consistency obtained from the dynamic 
weight satisfies the interdisciplinary consistency requirements, 
which demonstrates the effectiveness of the proposed dynamic 
weight in the LPP model. 

From the perspective of interdisciplinary consistency, the 
incompatibility function is more important than the physical 
objectives in the multi-objective subsystem. This study pro-
vides an effective strategy when the LPP method is used. 
Some efforts are still required to provide a specific value for μ, 
using the requirements of interdisciplinary consistency. This 
limitation is a motivation for the further development of the 
proposed method. In fact, the method addressing the incom-
patibility function in the multi-objective subsystem is an im-
portant issue in future research when other multi-objective 
optimization algorithms are adopted. 
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