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Abstract 
 
An analytical approach is presented to investigate the optimal problem of non-traditional type of Dynamic vibration absorber (DVA) 

for damped primary structures subjected to ground motion. Different from the standard configuration, the non-traditional DVA contains a 
linear viscous damper connecting the absorber mass directly to the ground instead of the main mass. There have been many studies on 
the design of the non-traditional DVA for undamped primary structures. Those studies have shown that the non-traditional DVA pro-
duces better performance than the standard DVA does. When damping is present at the primary system, there are very few works on the 
non-traditional dynamic vibration absorber. To the best of our knowledge, there is no study on the design of non-traditional DVA for 
damped structures under ground motion. We propose a simple method to determine the approximate analytical solutions of the non-
traditional DVA when the damped primary structure is subjected to ground motion. The main idea of the study is based on the criterion 
of the equivalent linearization method to replace approximately the original damped structure by an equivalent undamped one. Then the 
approximate analytical solution of the DVA’s parameters is given by using known results for the undamped structure obtained. Compari-
sons have been done to validate the effectiveness of the obtained results.  
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---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

A Dynamic vibration absorber (DVA) is a passive control 
device installed in primary structures to reduce harmful vibra-
tion. The DVA without damping element was first introduced 
by Frahm [1] in 1909, but only useful in a narrow range of 
frequencies very close to the DVA’s frequency. In 1928, Or-
mondroyd and Den Hartog [2] determined that the DVA con-
taining a viscous damper was effective to an extended range 
of frequencies. This type DVA is now known as the standard 
DVA, where a spring element and a viscous element are ar-
ranged in parallel. The principal parameters of the DVA are its 
tuning ratio and damping ratio because the mass ratio of the 
DVA to the primary structures is usually fixed to be few per-
cent.   

There have been many optimal criteria given to design the 
standard DVA for undamped primary structures. Three typical 
criteria are H∞ optimization, H2 optimization, and stability 
maximization. The H∞ optimization was proposed by Ormon-

droyd and Den Hartog [2] when the primary structure was 
subjected to harmonic excitation. The purpose was to mini-
mize the maximum amplitude magnification factor of the 
primary structure. The optimum tuning ratio of the DVA was 
first derived by Hahnkamm [3], and later Brock [4] gave the 
optimum damping ratio. The optimal parameters of the DVA 
then were introduced by Den Hartog [5]. The optimal tuning 
ratio and damping ratio of the standard DVA determined by 
using the fixed-point method are not exact, because some 
approximations are taken when they are derived. However, 
when Nishihara and Asami [6] proposed the exact solutions 
and compared those with the results given by Den Hartog, 
they found that both optimal tuning ratio and damping ratio 
presented by Den Hartog were very close to the exact solu-
tions. Therefore, the fixed-point theory provided a very good 
approximation of the exact solutions for the H∞ optimization 
in practice because the exact solution was too complicated to 
use. The H2 optimization was suggested by Crandall and Mark 
[7] in 1963 when the primary structure is subjected to random 
excitation. The purpose was to minimize the area under the 
frequency response curve of the system (i.e., total vibration 
energy of the structure over all frequencies). After that, Iwata 
[8] and Asami [9] gave the optimal parameters of a DVA us-
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ing the H2 optimization. The stability maximization criterion 
and the exact solutions of the optimum parameters of a DVA 
were first given by Yamaguchi [10] in 1988 where the aim 
was to improve the transient vibration of the structure. In 
summary, all optimal criteria of the standard DVA have been 
already solved analytically for undamped primary structures.  

When the primary structure takes into account damping, 
however, it is difficult to obtain analytical solutions for the 
optimum parameters of the standard DVA. Ioi and Ikeda [11] 
gave the empirical formulae based on the numerical method. 
Randall et al. [12] suggested numerical optimization proce-
dures for evaluating the optimum DVA's parameters. Thomp-
son [13] proposed a method where the tuning ratio was opti-
mized numerically and the optimum damping ratio of the 
DVA was determined analytically using the optimum value 
obtained for the tuning ratio. Warburton [14] performed a 
detailed numerical study for a lightly damped structure subject 
to both harmonic and random excitation with DVA, and then 
the optimal parameters of the DVA were presented in the form 
of design tables. Fujino and Abe [15] used a perturbation tech-
nique to derive formulae for the DVA's optimal parameters, 
which may be used with good accuracy for the mass ratio less 
than 2 percent and for very low values of the structural damp-
ing ratio. In 1997, Nishihara and Matsuhisa [16] gave the ex-
act solution for the stability maximization criterion. Pennestrì 
[17] proposed a min-max design of a DVA where a min-max 
objective function subject to six constraint equations with 
seven unknown variables was found. In 2002, Asami et al. 
[18] presented a series solution for the H∞ optimization and an 
exact solution for the H2 optimization but their solution was 
extremely complicated. Based on an approximate assumption 
of the existence of two fixed points, Ghosh and Basu [19] 
gave a closed-form expression for the optimal tuning ratio of 
the DVA. Brown and Singh [20] developed a minimax proce-
dure to design a DVA in the presence of uncertainties in the 
forcing frequency range. Anh and Nguyen [21, 22] suggested 
approximate analytical solutions of the optimal tuning ratio of 
the DVA by using the idea of the equivalent linearization 
method for the H∞ optimization. Tigli [23] proposed the exact 
optimum design parameters of the DVA for the H2 criterion in 
the case of minimizing the variance of the velocity and ap-
proximate solutions in the displacement and acceleration cases. 

A non-traditional type DVA was proposed by Ren [24] and 
Liu and Liu [25]. Different from the traditional configuration, 
the non-traditional DVA contains a linear viscous damper 
connecting the absorber mass directly to ground instead of the 
main mass. There have been some studies on the design of the 
non-traditional DVA but mainly for undamped primary struc-
tures. Liu and Liu [25] gave the optimum parameters of the 
non-traditional DVA for the case of a primary structure sub-
jected to excitation force. Cheung and Wong [26] studied the 
non-traditional DVA by minimizing the maximum vibration 
velocity response. Wong and Cheung [27] considered a case 
when the primary structure is subjected to ground motion by 
minimizing the absolute displacement of the primary mass. 

Cheung and Wong [28, 29] designed the non-traditional DVA 
by using the H∞ optimization and H2 optimization. When the 
primary structure is damped, there are very few studies on the 
design of the non-traditional DVA. Liu and Coppola [30] pro-
posed an approximate solution based on Ghosh and Basu’s 
method [19] and employed two numerical methods to obtain 
the optimal parameters of the non-traditional DVA attached to 
damped structures.  

Equivalent linearization is a common approach to approxi-
mate analysis of dynamical systems. The original linearization 
for deterministic systems was proposed by Krylov and Bo-
goliubov [31]. Then Caughey [32, 33] expanded the method 
for stochastic systems. Thenceforth, there have been some 
extended versions of the equivalent linearization method. Re-
cently, Anh et al. [34, 35] proposed a so-called dual criterion 
for the equivalent linearization method. Anh and Nguyen [36] 
suggested a new criterion called the weighted dual criterion 
where the conventional criterion and dual criterion can be 
obtained from the weighted dual criterion as special cases. 
Based on the idea of the weighted dual criterion, the authors 
give an analytical approach to the design of the non-traditional 
DVA for damped structures under ground motion by replacing 
the original damped structure by an equivalent undamped 
structure. Comparisons have been done to validate the accu-
racy of the obtained results.  

 
2. Weighted dual equivalent linearization criterion 

To describe the weighted dual equivalent linearization tech-
nique, we consider a single degree of freedom system as fol-
lows: 

 
( ) ( )2

02 ,x hx x g x x f tw+ + + =&& & & ,                   (1)                       

 
where h  and 0w  are two constants, ( ),g x x&  is a nonlinear 
function of two arguments x  and x& .  

Linearizing Eq. (1), we obtain an equation in the linear form 
as 

                                                   

( ) ( ) ( )2
02x h b x k x f tw+ + + + =&& & ,                  (2)                          

 
where the linearization coefficients ,b k  are determined by 
an optimal criterion. The most extensively used criterion is the 
mean square error criterion. This criterion requires that the 
mean square of the error ( ) ( ), ,e x x g x x bx kx= - -& & &  between 
the original Eq. (1) and its linearized Eq. (2) is minimal                                             

 

( ) ( )( )22 , , min  ( , )e x x g x x bx kx b k= - - ®& & & ,    (3)                       

 
where the operator .  is defined as the mean value on a 
period or a part of the period in the case of deterministic sys-
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tems and the expectation operator in the case of stochastic 
systems. 

Criterion Eq. (3) is called the classical criterion. In the case 
of the major nonlinearity the solution error using the classical 
criterion Eq. (3) may be unacceptable. To reduce the solution 
error, Anh et al. [34, 35] proposed a dual approach to the 
equivalent linearization method as follows:                                 

 

( )( ) ( )( )2 2
, ,

                                              min  ( , , )

g x x bx kx bx kx g x x

b k

l

l

- - + + -

®

& & & &
,    (4)                        

 
where the first term describes the conventional replacement 
and the second term is its dual replacement. 

Afterwards, the authors [36] suggested a so-call weighted 
dual criterion in the following form  

 

( )( )

( ) ( )( )

2

2

, ,

,

                     1 , min
b k

g x x bx kx

bx kx g x x
l

r

r l

- - +

- + - ®

& &

& &
 (5)    

 
where r  is an weighted parameter varying in the interval 
0 1.r£ £  When 1r =  and 1 2r = we obtain the conven-
tional and dual criteria, respectively, as special cases. Using 
criterion Eq. (5) we get the local linearization coefficients 

,  b k  as functions of r corresponding to a given local 
value r                                                             
 

( )
( ) .

b b

k k

r

r

=

=
                                 (6)                                                             

 
The global values of the coefficients of the linearization are 

to be obtained as the averaging values of ( ) ( ),  b kr r  over 
the interval 0 1r£ £        

                                               

( )

( )

1

0

1

0

b b d

k k d

r r

r r

=

=

ò

ò
.                             (7)                                                      

 
Using the idea of the replacement of the equivalent lineari-

zation, the authors suggest the general replacement                                                 
 

( )
,

1 minA B B A
a b

r a r a b- + - - ® .           (8)                                

 
When A  is a nonlinear system and B  is a linear system, 

we have the equivalent linearization method. When A  is a 
damped structure and B  is an undamped structure, we have 
the problem considered in the paper.   

In the following, we use the idea of the above criteria in the 
design problem of non-traditional DVA for damped primary 
structures under ground motion. Namely, we will replace the 

damped primary structure by an equivalent undamped one and 
then use known results for undamped structures to give ap-
proximate analytical solutions of the non-traditional DVA’s 
parameters.  

 
3. Parameters of dynamic vibration absorber for un-

damped structures 

3.1 Standard dynamic vibration absorber 

Fig. 1 describes a standard DVA attached to an undamped 
primary structure under ground motion. When minimizing the 
absolute displacement of the primary structure, the transmissi-
bility is given by [2]  

 

( ) ( )

( ) ( )

2 22 2
ds

S 2 2
2 2 2 2 4 2 20

d

2

1 2 1

xA
u

a b abx

a a ma b b abx b mb

- +
= =

é ù é ù- + + + + - -ë û ë û

 

 (9) 
 

where                   
 

d s d
s s

s s d

,   ,   ,m k k
m m m

m w w= = =  

d d

d d s s

,   ,   .
2d

c
m

w wx a b
w w w

= = =                     (10) 

 
As explained earlier, the purpose of the H∞ criterion was to 

minimize the maximum amplitude magnification factor of the 
primary structure, i.e. 

 

( )
d

s,
min max A
a x b

.                              (11)                                                        

 
Using the fixed-points method, Den Hartog proposed the 

optimal parameters of the standard DVA for H∞ optimization 
as [5] 

 

( )d
1 3;  

1 8 1
ma x

m m
= =

+ +
.                   (12)                                                        

 
When considering the relative displacement, the transmissi-

bility is [14] 

 
 
Fig. 1. The standard DVA attached to an undamped primary structure. 
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( )

( ) ( )

( ) ( )

s
S

0

2 22 2
d

2 2
2 2 2 2 4 2 2

d

1 2 1
    

1 2 1

x u t
R

u

a m b abx m

a a ma b b abx b mb

-
=

é ù é ù+ - + +ë ûë û=
é ù é ù- + + + + - -ë û ë û

 

                  (13) 
 

and the optimal parameters of the DVA are derived as follows 
[14]: 
 

( )( )d
1 / 2 3;  
1 8 1 1 / 2

m ma x
m m m

-
= =

+ + -
.        (14)   

 
3.2 Non-traditional dynamic vibration absorber 

Fig. 2 shows a non-traditional DVA installed in an un-
damped structure under ground motion. In the case of absolute 
displacement of the primary structure, the transmissibility is 
[27] 

 

( ) ( )
( ) ( )

s
N

0

22 22 2 2
d

2 2
2 2 2 2 4 2 2

d

2 1

1 2 1

xA
u

a b abx ma

a a ma b b abx b ma

=

é ù- + +ê úë û=
é ù é ù- + + + + - +ë û ë û

 

                      (15) 
 

and the non-traditional DVA’s coefficients are presented as 
[27] 

 

( )
d

31 ;  
81

m m
a x

m
-

= =
-

.                    (16)                                                               

 

When minimizing the relative displacement of the primary 
mass, to the best of our knowledge, there does not exist any 
result in the literature. Therefore, the parameters of non-
traditional DVA in this case are proposed in the paper. The 
transmissibility is of the form 

( )

( ) ( )

( ) ( )

s
N

0

2 22 2
d

2 2
2 2 2 2 4 2 2

d

1 2
.

1 2 1

x u t
R

u

a m b abx

a a ma b b abx b ma

-
=

é ù+ - +ë û=
é ù é ù- + + + + - +ë û ë û

 

                 (17) 
 
By using the fixed-point method, the non-traditional DVA’s 

parameters in this case are determined by the following set of 
equations: 

 

P Q

N N
N N

d

0;  0;  R R R R
b bx b

¶ ¶
= = =

¶ ¶
                 (18)                                                          

 
where P, Q are two fixed points of the graph NR  versus the 
frequency ratio b . Solving Eq. (18) yields  

 

( )
( )

2

d 2

8 122 ;  
2 8 2 4

m m m
a x

m m m

- + +
= =

- + +
.           (19)                                                

 
Fig. 3 illustrates comparisons between the standard DVA 

and non-traditional DVA where the mass ratio m  is equal to 
0.2.  

We can observe that the peaks of the transmissibilities when 
using the non-traditional DVA are significantly lower than 
those in the case of standard DVA. So the non-traditional 
DVA provides a greater vibration reduction than the standard 
DVA does.  

 
 
Fig. 2. The non-traditional DVA attached to an undamped primary 
structure. 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Comparison of two DVA models in the case of (a) absolute 
displacement; (b) relative displacement. 
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4. Equivalent undamped structure 

The main idea of the present work is to use the dual and 
weighted dual criteria presented in Sec. 2 to replace approxi-
mately the original damped structure as Fig. 4(a) by an 
equivalent undamped structure as shown in Fig. 4(b). 

In Fig. 4(a) with the original damped structure, the equation 
of motion is given as follows:                                                             

 
2

s s s s s s2 0x x xx w w+ + =&& & .                        (20)                               
 
In Fig. 4(b) with the equivalent undamped structure, the 

motion equation has of the form   
                                                           

2
s e s 0x xw+ =&& ,                               (21)                               

 
where ew  is an equivalent frequency that is denoted as                                                                  
 

2 2
e sw g w= + .                                (22)                                                             

 
Using the idea of the weighted dual criterion Eq. (8), we re-

place s s s2 xx w &  with sxg ; thereby the term g  is determined 
by the following criterion:                          

 
( ) ( ) ( )2 2

s s s s s s s s ,D D
2 1 2 minW x x x x

g l
r x w g r g lx w= - + - - ®& &  

                   (23) 
 

in which the operator 
D

.  is defined as    
                                                               

( )D
0

1. .
D

dt
D

= ò                              (24)                                                       

 
with D  is a given integral region. Criterion Eq. (23) leads to 
a set of equations in terms of two coefficients g  and l  as 
follows:                                                                     
 

0;  0W W
g l

¶ ¶
= =

¶ ¶
.                         (25)                                        

 
Substituting the expression of the function W  in the crite-

rion Eq. (23) into the set of Eq. (25), we obtain                                     
 

( )2
s s s s s s s s sD DD

2
s s s s s DD

2 1 2 0

2 0 .

x x x x x

x x x

g r x w l rx w

x w l g

- - - =

- =

& &

& &
   (26) 

Solving Eq. (26) with respect to two unknown constants g  
and l  yields      

                                                 

( )

( )

2
s s s DD

s s 22 2
s s s s DD D

2
s s D

22 2
s s s s DD D

2
1

1

x x x

x x x x

x x

x x x x

r
g x w

r

r
l

r

=
- -

=
- -

& &

& &

&

& &

.            (27)                           

 
Using a transformation of variable etj w= , we have                                 
 

( )D
0

1. . . dj
F

F
= =

F ò  with eDwF = .           (28)                          

 
Therefore, Eq. (27) can be rewritten in the form                                                   
 

( )

( )

2
s s s

s s 22 2
s s s s

2
s s

22 2
s s s s

2
1

1

x x x

x x x x

x x
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r
g x w

r
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l

r
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FF F

F
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=
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=
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& &

&
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Using Eq. (21), we obtain the solution                                                     
 

s e 0cos ,  x a tj j w j= = + .                       (30)                         
 
Introducing Eq. (30) into Eq. (28) yields                                               
 

( )

2
2
s

2
e

s s

2 2
2 e
s

1 sin 2
2 2

cos2 1
4

1 sin 2
2 2

ax

ax x
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w

w

F

F

F

æ ö= F + Fç ÷F è ø

= F -
F

æ ö= F - Fç ÷F è ø

&

&

.                   (31)                      

 
Substituting Eq. (31) into the first equation of Eq. (29) and 

combining with Eq. (22), after simplifying we get                                 
 

( )( )
( )( )

2 2
e s s e s22 2

2 1 cos2 2 sin 2
0 .

4 sin 2 1 1 cos2

r
w x w w w

r

- F F - F
+ - =

F - F - - - F
 

 (32)                    
 
Eq. (32) is a quadratic equation in terms of ew . Solving this 

equation, we easily obtain 
 

( )( )
( )( )

( )( )
( )( )

2

2
s22 2

e s

s22 2

1 cos2 2 sin 2
1

4 sin 2 1 1 cos2 .
1 cos2 2 sin 2

4 sin 2 1 1 cos2

r
x

rw w
r

x
r

æ öé ù- F F - Fç ÷ê ú+ç ÷ê úF - F - - - Fç ÷ë û=
ç ÷

- F F - Fç ÷-ç ÷F - F - - - Fè ø

 

  (33) 

 
                (a)                       (b) 
 
Fig. 4. An approximation of primary structure. 
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Eq. (33) is the general case where the integration domain is 
arbitrarily chosen. We take the mean value over a quarter of 
the period of the primary system [21], i.e., 2pF = . Putting 
the value 2pF =  into Eq. (33) yields 

 

( ) ( )

2

2
e s s s2 2

2 21
4 1 4 1
rp rpw w x x

p r p r

æ öé ùç ÷= + -ê úç ÷- - - -ê úç ÷ë ûè ø

.  (34)                        

 
When 1 2r =  we have the result using the dual criterion 
 

2
2

e_dua s s s2 21
2 2

p pw w x x
p p

æ öæ öç ÷= + -ç ÷ç ÷- -è øè ø
.          (35)                              

 
Using the weighted dual criterion, we obtain  
 

( )

( )

2

2
1 s2

e_wei s

0
s2

21
4 1 d

2
4 1

rp x
p rw w r
rp x

p r

æ öé ùç ÷+ ê úç ÷- -ê úë û= ç ÷
ç ÷
ç ÷-ç ÷- -è ø

ò .          (36)                 

 
Integrating Eq. (36) leads to 
 

( ) ( )

( ) ( ) ( )( )
( )( )

2 222 s sse_wei s s
22 2

s s

2 2 2 2 2 22 2 2
s s ss
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                   (37) 
 
Using the dual and weighted dual criteria, we have replaced 

the damped original structure by an equivalent undamped 
structure where the approximate frequencies e_duaw  and 

e_weiw  are presented in Eqs. (35) and (37), respectively. In the 
next section, we use these results to give the parameters of the 
non-traditional DVA attached to a damped linear structure 
under ground motion. 

 
5. Parameters of nontraditional dynamic vibration 

absorber for damped linear structures 

5.1 Absolute displacement 

A non-traditional DVA attached to a damped primary struc-
ture under ground motion is shown in Fig. 5. When minimiz-

ing the absolute displacement of the primary structure, the 
transmissibility is 
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 (38) 
 

where  s s s s2c mx w=  is the structural damping ratio. 
Using the result Eq. (16) for the equivalent undamped struc-

ture, we have 
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e de
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m m
a x

m
-

= =
-

                 (39) 

 
Note that     
                                                                    

d d
e

e s

;  w wa a
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Utilizing the dual criterion with e_duaw  in Eq. (35), we ob-

tain the non-traditional DVA’s parameters as follows:                                      
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Meanwhile using the weighted dual criterion Eq. (37) leads 

to 
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              (42) 
 
Eqs. (41) and (42) are the approximate analytical solutions 

for the parameters of the non-traditional DVA attached to the 

 
                                                          
Fig. 5. A non-traditional DVA attached to a damped structure under 
ground motion and the equivalent system. 
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primary damped structure under ground motion when optimiz-
ing the absolute displacement.  

 
5.2 Relative displacement 

In the case of relative displacement, the transmissibility is 
given as follows: 

 

( ) ( ) ( )

( )
( ) ( )

2 22 2
ds

N 2
2 2 2 2 40

s d

2
2 2 2 2

d s

1 2
.

1 4

2 1 2
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a a ma ax x b b

abx b ma x b a b

é ù+ - +- ë û= =
é ù- + + + +ë û

é ù+ - + + -ë û  

 

(43) 
 
Using Eq. (19) and the result of dual criterion Eq. (35) 

yields 
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.       (44)                                           

 
And using Eq. (19) and the weighted dual criterion Eq. (37), 

we obtain 
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                   (45) 
 
Eqs. (44) and (45) are solutions when minimizing the rela-

tive displacement of the primary structure. The effectiveness 
of above results will be verified in next section. 

 
6. Comparisons 

As far as we know, there has been no study on the non-
traditional dynamic vibration absorber when the damped pri-
mary structure is subjected to ground motion. Hence, there are 
no exact formulas for optimal parameters of non-traditional 
DVA available in the literature. In this section, the results Eqs. 
(40), (41), (43) and (44) proposed in the paper are compared 
with results obtained by numerical methods. The numerical 
optimizations are done by using the fminsearch command in 
MATLAB. 

6.1 Absolute displacement 

To validate the effectiveness of the results Eqs. (41) and 
(42) presented in this study, these expressions are compared 
with the numerical results as shown in Figs. 6-10. Fig. 6 de-
scribes the graph of the transmissibility NA  where 0.03m =  
and s 0.05x = . Figs. 7-9 present three cases where 0.05m = , 

s 0.05x = ; 0.05m = , s 0.1x =  and 0.1m = , s 0.05x = , 
respectively. Fig. 10 shows the comparison of the maximum 

 
  
Fig. 6. Comparison of the absolute transmissibility NA  where 0.03m =
and 0.05sx = . 
 

 
  
Fig. 7. Comparison of the absolute transmissibility NA  where 0.05m =
and 0.05sx = . 

 

 
 
Fig. 8. Comparison of the absolute transmissibility NA  where 0.05m =
and 0.1sx = . 
 

 
 
Fig. 9. Comparison of the absolute transmissibility NA  where 0.1m =
and 0.05sx = . 
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of absolute transmissibility NA  when the structural damping 
ratio sx  is changed. 

 
6.2 Relative displacement 

In the case of relative displacement, the two results Eqs. 
(44) and (45) are compared with numerical results in Figs. 11-
16. Fig. 11 illustrates the case 0.03m =  and s 0.05x = . Figs. 

12-14 depict three cases: 0.05m = , s 0.05x = ; 0.05m = , 
s 0.1x =  and 0.1m = , s 0.05x = , respectively. Fig. 15 de-

scribes the comparison of the maximum of relative transmis-
sibility NR  when the structural damping ratio sx  is changed.  

From the comparisons in Secs. 6.1 and 6.2, some remarks 
can be drawn. First, the results Eqs. (41), (42), (44) and (45) 
agree quite well with numerical results. Therefore, the analyti-
cal expressions for DVA’s optimal parameters suggested in 
this paper are useful in practice. Second, in the case of abso-
lute displacement, result Eq. (42) using the weighted dual 
criterion is better than result Eq. (41) using the dual criterion. 
Conversely, in the case of relative displacement, result Eq. 
(44) using the dual criterion is better than result Eq. (45) using 
the weighted dual criterion. However, the difference between 
two criteria is quite small.  

 
7. Conclusions 

Previous studies in the literature showed that the non-
traditional type dynamic vibration absorber designed for un-
damped primary structure procedures had better performance 
than the standard model DVA does. However, to our best 
knowledge, there has been no study on the non-traditional 
dynamic vibration absorber for damped primary structures 
under ground motion. This paper proposes a simple approach 
to design the non-traditional DVA when the primary structure 
is damped and subjected to ground motion. The main idea is 
using the dual and weighted dual criteria of equivalent lineari-
zation method to replace approximately the damped primary 
structure with an equivalent undamped structure. Then, the 
parameters of the non-traditional DVA are obtained by using 
the known results for undamped structure. The fundamental 

 
                 
Fig. 10. Comparison of the maximum of absolute transmissibility NA
where 0.05m = . 

 

 
 
Fig. 11. Comparison of the relative transmissibility NR  where 

0.03m =  and 0.05sx = . 
 

 
 
Fig. 12. Comparison of the relative transmissibility NR  where 

0.05m =  and 0.05sx = . 
 

 
 
Fig. 13. Comparison of the relative transmissibility NR  where 

0.05m =  and 0.1sx = . 

 
 
Fig. 14. Comparison of the relative transmissibility NR  where 0.1m =
and 0.05sx = . 
 

 
 
Fig. 15. Comparison of the maximum of relative transmissibility NR
where 0.05m = . 
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findings in this study can be summarized below.  
·Optimal parameters of a non-traditional DVA for un-

damped structures under ground motion are found when 
minimizing the relative displacement. 
·Approximate analytical expressions of the non-traditional 

DVA’s parameters are presented for damped structures 
under ground motion in both absolute and relative cases. 
·The results presented in this study are compared with the 

numerical results . Our results agree quite well with the 
results obtained by using numerical optimizations. Thus, 
the analytical expressions proposed in this paper are use-
ful in practice.   
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