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Abstract 
 
An optimization process for impellers was carried out based on numerical simulation, Latin hypercube sampling (LHS), surrogate 

model and Genetic algorithm (GA) to improve the efficiency of residual heat removal pump. The commercial software ANSYS CFX 
14.5 was utilized to solve the Reynolds-averaged Navier-Stokes equations by using the Shear stress transport turbulence model. The 
impeller blade parameters, which contain the blade inlet incidence angle ∆β, blade wrap angle φ, and blade outlet angle β2, were designed 
by random sample points according to the LHS method. The efficiency predicted under the design flow rate was selected as the objective 
function. The best combination of parameters was obtained by calculating the surrogate model with the GA. Meanwhile, the prediction 
accuracies of three surrogate models, namely, Response surface model (RSM), Kriging model, and Radial basis neural network (RBNN), 
were compared. Results showed that the calculated findings agree with the experimental performance results of the original pump. The 
RSF model predicted the highest efficiency, while the RBNN had the highest prediction accuracy. Compared with the simulated effi-
ciency of the original pump, the optimization increased efficiency by 8.34% under the design point. Finally, the internal flow fields were 
analyzed to understand the mechanism of efficiency improvement. The optimization process, including the comparison of the surrogate 
models, can provide reference for the optimization design of other pumps.  
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1. Introduction 

In recent years, nuclear power has drawn increasing atten-
tion because of its high efficiency and low pollution. Thus, a 
rising number of nuclear power stations are being developed. 
The safety of nuclear station operations is mainly guaranteed 
by the residual heat removal system (Fig. 1). Residual heat 
removal pumps (RHRP) are operated when the nuclear main 
pump stops working and the nuclear station needs to be main-
tained [1].  

Performance improvement has been investigated in turbo-
machinery for many years, and optimization methods have 
been proposed, such as Taguchi method, response surface 
methodology, artificial neural network, and surrogate model. 
The optimization algorithm is also developed to improve ac-
curacy and reduce time and computational expense. Singh et 
al. [2] compared the Taguchi method and the Genetic algo-
rithm (GA) to optimize pump performance and found that the 
former was the better choice for improving pump performance 
variables with multiple quality characteristics. Zhou et al. [3] 

used the numerical simulation and orthogonal experimental 
method to investigate the importance level of the main pa-
rameters of the impeller on pump performance and also ob-
tained the best combination of parameters. Lian et al. [4] inte-
grated the experiment design, Response surface model (RSM), 
GA, and Computational fluid dynamics (CFD) to redesign a 
single-stage pump, a two-stage turbo pump, and the NASA 
rotor67. The performance was improved and the computa-
tional cost was reduced. Yang et al. [5] applied the 3D inverse 
design method, CFD, response surface method, and the Multi-
objective genetic algorithm (MGA) to redesign the pump-
turbine. Wang et al. [6] developed an optimization method 
based on experimental design theory and response surface 
method to optimize a single-suction centrifugal pump and 
improve the performance of the optimal pump. Zhang et al. [7] 
applied the partial differential equation method to parametric 
design impeller and hypersurface response model to optimize 
the impeller. Zhang et al. [8] proposed a multi-objective opti-
mization method for a double suction centrifugal pump by 
using a numerical simulation, Kriging model (KRG), Latin 
hypercube design and GA. Wang et al. [9] coupled the MGA 
NSGA- II and back propagation neural network to enhance a 
NASA rotor37. Bing et al. [10] optimized the mixed-flow 
pump impeller based on the GA and the iterative design 
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method of the direct and inverse problems. The optimization 
strategy improved the hydraulic efficiency of the impeller, 
which increased by 3%. Kim et al. [11] suggested an optimi-
zation process that was based on a Radial basis neural network 
(RBNN) model and Sequential quadratic programming (SQP) 
to seek the best combination of diffuser parameters for im-
proving the performance of the mixed flow pump. Kim et al. 
[12] carried out a numerical optimization coupling surrogated 
model and SQP to improve the performance of a tunnel venti-
lation jet fan. He also applied factorial design to optimize the 
pump impeller with the response surface method [13]. 

In this paper, an optimization method is proposed by com-
bining the design of experiment, surrogate model, GA, and 
CFD analysis. Latin hypercube sampling (LHS) method is 
applied to design the sampling points of the impeller. A suit-
able surrogate model is selected by comparing three surrogate 
models constructed by CFD results. Finally, GA is applied to 
seek the best parameters of impeller to maximize the effi-
ciency under the design point.  

 
2. Geometry 

The hydraulic components of a centrifugal pump include a 
twist impeller with five blades, radial diffuser with seven 
vanes, and an annular volute. The design flow rate Q and head 
H of the pump are 910 m3/h and 77 m, respectively. The spe-
cific geometric parameters of the pump are shown in Table 1. 
Fig. 2 shows that the structure type of pump is horizontal, 
single-stage, and with a single suction. Fig. 3 illustrates that 
the whole computational domain consists of seven parts, 
namely, inlet, impeller, diffuser, front chamber, back chamber, 
clearance of wearing ring, and volute. To prevent the back-
flow from extending to the whole inlet pipe and the recircula-
tion at the outlet pipe, the length of inlet pipe and outlet pipe 

added to the volute is extended. 
 

3. Numerical simulation and experimental validation 

3.1 Mesh generation 

Mesh generation is an important step in the process of nu-
merical simulation by directly affecting the accuracy and cal-
culation time. The structured grids of the whole computational 
domain are generated by the meshing tool ICEM. The mesh of 
the main domain is shown in Fig. 4. The mesh independence 
check was performed in a previous research [14]. Fig. 5 shows 
that when the grid number increases from 5.49 million to 6.01 

Table 1. Main parameters of the pump. 
 

Impeller Value Diffuser Value Volute Value 

Dj/ mm 270 D3/ mm 515 D5/ mm 840 

D2/mm 511 D4/ mm 718 b5/ mm 250 

b2/ mm 49 b3/ mm 55 ns 105 

Zi 5 b4/ mm 84 n/ r min-1 1490 

  Zd 7 η 76% 

 

Valve RHRP Heat 
exchanger

 
 
Fig. 1. Residual heat removal system. 

 

 
(a) Axial section of residual heat removal pump 

 

 
(b) Schematic profile of model impeller 

 
Fig. 2. Residual heat removal pump model. 
 

 
 
Fig. 3. Whole computational domain. 
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million, the head remains stable. Finally, approximately 5.5 
million grids are determined to carry out the numerical simu-
lation. 

 
3.2 Mesh generation 

The 3D steady numerical simulation is performed by using 
ANSYS CFX 14.5 when the fluid in the pump is supposed to 
be incompressible and viscous. The Reynolds-averaged Na-
vier-Stokes is solved with the Shear stress transport (SST) k-ω 
turbulence model, which is derived by Menter [15]. The SST 
k-ω model accounts for the transport of the turbulent shear 
stress and gives highly accurate predictions of the onset and 
amount of flow separation under adverse pressure gradients by 
the inclusion of effects into the formulation of the eddy vis-
cosity. This turbulence model is a blending between the k-ω 
model near the surface and the k-ε model in the outer region. 

Multi-reference frame technique is used in the steady simu-
lation. ‘Frozen rotor’ is set in the interface between the rotor 
and stator, while ‘None’ is set in the stator–stator interface. 
The boundaries at the inlet and outlet are specified by total 
pressure and mass flow rate respectively. According to the 
actual roughness on the walls of hydraulic components, the 
solid walls on the impeller blades and diffuser vanes are con-
sidered to be rough, with a roughness of 6.3 μm, while the 
roughness of other walls is 12.5 μm. The surfaces in the whole 
computational domains are no-slip conditions. The physical 

time scale is 1/ω and ω is the angular velocity of the pump. 
The root mean square residual value is set below 10-5. The 
numerical calculation is performed on a Dell Workstation 
T3600 with an Intel Xeon CPU E5-1650 and a clock speed of 
3.2 GHz. 

 
3.3 Experimental validation 

The accuracy validation of the numerical simulation for per-
formance prediction is critical before the optimization of the 
impeller blade can be processed. Fig. 6 shows the original 
model pump (scaled to 0.7 times of the real pump) was tested 
in the open test rig of Yixing Unite Machinery Co. Ltd. Fig. 7 
presents the comparison of performance between numerical 
and experimental results. The predicted performance agrees 
with the experimental results. Thus, the numerical simulation 
can accurately and reliably predict the performance of the 
pump. The efficiency calculated by CFD is 70.57%, while the 
experimental efficiency is 73.3% with a relative error of 3.9%. 
The flow coefficient f  and head coefficient ψ are defined as 
follows: 

 

3
2

Q
nD

f = .  (1) 

2 2
2

gH
n D

y = .  (2) 

 
 
Fig. 4. Mesh of impeller and diffuser. 
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Fig. 5. Mesh independence analysis. 

 

 
 
Fig. 6. Open test rig. 
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Fig. 7. Comparison between CFD and experimental results. 
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4. Optimization process 

The pump efficiency (73.3%) cannot meet the required 
value of 76%, and thus optimizing the impeller is necessary. 
The optimization process is illustrated in the flow chart in Fig. 
8. First, the initial values of the design variables are deter-
mined, and the efficiency under the design point is selected as 
the objective. Second, the design space points are chosen by 
using the LHS method. The objectives at these design points 
are calculated by numerical simulation. Three surrogate mod-
els are built between the objectives and the design variables. 
Then the prediction accuracy of three surrogate models are 
compared. Finally, the selected optimal combination of design 
parameters is explored by solving the suitable surrogate model 
with the Multi-island genetic algorithm (MIGA). During the 
optimization process, the computational domain of the impel-
ler is constructed by the software CFturbo, the mesh is gener-
ated by ICEM, the steady simulation is executed by CFX, and 
the surrogate model and GA are combined to obtain the opti-
mal parameters based on the Isight 5.7 software. 

 
4.1 Objective function 

The optimization aims to maximize the efficiency η. The 
equation is as follows: 

 
gQH
P

rh = .  (3) 

 
4.2 Design parameters 

To keep the impeller safe, the thickness of the impeller is 
unchanged. The profile of the blade is optimized, and the three 
parameters are the inlet incidence angle ∆β, blade wrap angle 
φ, and blade outlet angle β2. The inlet incidence angle ∆β is 
defined as 

'
1 1b b bD = - .  (4) 

 
where β1 and β1′ are the blade inlet angle and inlet flow angle 
respectively. β1′ can be calculated by the velocity triangle.  

According to the design method of the pump [16] and a 
previous investigation of the optimization on the impeller [17], 
the ranges of the design parameters are determined, as shown 
in Table 2. 

 
4.3 Latin hypercube sampling method 

The design of experiment is widely used to perform the op-
timization, such as the Taguchi method, factorial design, LHS, 
and so on. The advantage of the Taguchi method and uniform 
design is that they obtain less experimental programs to yield 
the best results; its disadvantage is that the best combination 
of parameters cannot be easily found. The LHS method can 
randomly generate a range of parameters that represent all 
proportions of the design space. A total of 16 schemes are 
designed by the LHS method, and the results under the design 
point at every design point are calculated, as shown in Table 3. 

 
4.4 Surrogate models 

The surrogate model [18-20], similar to the response surface 
method, KRG, RBNN, and so on, can reduce the numerical 

Problem
(efficiency lower than the design value)

Range of parameters

Latin Hypercube Sampling method

Numerical simulation

Surrogate model

Genetic algorithm

Meet the required value?

Optimal parameters

No

Yes

 
 
Fig. 8. Flow chart of optimization. 

 

Table 2. Ranges of blade parameters. 
 

Parameters Lower value Upper value Original value 

∆β 5° 9° 9° 

φ 120° 150° 115° 

β2 20° 24° 23° 

 
Table 3. Efficiencies under 16 design points. 
 

No. β2/° ∆β/° φ/° η/% 

1 20 9 146 75.72 

2 20.27 5.8 126 75.43 

3 20.53 7.93 150 75.94 

4 20.8 6.33 128 75.49 

5 21.07 5.53 120 74.94 

6 21.33 6.6 132 75.70 

7 21.6 5.27 134 74.98 

8 21.87 5 144 76.19 

9 22.13 6.87 136 75.36 

10 22.4 7.13 142 75.82 

11 22.67 8.73 124 74.60 

12 22.93 8.47 130 74.25 

13 23.2 7.67 138 74.79 

14 23.47 7.4 140 74.96 

15 23.73 6.07 148 75.48 

16 24 8.2 122 73.64 
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calculation time to a certain extent. The best combination of 
parameters can be obtained by solving the function with the 
optimization algorithm. Establishing the surrogate model is a 
key step for optimization accuracy. Several types of surrogate 
models are briefly introduced as follows. 

 
4.4.1 Response surface approximation (RSF) 

RSF is a method that studies the quantitative relationship 
between the objective function f(x) and the variable x. 

 
( ) ( )i if x b f x=å .  (5) 

 
where fi(x) is the basic function. The coefficient bi is calcu-
lated by minimizing the relative error between the objective 
function f(x) and the real values y(x), which is obtained from 
the experiments or numerical simulations. 

The coefficient bi is as follows: 
 

1( )T Tb x x x y-= .  (6) 
 

4.4.2 Kriging model (KRG) 
KRG is made up of a regression function and a random 

function. 
 

( ) ( ) ( )i if x b f x z x= +å .  (7) 

 
The random function z(x) is supposed to have a mean zero 

and covariance. 
 

2( ), ( ) ( , , )E z x z y r x ys q=é ùë û .  (8) 

 
where r(θ, x, y) is the correlation model with parameters θ. In 
this paper, the correlation model is selected as the GAUSS 
function. 

 
2

1

( , , ) exp( ( ) )
n

j j j
j

r x y x yq q
=

= - -Õ .  (9) 

 
4.4.3 Radial basis neural network (RBNN) 

The RBNN model is built as a weighted combination of re-
sponses from radial basis functions. 

 
( ) ( )i if x w f x=å .  (10) 

 
where fi(x) is the response of the radial basis function and wi is 
the weight of the fi(x). The GAUSS function is used for the 
radial basis function. 

 
5. Results and discussion 

5.1 Comparison of prediction accuracy 

Evaluating the accuracy of surrogate models is necessary. 
Thus, the error analysis method of R-square is used to evalu-

ate the prediction accuracy of surrogate models. If the R-
square value is more than 0.9, then the surrogate model has 
good prediction capability. Fig. 9 shows that the values of 
RSF, KRG, and BPNN are 0.9387, 0.993 and 1, respectively, 
which means that the three surrogate models have good capa-
bilities in predicting the efficiency, with the KRG and BPNN 
having better prediction accuracy. 

 
5.2 Comparison of optimization result 

After the establishment of the surrogate model is completed, 
the optimization algorithm is applied to seek the best combi-
nation of designed parameters of the impeller by solving the 
surrogate model. The optimization algorithm is divided into 
the direct search algorithm and global search algorithm. The 
advantage of direct search algorithms, like the Hooke-Jeeves 
direct search method and downhill simplex, is their effective-
ness in seeking the local area of the initial design points. 
However, they may not find the best combination of parame-
ters. In contrast, global search algorithms such as GA, particle 
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(a) Response surface method 
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Fig. 9. Prediction accuracy of surrogate models. 
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swarm optimization, and adaptive simulated annealing, are 
better for surrogate functions, which are nonlinear, non-
differentiable, and discontinued, though the calculation costs 
more computational source and time. These are applied to 
solve complex engineering problems [21-23]. In this paper, 
the MIGA is developed from the traditional GA and has better 
global search ability. Detailed settings of the MIGA are shown 
in Table 4. The optimization calculation executes 5000 itera-
tions. 

The best combination of parameters is obtained by solving 
the surrogate model with MIGA. Optimal parameters acquired 
from three surrogate models are shown in Table 5. The effi-
ciency predicted by the RSM is shown to be the highest 
(76.65%), followed by those of the KRG and RBNN. 

According to the parameters of the three surrogate models, 
the impellers are rebuilt by CFturbo and the same numerical 
simulation settings are carried out at the CFX 14.5 platform. 
The comparison of efficiencies between the numerical simula-
tion and prediction by surrogate models are illustrated in Ta-
ble 5. The RBNN has the highest prediction accuracy, while 
its calculated efficiency is the lowest. The efficiency predicted 
by RSF is the highest and the relative error is ranked third. 
Compared with the simulated efficiency (70.57%) of the orig-
inal pump, the optimization increases the efficiency by 8.34%. 
Thus, the final optimal parameters of the impeller are obtained 
by calculating RSF with MIGA. 

 
5.3 Comparison of flow field 

Fig. 10 shows the pressure distribution on blades at 50% 
span of the impeller along the streamline from the leading 
edge to the trailing edge. The pressure distribution of the op-
timal impeller is more regular than that of the original one, 
whose lowest pressure occurs at 0.05 of the streamline loca-

tion at the suction side. The pressure is larger on the suction 
side of the optimal blades and smaller on the pressure side 
below 0.5 of the streamline location. The pressure on the 
blades is almost the same between 0.5 and 0.8 of streamline 
location. The distribution of pressure at the trailing edge is 
complex due to the jet-wake flow.  

The pressure distribution from inlet to outlet is shown in Fig. 
11. When the streamline is approximately below 0.3, the pres-
sure is constant. In the original impeller, the pressure reaches 
its lowest at 0.4 of the streamline location and then slowly 
increases to 0.4 of the streamline location. The pressure then 
increases faster in the original impeller than that in the optimal 
one. Thus, the hydraulic loss in the original impeller is larger. 

The relative velocity vectors at 50% span of the original and 
optimal impellers are compared, as presented in Fig. 12. Flow 
separation occurs at the pressure side of both impellers. In the 
original impeller, a low velocity area exists at the suction side 
of blade, while fluid flows along the suction side of the opti-
mal blade regularly. Thus, the optimal impeller passage has 
good flow control and less hydraulic loss is generated. 

 
6. Conclusions 

An optimization process of the impeller is applied to im-
prove the efficiency of an RHRP. The optimization strategy is 
proposed based on numerical simulation, design of experiment, 
surrogate model, and GA. Three surrogate models, namely, 
RSM, KRG, and RBNN, are compared during the construc-

Table 4. Settings of the MIGA. 
 

Parameters Value 

Sub-population 10 

Number of islands 10 

Number of generations 50 

Rate of crossover 0.9 

Rate of mutation 0.01 

Rate of migration 0.01 

Interval of migration 5 

Elite size 1 

 
Table 5. Comparison of parameters and results. 
 

Surrogate 
model β2/° ∆β/° φ/° 

η/% 
prediction 

η/% 
CFD 

Relative 
error 

RSF 20.6 5.7 150 76.65 76.45 0.26% 

KRG 21.5 5.9 148 76.49 76.37 0.17% 

RBNN 21.3 5.2 150 76.26 76.26 0.005% 
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Fig. 10. Pressure distribution on blades at 50% span. 
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Fig. 11. Pressure distribution from inlet to outlet. 
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tion of the best surrogate model between the efficiency and the 
impeller parameters. The RSF model predicts the highest effi-
ciency, whereas the RBNN has the highest prediction accu-
racy. Finally, the optimization increases the efficiency of the 
pump by 8.34%. Compared with the inner flow field of the 
original impeller, the pressure distributions on the optimum 
blades are more regular and the area of flow separation disap-
pears at the suction side near the trailing edge. The optimiza-
tion process, including the comparison of the different surro-
gate models, can provide reference for the optimal design of 
other pumps. 
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Nomenclature------------------------------------------------------------------------ 

b2     : Impeller blade outlet width    

b3    : Diffuser vane inlet width 
b4    : Diffuser vane outlet width 
b5 : Volute inlet width 
Dj : Impeller inlet diameter 
D2  : Impeller outlet diameter 
D3  : Diffuser inlet diameter 
D4  : Diffuser outlet diameter 
D5  : Volute inlet diameter 
g   : Acceleration of gravity 
H   : Head 
LE  : Leading edge 
n   : Rotating speed 
ns  : 3.65×nQ0.5/H0.75, specific speed 
P   : Power 
Q   : Flow rate 
Zi  : Number of blade 
Zd  : Number of vane 
β1  : Blade inlet angle 
β2  : Blade outlet angle 
β1

′  : Inlet flow angle 
∆β : Blade inlet incidence angle 
η   : Efficiency 
ρ   : Density 
φ   : Blade wrap angle 
f     : Flow coefficient 
ψ  : Head coefficient 
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