
 
 

 
Journal of Mechanical Science and Technology 30 (1) (2016) 381~396 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-015-1243-2 

 

 

 

 
Design and implementation of a robust FNN-based adaptive sliding-mode             

controller for pneumatic actuator systems† 
Lian-Wang Lee1 and I-Hsum Li2,* 

1Department of Mechanical Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan, Republic of China 
2Department of Information Technology, Lee-Ming Institute of Technology, Taipei, Taiwan, Republic of China    

 
(Manuscript Received March 13, 2014; Revised June 6, 2015; Accepted September 13, 2015)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
An adaptive Fourier neural network sliding mode controller with H¥  tracking performance (AFNN-SMC+ H¥ ) is applied for a 

Pneumatic actuator system (PAS) to overcome time-varying nonlinear dynamics and external disturbances. Benefiting from the use of 
orthogonal Fourier basis function, the proposed AFNN has fast estimated convergence speed; also, because AFNN has unique solution, it 
can avoid falling into the local minimum. The architecture of AFNN can also easily be determined by its clear physical meaning of the 
neurons. To attenuate the vibration of proportional directional control valve and the adaptive approximation error, the H¥  tracking 
design technique is incorporated into the proposed AFNN-SMC. Finally, practical experiments are successfully implemented in position 
regulation, trajectory tracking, and velocity control of the PAS, which illustrates the effectiveness of the proposed controller.  
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1. Introduction 

Over the past few years in industrial motion control applica-
tions, a Pneumatic actuator system (PAS) has become popular 
because of high speed, low energy consumption, and easy 
maintenance. In addition, due to their low-cost and high ratio 
of power to weight, a PAS is well-known for linear movement 
control and robotic manipulator control. Also, a PAS is clean, 
safe in operation, and no overheating problems. However, the 
PAS is limited in the difficulty of making stable and accurate 
motion control. The use of a PAS is traditionally called “end-
stop” motion, which is controlled by on/off valves. In the 
1950s, researchers started attempting the continuous position 
control of a PAS. It is unfortunate that limited on low-
performance microprocessors and pneumatic components 
servo-controlled, a PAS was seldom utilized in industry in the 
last 10 years. In recent years, however, low-cost and high-
performance microprocessors and pneumatic components 
have been accessible, and more complicated control methods 
in pneumatic system control were possible to be realized [1]. 

Tracking control of nonlinear systems with uncertain pa-
rameters or unknown dynamics has attracted great attention 
for the last few decades. Adaptive control (AC) was proposed 
as a way of automatically adjusting the controller parameters 

in case of the unknown time-varying parameters of a plant. 
Many adaptive approaches can also be found to take care of 
uncertainties in the fluid power servo system, which could be 
classified into two different domains, pneumatic servo system 
and hydraulic servo system [2-4]. However, the fluid power 
servo system usually contains much parameter uncertainty 
caused by the change of environmental temperature and work-
ing state. Hence, many researches have applied the AC to the 
fluid power servo system to cope with these uncertainties. 
Developing AC is required for a clear mathematical model of 
the controlled plant, but its robustness is limited by the persis-
tent excitation, the slow time variation, and the strict positive-
ness. Therefore, researchers have developed ACs with few 
design limitations, simplified algorithms, which can save 
computational time, and better robustness. For example, a 
robust integral of the sign of the error controller and an adap-
tive controller are synthesized via backstepping method for 
motion control of a hydraulic rotary actuator [5]. Under the 
assumption of which the disturbances are periodic-like, Yao et 
al. presented an adaptive repetitive control based on projection 
algorithm [6]. Based on a nonlinear system model, a discon-
tinuous projection-based nonlinear adaptive robust backstep-
ping controller was developed to take into account the particu-
lar nonlinearities and then a stable parameter adaptation was 
derived to eliminate the effect of unknown but constant para-
metric uncertainties [7]. 

Even though the PAS is simple and inexpensive now, it still 
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cannot meet the demand of being accurate, versatile, and 
flexible due to the inborn nonlinearities associated with com-
pressibility of air and complex friction distributions along the 
cylinders. In addition, unknown time-varying parameters or 
disturbances have been known to be a challenge of control 
design. These inborn problems make the PAS hard to acquire 
high precision motion control. As a result, for the purpose of 
serving on more complicated motion-control tasks, many re-
searchers [8-11] have explored the PAS for servo system con-
trol. Over the last ten years, the input-output feedback lineari-
zation technique has been adopted to the PAS [12]. The main 
idea is first to transform the PAS into a linear system by a 
nonlinear feedback, and second to use well-known and power-
ful linear design techniques to fulfill the control design. These 
techniques, however, can only be applicable to nonlinear sys-
tems when the system parameters are precisely known and are 
unlikely in a practical application. Nearly all kinds of robust 
control schemes [13] have been proposed to solve the control 
problems of the PAS, one of which is Sliding mode control 
(SMC) [14]. The SMC is robust against external disturbances 
and can provide a systematic approach to maintain stability in 
the face of modeling imprecision and uncertainty. Nonetheless, 
the design of traditional SMC has to be required for precise 
system model, so-called as a model-based control design; 
therefore, the system dynamic model and the value of uncer-
tain bound for controller design are needed. In general, the 
SMC suffers from large control chattering that may excite 
unmodeled high frequency response of the systems so that it 
has a trade-off between chattering and robustness. Hence, 
various controllers incorporating SMC have been proposed 
[15-19] to reduce the chattering. Unfortunately, most of the 
existing methods require that nonlinear functions of the dy-
namical system are known, which is impractical in real appli-
cations. Furthermore, although SMC rejects uncertainties and 
disturbances, it suffers from an assumption of which the 
matching uncertainties or disturbances have to be bounded on 
norm and the bound should be available for design. Some 
parameters related the PAS, i.e., the tube length, the cylinder 
bore diameter, and the critical pressure ratio of chokes flow, 
are easily measured or obtained from the manufacturer or even 
can be calculated by extensively received formulas; however, 
the inner dynamics of the valve flow is still difficult to com-
prehend with the PAS. Besides, the friction [20, 21] and inter-
nal energy change [22], which are necessary in experiments, 
are quite hard to model and are not yet completely understood. 
Therefore, due to the complex structure of uncertainties, un-
certainty bounds may not be easily obtained, and the tradi-
tional SMC cannot be implemented for the PAS.  

Lately, many theoretical and practical works have been 
done in the field of approximate-based control [23-29]. The 
functional approximation technique is applied to release this 
model-based requirement. Particularly, Approximate-based 
adaptive control (ABAC) has been verified and deemed useful 
to solve control problems of the PAS with time-varying func-
tion or unknown nonlinear parameters [30]. In ABAC, the 

unknown time-varying functions are usually modeled online 
by several commonly used function approximates, such as 
multi-layer Neural network (NN) [31], fuzzy neural network 
[32, 33], wavelet neural network [34], and radial basis func-
tion neural network [35, 36]. The NN-based control method 
has been successfully employed in many applications, but 
there still are some difficulties in selecting parameters of the 
activation function and determining network structures. 
Moreover, the approximation error is affected by the number 
of layers and neurons so that it is hard to decide specified ap-
proximation accuracy. If there are not enough layers and neu-
rons in the network, assuring that the parameters converge to 
their optimal values may be a problem. On the other hand, 
having too many layers and neurons causes massive computa-
tional burden and inevitably degrades convergent speed. As a 
result, it deters the on-line control applications and practical 
implementation feasibility. Thus, for the NNs both the net-
work topology and stability analysis are not easy to carry out 
[37]. These drawbacks prevent the NNs from being widely 
used in control design.  

To solve the above-mentioned problems and avoid draw-
backs of the traditional SMC and NNs, we propose the 
AFNN-SMC+ H¥  for the motion control design of the PAS 
with unknown and uncertain bounded parameters. In our pro-
posed control strategy, the technique of input-output feedback 
linearization is first used to transform the PAS nonlinear 
model into a linear one. Subsequently, the powerful and uni-
versal AFNN approximator is used to approximate the uncer-
tain nonlinear functions of the dynamical system, and the 
SMC is then applied to stabilize the whole system and attenu-
ate the bounded disturbance. However, the SMC has an inher-
ent limitation of which the matching uncertainties or distur-
bances have to be bounded for controller design. To release 
this limitation, the H¥  tracking design technique [32, 38] 
based on the relaxed assumption was incorporated into the 
SMC. Taking advantages of the orthogonal activation basis 
functions and the clear definition of Fourier series, AFNN has 
a clear physical meaning and easily determined structure, so 
that it is over conventional NNs; in addition, AFNN has been 
proven that there are no local minima for optimization prob-
lem [39-41]. Because of the orthogonality of the basis func-
tions, the FNN provides fast convergent speed and it is there-
fore suitable for real-time implementation [39, 40]. To further 
decrease the effect caused by approximation error, time-
varying dynamics, and external disturbance, an adaptation 
technique and a compensator with H¥ tracking performance 
[32, 38] are included into the AFNN-SMC, named as the 
AFNN-SMC+ H¥ . The weighting update algorithms of the 
AFNN-SMC+ H¥  are derived from the Lyapunov stabilizing 
theory. Compared with traditional SMC approaches, which 
generally require prior knowledge on the upper bound of the 
uncertainties, the proposed approach not only assures closed-
loop stability, but also guarantees the desired H¥  tracking 
performance for the overall system based on a much relaxed 
assumption. Moreover, control chattering happening in the 



 L.-W. Lee and I-H. Li / Journal of Mechanical Science and Technology 30 (1) (2016) 381~396 383 
 

  

traditional SMC can be greatly lowered by using the proposed 
approach. The experimental results show that the proposed 
controller has effective tracking performance despite uncer-
tainties and time-varying payload.  

The main contributions of this study are as follows: (1) 
Thanks to orthogonality of the basis functions, the FNN is not 
only easy to realize, but also highly improves the convergence 
speed and the local minimum avoidance. (2) The FNN has a 
clear physical meaning; therefore, the network topology and 
the parameter selection of the basis functions become conven-
ient for real applications. (3) The constraint in demanding 
prior knowledge on upper bounds of the lumped uncertainties 
is removed. (4) The proposed AFNN-SMC+ H¥ significantly 
reduces the control chattering.  

 
2. System description and modeling  

2.1 System hardware 

A schematic diagram of the PAS is shown in Fig. 1. Table 1 
specifies the main components and the system hardware com-
prises a rodless pneumatic cylinder, a proportional directional 
control valve, a granite air cushion, and a PC-based control 
unit. The critical frequency with maximum spool stroke (Festo 
model MPYE-5-1/8-HF-010B) is 100 Hz and the rodless cyl-
inder in our test rig (Festo model DGPL-25-700-PPV-A-
HD40-GK-D2) is with 25 mm bore and 700 mm stroke. The 
source pressure is regulated at 56 10´ Pa, and the source tem-
perature is 293 K coming from a dehumidified and filtered 
process. The rodless cylinder has a built-in linear slider. An 
optical encoder with a resolution of 20 nm is installed to 
measure the piston’s position, and the default payload is set at 
6 kg. The scale’s measured signals are feedback to the control-
ling PC via a decoder IC, Agilent HCTL-2032, and a digital 
I/O converter. The PC-based control system is implemented 
on a Pentium III CPU with an ADVANTECH’s PCL-726 IO-
card which contains D/A converters and digital I/O converter. 
The proposed control strategy is implemented in an inter-
rupted service routine with 1ms sampling time under MS-
DOS environment. The input voltage for the proportion servo 
valve comes from the controlling PC via D/A converters, and 
the control law is calculated by a 32-bit Open Watcom C Lan-
guage program. 

2.2 Pneumatic actuator system dynamic model 

Fig. 2 shows the test rig of the PAS. In the rodless pneu-
matic servo system, the opening area of the proportional direc-
tional control valve’s orifice depends on the control input to 
affect the air flow. As the air flows into the rodless pneumatic 
cylinder, the pressure difference between two cylinder cham-
bers results in the motion of the pneumatic cylinder. An analy-
sis of the dynamic behavior of the PAS usually requires indi-
vidual mathematical descriptions of the dynamics of the three 
component parts: the valve, the actuator and the load. Such an 
analysis is presented below with reference to the coordinate 
system illustrated in Fig. 3. 

 
 
Fig. 1. Pneumatic actuator system schema. 

 

Table 1. Main components’ specifications of the test rig. 
 

Components Specifications 

Pneumatic cylinder Diameter: 25 mm 
Stroke: 600 mm 

Proportional directional control valve Valve function: 5/3-way 
Input: -5 ~ 5 V 

Optical encoder Decoder IC: HCTL-2032 
Resolution: 20 nm 

PC-based controller Pentium III CPU 
RAM: 512 MB 

A/D D/A cards 
12 bit A/D´ 16 CH 
12 bit D/A´ 6 CH 
D/I, D/O´ 16 CH 

 

 
 
Fig. 2. Test rig of pneumatic actuator system. 

 

 
 
Fig. 3. Schematic drawing of a pneumatic actuator. 
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2.2.1 Flow relationships for the control valves 
With the assumption of constant supply and exhaust pres-

sures, the mass flow rates m  across two control ports of the 
control valves can be regarded as a function of the valve dis-
placement and the chamber pressure [42, 43] 

 
( , ),a a am q X P=                               (1) 
( , ),b b bm q X P=                               (2) 

 
where am  and bm  are the mass flow rates into the chambers 
A and B, X  is the spool displacement of valves, aP  and 

bP  are the absolute pressures in the chambers A and B . Ac-
cording to the standard orifice theory, the mass flow rate 
through the valve orifice takes the form 
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where dC  is the discharge coefficient ( dC = 0.8), 0C  is the 
flow constant, w  is the port width ( m ), uT  is the up-stream 
temperature, /r d up P P=  is the ratio between the down-
stream and up-stream pressure at the orifice and  
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For air k = 1.4, rC = 0.528 and kC = 3.864. It can be 

shown that the function ( )f ×%  and its derivative are continu-
ous with respect to rp . For the convenience of the analysis, 
the following functions are introduced:    
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where 56 10sP = ´ Pa is the supply pressure, 51 10eP = ´ Pa is 
the exhaust pressure, sT = 293 K  is the cylinder air tempera-
ture, aT  and bT  are the temperatures of chambers A and B, 
respectively. 

 
2.2.2 Dynamic relationship within the control chambers 

From Refs. [42, 43], a model for the mass flow into each of 
the cylinder chambers can be obtained from the energy con-
servation equation for the control volume bounded by the 
cylinder and piston. The control volume energy is given by 

V C sc VTr , where V  is the cylinder volume, Cr  is the cylin-
der air density and Vc  is the specific heat of air at constant 
volume. If the air flows into the cylinder it is assumed to be an 
adiabatic process of a perfect gas, the change in energy due to 
the mass transport equals  

 

( ) ,V C s P s
d c VT mC T PV
dt

r = - &&                      (7) 

 
where PC  is the specific heat of air at a constant pressure, 
P  is the cylinder chamber pressure, P smC T  is the change in 
internal gas energy and PV&  is the work done by the cylinder. 
Assuming an ideal gas, C sP R Tr=  and Cr  can be elimi-
nated in Eq. (7) to obtain 
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where P

V

Ck
c

=  is the ratio of specific heats for air at the tem-

perature sT . For a perfect gas 
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For the cylinder chambers A and B, the following equations 

hold: 
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From Eqs. (3)-(6), (11) and (12), the following equations 

can be derived: 
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where aV  and bV  are the volumes of chambers A and B, 
respectively. 

 
2.2.3 Load dynamics 

The moving mass, ,M  consists of the masses of the pay-
load, the slide table and the piston. The force on the piston due 
to the air pressure and external load is expressed by  

 
( ) ,p a b lF A P P F= - +                            (15) 

 
where lF  is external load force. The friction force is assumed 
to be modeled by the traditional combination of the stick-slip, 
Coulomb and viscous components. According to Newton’s 
second law of motion, the pneumatic cylinder’s motion can be 
described  

 
.p rF F Mx- = &&                                 (16) 

 
The term rF  in Eq. (16) represents the sum of static and 

dynamic friction forces in the system, in which the static fric-
tion forces are unevenly distributed along the cylinders. This 
uneven distribution of friction causes difficulties for modeling 
and controlling the pneumatic cylinder actuators. The static 
component allows for stick-slip motion, as shown in Eq. (17). 
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where sfF  is the stick-slip friction force, cfF  is the Cou-
lomb friction force, and vfK  is the coefficient of viscous 
friction. Further analysis and description of the static and the 
dynamic friction forces can be found in Refs. [44, 45].  

The chamber volumes aV  and bV  are defined as  
 

,aV Ax= + D                                  (18) 

( ) ,bV A l x= - + D                              (19) 

 
where D  is the residual volume generated by the connecting 

tubes and components, l ( m ) is the stroke and [0, ]x lÎ . By 
rearranging Eqs. (18) and (19), the chambers volumes aV  
and bV  can be rewritten as 

 
( ),aV A x= + D                                 (20) 

( ),bV A l x= - + D                              (21) 

 
where D  can be considered as an equivalent extra length to 
the cylinder. Let 1x x= , 2x x= & , 3 ax P= , 4 bx P= , u X= , 
then a state-space system model is obtained  
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where 1 0,x lÎé ùë û , 3 ,e Sx P Pé ùÎ ë û , 4 ,e Sx P Pé ùÎ ë û . The sys-
tem modeled by Eq. (22) can be considered as a cascade con-
nection of two nonlinear subsystems, Eqs. (22a) and (22b) for 
the first subsystem and Eqs. (22c) and (22d) for the second 
subsystem. The parameters and values used in the system 
model are listed below: 
 
A  : Piston area ( 2m ) , 

dC = 0.8 : Discharge coefficient, 
0C  : Flow constant, 
D  : The general residual chamber volume, 

vfK  : Viscous frictional coefficient,         
atmP  : Atmospheric pressure (Pa), 

l  : Stroke 9 ( m ) and [0, ]x lÎ , 
rp  : Ratio between down and up-stream pressure, 

287R =  : Universal gas constant / ( )J kg K× , 
51 10eP = ´ : Exhaust pressure (Pa) 
56 10sP = ´ : Supply pressure (Pa)    

sT = 293  : Cylinder air temperature ( K )    
k = 1.4 : Specific heat constant 
V  : Volume ( 3m ) 
w  : Port width ( m ) 
M  : Payload (kg) 

uP  : Up-stream pressure (Pa) 
dP  : Down-stream pressure (Pa) 
 

3. Description of Fourier neural networks 

The features of fault tolerance, parallelism, and adaptation 
suggest that NNs make good candidates for the control of 
nonlinear systems, and the NN [25, 46, 47] can present a com-
plex nonlinear function. A compact matrix form is shown as 
Eq. (23).  
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( ) ( ) ( ),Tf x x xe= +W σ                          (23) 
 

where xÎÂ and f ÎÂ are the input and output, respec-
tively, T

1 ... n
nW W= ÎÂé ùë ûW  is the network weight, ( )x =σ  

T
1( ) ... ( ) ,n

nx xs s ÎÂé ùë û ( ), 1,2,..., ,i i ns × =  denotes the acti-
vation function, and ( )xe is called the NN function recon-
struction error. If the structure, activation functions, and learn-
ing algorithm for Eq. (23) are chosen properly, the estimation 
error ( )xe  can be as accurate as desired. Some inherent 
problems, however, restrict the traditional NNs to the real 
applications, such as the selection of the network structure, the 
convergent speed, the problem of local minimum and the sta-
bility analysis of the closed-loop system. 

Many abstracts and general situations have adopted ex-
tended concept of Fourier analysis, which is particularly used 
to decompose a signal into its component frequencies with 
different amplitudes and phases. The FNN is proposed in the 
view of the Fourier analysis and the neural network theory, 
which instead of using common Gaussian functions or sig-
moid functions, the activation function ( )is ×  is selected as 
the family of complex Fourier functions. Due to Fourier 
analysis’s excellent performance in nonlinear function model-
ing and decomposition, unlike ordinary NN, that employing 
the Fourier basis function may result in much higher availabil-
ity of rates of convergence for the approximation. The struc-
ture of a Single-input-single-output (SISO) FNN is illustrated 
in Fig. 4. Both the input layer and the output layer only have 
one node. Note that the chosen node number in the hidden 
layer tends to be based upon the system bandwidth. In Fig. 4, 
x  and ( )f x , respectively, represent the input and output; 

( )i xs  ( ,...,i M M= - ) are the basis functions; ,I ic  and ,O ic  
( ,...,i M M= - ) are the weights of FNN;  M  is a positive 
integer based upon the system bandwidth, and the total num-
ber of the hidden layer neurons is 2 1n M= + .  Therefore, 
the output function of the FNN is shown as 

 

,( ) .i

M
jw x

O i
i M

f x c e
=-

= å                           (24) 

 
The family of complex Fourier functions njw xe  has or-

thogonality, where j  is the imaginary unit that meets 
2 1,j = -

2
n

nw
T
p

=  is the nth harmonic of the function f  

with 0, 1, 2,..., M,n = ± ± ±  and cos sinnjw x
n ne w x i w x= +  is 

based on Euler’s formula. In real implementation, Eq. (24) is 
often represented as the sine/cosine form  

 
( ) ( )Tf x x= W q                               (25) 

 
where 1 1( ) 1, cos , sin ,...,cos , sin T

M Mx w x w x w x w xº é ùë ûq is the 
family of activation functions, and 0 1 ...W Wº éëW  

2 1 2
T

M MW W- ùû  is the vector of network weights. Substituting 
the activation function ( )xσ by the orthogonal Fourier activa-
tion function ( )xq , we can rewrite Eq. (23) as 

 
( ) ( ) ( )T

nf x x xe= +W q                          (26) 
 

where ( )n te , 2 1n M= + , shows the approximation error and 
satisfies 

 
1( ).n i i

i n
w we +

>

£ +å                           (27) 

 
The term ( )T xW q in Eq. (26) is well-known to give the best 

possible mean square approximation to the function 
( )f x [48]. The approximation error ( )n te  disappears as 

n®¥ . Hence, ( )f x can be approximated as follows as long 
as n  is large enough, with an error satisfying Eq. (27): 

 
( ) ( ).Tf x x@ W q                               (28) 

 
FNN can be regarded as a particular case of NN. It main-

tains the same universal approximation property as a Fourier 
series and provides a specific link between the network coeffi-
cients and the Fourier transform. The nature of the ideal net-
work weights of the FNN is the spectra of the approximated 
function. This clear physical picture indicates that when we 
employ the FNN in real applications, the selection of the term 
number M  can be established on the system bandwidth. 
Thus, FNN can accomplish the same quality of approximation 
with a network of reduced size. Remark 1 expresses the idea 
of which the Fourier series is applied to approximate the non-
periodic nonlinear functions.  

Remark 1 [39]: Take into account of a nonlinear function 
( )f t  as a non-periodical function. We come to 
 

( ) ( ) ,jwtf t F w e dw
¥

-¥
= ò                         (29) 

 
where ( ) ( ) jwtF w f t e dt

¥ -

-¥
= ò . By applying Shannon’s theory 

in the frequency domain, Eq. (29) is equivalent to partition the 
non-periodical function with an appropriate window in the 
time domain. Then, it can be achieved in discrete form,  

 

( ) ( ) ( ) ,
M

jwt jn t

n M
f t F w e dw X n e w

¥ W

-¥
=-

= = W Dåò       (30) 

 

where nw
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W =  is the base frequency acquired by discretizing 

·
·
·

·
·
·

Sx ( )f x

( )M xs -

0 ( )xs

( )M xs
,I Mc

,0Ic

,I Mc -

,O Mc

,0Oc

,O Mc -

 
 
Fig. 4. Structure of a SISO FNN. 
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w . From an engineering point of view, the control objective is 
often defined at a limited time interval [0, ]T , and conse-
quently the base frequency can be simply selected as 

2w
T
p

D = . 

 
4. Design of control algorithms and stability analysis 

The objective of this study was to develop an AFNN-based 
SMC with H¥  tracking design technique for the motion 
control of a rodless PAS, in which the H¥  tracking design 
technique is introduced in the SMC to handle the function 
approximation errors, un-modeled dynamics and disturbances. 
Before developing the controller, the feedback linearization 
should be done as in the following. 

 
4.1 Feedback linearization of the input-output map 

According to the proposed linearization strategy in Ref. [49], 
the model of PAS, as shown in Eq. (22), can be linearized by 
differentiating its output. The static and Coulomb friction 
forces as well as external load are considered as uncertainties 
so that we neglect it at the beginning while linearizing. By 
applying the feedback linearization theory to a pneumatic 
servo system Eq. (22), the system can be expressed as  

 
( , ) ( , ) ( ),f t g t u t= +x x x&  

1( , ) ,y h t x= =x                                (31) 
 

where the state vector x  and control input u  are 
 

1

2

3

4

x
x
x
x

é ù
ê ú
ê ú=
ê ú
ê ú
ê úë û

x ,  ( ) ,u t X=                           (32) 

 
and the corresponding vector field ( )f x  and ( )g x  are de-
scribed as         

  
2

2 3 4

2 3

1

2 4

1

1 ( )

( )( , ) ,

( )

vf

x

K x A x x
M

k x xf t
x

k x x
l x

é ù
ê ú
ê úé ù- + -ë ûê ú
ê ú-= ê ú

+ Dê ú
ê ú
ê ú
ê ú- + Dë û

x               (33) 

0 3

1

0 4

1

0
0
ˆ( , , )

( , ) ,
( )

ˆ ( , , )
( )

S d s e

S d s e

kRT C C wf x P P
g t

A x

kRT C C wf x P P
A l x

é ù
ê ú
ê ú
ê ú
ê ú=

+ Dê ú
ê ú
-ê ú
ê ú- + Dë û

x               (34) 

 

in which ( , )f tx  and ( , )g tx  are unknown and smooth vec-
tor functions on the set 4W ÌÂ ; ( )( , ) 0,y h t l= Î Ì Âx . Let 

fL h and gL h  be the Lie derivatives of h  with respect to f  
and .g  Since ( , ) 0k

g fL L h t =x  for all 3k < , and 
( , ) 0k

g fL L h t ¹x  for all 3k ³  for all x( ),t  the relative de-
gree of the system is 3. Then, we obtain [50] 
 

(3) 3 2( , ) ( , ) ( )f g fy L h t L L h t u t= +x x  
2

2 3 4 2 3 1 4 1
2

1 1

( ) [ ( ) ( )]
( )( )

vf vfK x K A x x Akx x l x x x
M M x l x

ì ü- - - + D + + Dï ï= -í ý
+ D - + Dï ïî þ

 

0 3 1 4 1

1 1

ˆ ˆ[ ( , , )( ) ( , , )( )]
( )( )

s d s e s ekRT C C w f x P P l x f x P P x u
M x l x

ì ü- + D + + Dï ï+í ý
+ D - + Dï ïî þ

     

( , ) ( , ) ( ),f t g t u t= +x x                          (35) 
 

where  
 

2
2 3 4 2 3 1 4 1

2
1 1

( ) [ ( ) ( )]( , )
( )( )

vf vfK x K A x x Akx x l x x xf t
M M x l x

- - - + D + + D
= -

+ D - + D
x

 
 
and  
 

0 3 1 4 1

1 1

ˆ ˆ[ ( , , )( ) ( , , )( )]( , ) .
( )( )

s d s e s ekRT C C w f x P P l x f x P P xg t
M x l x

- + D + + D
=

+ D - + D
x   

 
In Eq. (35), y  is the piston displacement, x  is the state 

vector, ( , )f tx  is the function of state variables, ( , )g tx  is 
the control gain, and ( )u t  is the control input voltage of the 
servo valve. Note that ( , )f tx  and ( , )g tx  are time-varying 
functions with unknown variation bound.  

However, the nonlinear time-varying behavior with uncer-
tain bounds of the system dynamics makes it difficult to ob-
tain an accurate dynamic model for a model-based controller 
design. Therefore, the AFNN is proposed here to approximate 
the unknown functions ( , )f tx  (to be discussed later) and 

( , )g tx  to dispose of model dependency. In addition, H¥  
tracking control is introduced to compensate the approxima-
tion error and thus improve the control performance and re-
duce the computational load.  

 
4.2 Design of an AFNN-SMC 

Transforming the system dynamics Eq. (35) into a general 
system, we have the following equation: 

 
( ) ( , ) ( , ) ( ) ( , )ny f t g t u t d t= + +x x x                 (36) 

 
where ( 1)[ ( ) ( ) ... ( )]n T ny t y t y t-= ÎÂx &  is the state vec-
tor; ( )u t ÎÂ  and yÎÂ  are, respectively, the control input 
and system output; ( , )d tx  denotes the external disturbance 
and the unmodeled static and Coulomb friction forces, 

( , )f tx and ( , )g tx  are unknown functions with time-varying 
parameter uncertainty. Without loss of generality, ( , )g tx can 
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be assumed to be strictly positive, i.e., ( , ) 0.lg t g³ >x  As-
suming that the solution of the system exists and the order of 
the system is known, we can rewrite Eq. (36) as 

 
( ) ( , ) ( , ) ( )ny F t g t u t= +x x                        (37) 

 
where ( , ) ( , ) ( , )F t f t d t= +x x x . Hence, with ( , )F tx  and 

( , )g tx  in Eq. (37) as unknown time-varying functions, we 
use AFNN to approximate them for the controller design in 
this study. The adaptive laws of the coefficient vector of net-
work weight can be acquired from the Lyapunov stability 
theorem. We make the following assumption to obtain a gen-
eralized result. 

Assumption: (i) The nonlinear system expressed in Eq. (31) 
has a relative degree of n , (ii) the control u  appears linear 
with respect to ( )ny  and ( , ) 0g t ¹x  for x  in some control-
lable region cU , and (iii) the internal dynamics of the system 
with the following  AFNN-SMC are stable.  

In our experimental system, the unknown time-varying 
functions ( , )F tx  and ( , )g tx  in Eq. (37) are bounded be-
cause the design of tests rig and restricted control outputs 

5V, 5VuÎ -é ùë û  limit the states, the piston position 1x , the 
velocity of piston 2x , and the acceleration of piston 3x . 
Therefore ( , )F tx  and ( , )g tx  meet the Dirichlet conditions, 
so they can be indicated by the FNN as shown in Eq. (26). 
Hence, we have 

 
( ) ( ( ) ( )) ( ( ) ( ))n T T

F F F g g gy t t t t ue e= + + +W q W q  

       ( ) ( )T T
F F g g tt t u w= + +W q W q                  (38) 

 
where ( )F tq  and ( )g tq  are the family orthogonal Fourier 
activation function vector, FW  and gW  are the coefficient 
vector of network weight, and ( ) ( )t F gw t t ue e= +  is the 
lumped uncertainty. To facilitate the design process of the 
controller, the lumped uncertainty is generally assumed to 
have an upper bound. 

Assumption: (iv) There exists a positive constant u
tw , such 

that .u
t tw w£    

As a well-known fact, the terms T
F FW q  and T

g gW q  are 
anticipated to produce an optimal mean square approximation 
to the uncertain time-varying functions ( , )F tx and ( , )g tx , 
respectively. Under the assumptions (i)-(iv), then, we can 
force the system output, ( ),y t  to follow a given bounded ref-
erence signal ( )my t . The output tracking error can be written 
as 

 
.me y y= -                                    (39) 

 
A switch surface can be defined as 
 

( 1)
1 2 ... ,  1n

n ns a e a e a e a-= + + + =&                  (40) 
 

where ia  are chosen such that 1

1

n
i

i
i

a l -

=
å  is a Hurwitz poly-

nomial in which l  is a Laplace operator. Eq. (40) indicates 
that 

 
( 1) ( 2)

1 2 1... .n n
ne a e a e a e s- -
-= - - - - +&                (41) 

 
If ( 2)

1 2 1[ , ,..., ] [ , ,..., ]n T T
ne e e e e e-
-= =e & , the error dynamics 

will become  
 

1 0 ...,0, s= + Te A e [ , ]&                            (42) 
 

where 1

1 2 3 1

0 1 0 0
0 0 1 0

.

na a a a -

é ù
ê ú
ê ú=
ê ú
ê ú
- - - -ê úë û

A

L
L

M M M O M
L

 

 
Theorem 1: Take the finite bandwidth system into account 

with unknown nonlinear time-varying functions ( , )F tx  and 
( , )g tx  in Eq. (37), which is approximated as Eq. (28). Sup-

pose assumptions (i)-(iv) are satisfied and following similar 
derivations in Refs. [32, 51], we can acquire a control law for 
Eq. (38) by applying the sliding-mode control method, the 
control input is chosen as  

 
1 1

( )
1 ( 1)

1 1

ˆ ( ) sgn( )

ˆ ( )

n n
T n
F F i i n i i m p

i i
T
g g

t a e p e y k s
u

t

- -

+ -
= =

- - - + -
=

å åW q

W q
  

 (43) 
 

where ˆ T
FW  and ˆ T

gW  are the estimates of T
FW  and T

gW , 
respectively. Choosing 0,>P ( 1) ( 1)n nR - ´ -ÎP , satisfies the 
Lyapunov matrix equation 

 
1 1+ = -TA P PA Q                               (44) 

 
with s  being the sliding surface defined in Eq. (40); ( 1)n ip -  
being elements of P  in Eq. (44); > 0Q  being given and 
the adaptive laws  being chosen as 

 

1
ˆ ( )F Fs t=W Γ q&  

2
ˆ ( )g gs t u=W Γ q&                               (45) 

 
where 1Γ  and 2Γ  ( 1 0>Γ  and 2 0>Γ ) are the adaptation 
gain matrix, the following result holds for s and e: 0s ®  and 

0®e  as t ®¥ . 
Proof:  
Suppose the Lyapunov function as 
 

2 1 1
1 2

1 1 1 1V
2 2 2 2

T T
F F g gs - -= + + +Te Pe W Γ W W Γ W% % % %       (46) 

 
where ˆ

F F F= -W W W% , and ˆ
g g g= -W W W% . The time de-

rivative of Eq. (46) becomes  
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1 1
1 2

1 1V
2 2

T T
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 (47) 
 
Applying Eqs. (43) and (45)-(47) and letting 1

u
p tk k w= + , 

1 0k > , we get the following relationship: 
 

1
1 1V 0.
2 2p tk s sw k s£ - - + £ - - £T Te Qe e Qe&       (48) 

 
According to Barbalat’s lemma, Eq. (48) suggests that when 

t ®¥ , 0s ®  then 0®e .  
Remark 2: In this algorithm, the AFNN approximates the 

system unknown nonlinear time-varying functions, and an 
adaptive control law is employed to adjust the network 
weights to improve the convergence speed. Whenever there is 
an error, the compensating term sgn( )pk s  is used to guaran-
tee the closed-loop asymptotic stabilization and convergence 
of the overall system. Because the network can automatically 
adjust its weighting values, an effective adaptation is achieved 
for practical control applications. 

 
4.3 H¥  tracking performance design 

To reduce the adverse effects resulting from approximate 
errors, un-modeled dynamics and disturbances prior, we com-
bine the technique of H¥  tracking design and the AFNN 
approximation with the sliding mode control method. To put it 

into practice, however, the exact upper bound u
tw  for the 

lumped uncertainty cannot be obtained in general. Given that 
the upper bound u

tw  can be chosen so as to attenuate the 
lumped uncertainty, large control chattering nevertheless oc-
curs. To release the constraint of u

p tk w> , a new control law 
developed from the H¥  tracking design technique is pro-
posed. According to the assumption of which the lumped un-
certainty is 2[0, ],  [0, )tw L T TÎ " Î ¥  [32], the control input 
can be shown as  

 
1 1

( )
1 ( 1) 2

1 1

ˆ ( )
2 .ˆ ( )

n n
T n
F F i i n i i m

i i
T
g g

st a e p e y
u

t
r

- -

+ -
= =

- - - + -
=

å åW q

W q
    (49) 

 
In Eq. (49), the adaptive laws can be represented as Eq. (45) 

with r ( 0r > ) being the design constant for the attenuation 
level, s being the sliding surface defined in Eq. (40) and 

( 1)n ip -  being elements of P  in Eq. (44). Therefore, we can 
guarantee an H¥  tracking performance for overall without 
knowledge on the upper bound u

tw  of the lumped uncertainty.  
Theorem 2: Under assumptions (i)-(iii), the proposed con-

trol law Eq. (49) ensures that the overall system Eq. (22) satis-
fies the H¥  tracking performance. 

 
2

0

1 1 1( ) ( ) (0) (0) (0)
2 2 2

T T Td st t t £ +ò e Qe e Pe           

1 2 2
2 0

1 1 1(0) (0) ( )
2 2 2

TT
g g tw dr t t-+ + òW Γ W% %  (50) 

 
where ˆ

F F F= -W W W%  and ˆ
g g g= -W W W% .  

Proof:  
Select the same Lyapunov function as Eq. (46) in accor-

dance with the same procedure of Eq. (47). Then substituting 
Eqs. (45) and (49) into Eq. (47), we get 

 
2

2 2 2 21 1 1 1 1V .
2 2 2 2 2t t t

s w w wr r r
r
æ ö

= - - - + £ - +ç ÷
è ø

T Te Qe e Qe&  

 (51) 
 
Integrating Eq. (51) from 0t =  to t T= , we obtain 
 

2 2

0 0 0

1 1V( ) ( ) ( )
2 2

T T T

td d w dt t t t t r t£ - +ò ò òTe Qe&  

2 2
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T T
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Þ £ - +
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e Qe
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e Qe

 

 (52) 
 
Substituting Eq. (46) into Eq. (52), we achieve a H¥  
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tracking performance satisfying: 
 

2 1
10

1 1 1 1( ) ( ) (0) (0) (0) (0) (0)
2 2 2 2

T T
F Fd st t t -£ + +ò T Te Qe e Pe W Γ W% %  

1 2 2
2 0

1 1(0) (0) .
2 2

TT
g g tw dr t-+ + òW Γ W% %   (53) 

 
Therefore, the H¥  tracking performance is achieved with 

a prescribed. This completes the proof. 
In Theorem 2, if the design constant, r , serving as an at-

tenuation level, needs to be pre-specified during the design 
process, the constraint on setting an upper bound u

tw  for the 
unknown lumped uncertainties in Eq. (43) is, thus, removed. 
Furthermore, the chattering effect of the control input is sub-
stantially reduced with this method because the term 

sgn( )pk s  related to the control chattering in Eq. (43) is re-
placed by a much smoother term 2/ (2 )s r  in the derived 
control law of Eq. (49).   

Remark 3: If a set of the initial conditions of e , s , 
FW and gW ˆ( (0) 0,  (0) 0,  (0) (0)F Fs= = =e W W and ˆ (0)g =W  
(0))gW  is available, and = IQ , the overall system’s control 

performance satisfies 
 

2

2

,
tw

r£
e

                                   (54) 

  
where 2 2 2

2 20 0
( ) ( ) ,  ( )

T TT
t td w w dt t t t t= =ò òe e e . In other 

words, an arbitrary attenuation level can be obtained, if r  is 
adequately chosen.   

 
In real applications, the implementation of the AFNN-

SMC+H-infinity algorithm, in general, can be formed by 
sine/cosine function. The detailed steps are presented here.  

Step 1) Select control parameters 1 2 1, ,..., na a a -  such that 
matrix 1A  is a Hurwitz matrix. 

Step 2) Choose appropriate Q  to solve the Lyapunov ma-
trix Eq. (44). 

Step 3) Refer to the system bandwidth to establish AFNN to 
approximate the uncertain nonlinear function ( , )F tx  and 

( , )g tx . Determine initial values of network weight ˆ
FW  and 

ˆ
gW , respectively. 
Step 4) Choose an appropriate adaptation gain matrix 1Γ  

and 2Γ  to establish the Lyapunov function. 
Step 5) Obtain the update laws from Eq. (45), and the con-

trol laws from Eq. (43) or Eq. (49), respectively, depending on 
different assumptions on the lumped uncertainties. 

 
5. Real-time implementation and experimental results 

The objective of this study was to implement an AFNN-
based sliding-mode controller to improve the tracking per-
formance for the PAS. To investigate the control performance 
of the proposed controller, we present the test results of track-
ing control and velocity control in a PAS. In the experimental 

implementation, position regulation, trajectory tracking, and 
velocity control of the PAS are chosen for servo control. In 
addition, robustness tests are also performed to verify the pro-
posed control strategy. 

 
5.1 Experimental setup 

To reduce the cost of the system set-up, the velocity and ac-
celeration of the piston, as shown in Fig. 1, are calculated by a 
filtered differentiation of the measured position with a cut-off 
frequency at 350 Hz. The digital filter expressed is as follows: 

 
( ) 0.047 ( 1) 0.524[ ( ) ( 1)],out out in iny i y i y i y i= - - + + -    (55) 

 
where ( )outy t  represents the filter’s output signal, and ( )iny t  
represents the measured piston position. To evaluate the con-
trol performance of the proposed AFNN-SMC+ H¥ , the fol-
lowing experiments are performed. The attenuation level is set 
at r = 0.2 for the control law Eq. (48), the sliding surface is 

chosen as 2 6s e e e= + +&& & , 
1 2
2 5

Q
é ù

= ê ú
ë û

, and the gain ma-

trixes are set as constant matrices 1 =Γ 83 [ ]I  and 2 =Γ  
1.25´ 410 [ ]I- . 

To verify the feasibility, the Single-input fuzzy sliding 
mode controller (SFSMC), as proposed by Kim and Lee [53], 
was used to compare with the proposed AFNN-SMC and 
AFNN-SMC+ H¥  in terms of position regulation and trajec-
tory tracking control performance. The sliding surface s  and 
the control law fsu , are, respectively, chosen as the input and 
output of SFSMC, and their membership functions are shown 
in Figs. 5(a) and (b). ,NB ,NM  ,NS  ,ZR ,PS  PM , and 

.PB  In addition, the product inference, center-averaging, and 
singleton fuzzification are used in the fuzzy logic system. The 

1- 0.67- 0.1- 0 0.1- 10.67
s
 

(a) Membership ( )M s   
 

1- 0.66- 0.33- 0 0.33- 10.66
fsu

 
(b) Membership ( )fsM u  

 
Fig. 5. Membership functions of the s  and fsu . 
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control parameters and the rule base of SFSMC are listed in 
Tables 2 and 3, respectively.  

 
5.2 Test result of position regulation 

The PAS plays an important role in industrial applications 
because it can easily and smoothly move a payload from one 
position to another. Hence, planning a smooth moving trajec-
tory is vital. Moreover, because of the mechanical limitations, 
the maximum acceleration and velocity should be considered 
in the trajectory design. In our experiments, the fifth-order 
polynomial continuous function is adopted to be the moving 
trajectory, which is a trajectory function of the continuous 
displacement, the velocity and the acceleration [41], as shown 
in Eq. (56).  

 
3 4 5

10 15 6 , 0
( )

,

f
f f fm

f

t t th t t
t t ty t

h t t

ì é ùæ ö æ ö æ öï ê ú- + £ <ç ÷ ç ÷ ç ÷ï ç ÷ ç ÷ ç ÷ê ú= í è ø è ø è øë ûï
£ïî

  (56) 

 
where h  is the desired stroke; ft  denotes the desired dura-
tion; my  indicates the desired path and t  is the time which 
is set to 0 at the beginning of each tracking cycle. Then, we 
can reduce discontinuous shock and wear-out and fatigue of 
the hardware components when the payload is moving.  

For the position regulation, the piston is first moved to the 
end of the cylinder and this position is then assumed to be the 
original point (0) 0y = mm. In addition, the desired position 
is set to 150dy = mm. A performance comparison between 
AFNN-SMC, SFSMC, and AFNN-SMC+ H¥  is shown in 
Figs. 6-8. Figs. 6(b), 7(b) and 8(b) illustrate that the position 
errors of the three control methods are well converged and 
bounded with around 1.8± mm (AFNN-SMC), 2.2± mm 
(SFSMC), and 0.9± mm (AFNN-SMC+ H¥ ). Figs. 6(c), 7(c) 
and 8(c) show the steady errors of AFNN-SMC, SFSMC, and 
AFNN-SMC+ H¥  are around 0.02 mm, 0.06 mm and 

Table 2. Control parameters of SFSMC. 
 

Sliding surface sg  ug  

12s e e= +&  0.2 0.8 

 
Table 3. Rule table of the SFSMC. 
 

Rule Input variable s  Output variable fsu  

1R  If s  is PB Then fsu  is PB 

2R  If s  is PM Then fsu  is PM 

3R  If s  is PS Then fsu  is PS 

4R  If s  is ZR Then fsu  is ZR 

5R  If s  is NB Then fsu  is NB 

6R  If s  is NM Then fsu  is NM 

7R  If s  is NS Then fsu  is NS 

 

 

 
 
Fig. 6. Experimental results of AFNN-SMC for position regulation 
with position of 150 mm: (a) position control response; (b) control 
error; (c) error zoom out; (d) control input. 

 

 
 
Fig. 7. Experimental results of SFSMC for position regulation with 
position of 150 mm: (a) position control response; (b) control error; (c) 
error zoom out; (d) control input. 
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0.04 mm, respectively. Observing the control input in Figs. 
6(d), 7(d) and 8(d), we can find that the amplitude and chatter-
ing of AFNN-SMC are much worse than that of SFSMC and 
AFNN-SMC+ H¥ . That is because a bigger controller factor 

21000pk =  of AFNN-SMC is applied to the system to ensure 
the tracking performance. Note that the controller factor pk  

of Eq. (43) is a trade-off parameter between the robustness 
and tracking performance. This undesired chattering may wear 
out the servo valve and can incur unstable system dynamics. 
In general, the term sgn( )pk s  in control law Eq. (43) is ap-

plied for compensating the lumped uncertainties, but it may 
result in serious control chattering. Moreover, although 
AFNN-SMC has better tracking effects and lower steady state 
error when compared with them with SFSMC, the effect of 
restricted chattering of SFSMC is much superior to it of 
AFNN-SMC, because of use of fuzzy design. Figs. 8(c) and 
(d) show that introducing H¥  technique into AFNN-SMC 
(AFNN-SMC+ H¥ ) can gain better tracking performance and 
chattering-reduction, as we compare it with AFNN-SMC and 
SFSMC. In Fig. 9, the integral time absolute error ITAE 
= e(t) dttò  is used to measure the tracking error of the posi-

tion regulation for AFNN-SMC, SFSMC, and AFNN-
SMC+ H¥ . It is obvious that the proposed AFNN-SMC+ H¥  
can perform much lower ITAE than others. Thus, the AFNN-

SMC+ H¥  has superior control performance in controlling 
the PAS. 

 
5.3 Test results of trajectory tracking 

Case 1. Sinusoidal trajectory 
The desired sinusoidal trajectory is defined as 
 

( ) 50  [1 sin( 2 )]m
ty t h T p= + - × ,                  (57) 

 
where the amplitude h = 100 mm and the period T = 4 sec 
are given in this paper. A comparison between AFNN-SMC, 
and SFSMC and AFNN-SMC+ H¥  is shown in Figs. 10-12. 
From Figs. 10(b), 11(b) and 12(b), the tracking errors for 
those controllers are, respectively, around ± 1.8 mm, 
± 2.0 mm, and ± 1.0 mm. Again, although the desired track-
ing performance of AFNN-SMC, as shown in Fig. 10(c), can 
be achieved, the chattering of the control input is still serious, 
which may result in high frequency switching of the servo 
valve and further reduce the servo valve’s life duration. Com-
pared to SFSMC with AFNN-SMC, as shown in Figs. 10 and 
11, AFNN-SMC has better tracking effects and lower steady 
state error, but control chattering is very serious. That is, the 
SFSMC can effectively prevent chattering by using fuzzy 
approach. Fig. 12 shows the experimental results of AFNN-
SMC+ H¥  control, in which Fig. 12(a) shows the tracking 
response, where the dotted line indicates the target trajectory 
and the solid line denotes the tracking results. Fig. 12(b) 
shows the maximum tracking error is only about 1 mm, and 
Fig. 12(c) shows the control input, in which the chattering is 
significantly reduced. Compared to AFNN-SMC and SFSMC, 
AFNN-SMC+ H¥  has better tracking performance and 
smooth control input. 

 
 
Fig. 8. Experimental results of AFNN-SMC+ H¥  for position regula-
tion with position of 150 mm: (a) position control response; (b) control 
error; (c) error zoom out; (d) control input. 
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Fig. 9. Comparison of ITAE of tracking error for position regulation of 
AFNN-SMC, SFSMC and AFNN-SMC+ H¥ . 
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Case 2. Exponentially decreasing sinusoidal trajectory 
To verify the AFNN-SMC+ H¥ control, we next test the 

performance of the exponentially decreasing 0.5 Hz sinusoidal 
trajectory covering 50% of the actuator stroke. The position 
responses, control efforts, and tracking errors, shown in Fig. 
13, clarify that the AFNN-SMC+ H¥ control can achieve ex-
cellent control performance with small chattering for the ex-
ponentially decreasing 0.5 Hz sinusoidal trajectory tracking 
control. Fig. 13(b) shows that the control error is bounded. 

5.4 Test results of trapezoidal velocity trajectory 

In most servo PASs the control purpose is expressed in 
terms of driving the cylinder piston to follow a predefined 
velocity profile to achieve the desired velocity control. In al-
most all industrial applications, a trapezoidal velocity profile 
is employed. For example, a constant velocity trajectory is 
required to apply paint or other coatings evenly across a sur-
face. Another example would be to lay down a smooth bead 
when welding. The trapezoidal velocity profile consists of 
three distinct operating phases. The first phase is when the 
piston begins moving from rest and attains the desired velocity. 

 
 
Fig. 10. Experimental results of AFNN-SMC for sinusoidal trajectory:
(a) position control response; (b) control error; (c) control input. 

 

 
 
Fig. 11. Experimental results of SFSM for sinusoidal trajectory: (a) 
position control response; (b) control error; (c) control input. 

 

 
 
Fig. 12. Experimental results of AFNN-SMC+ H¥ for sinusoidal tra-
jectory: (a) position control response; (b) control error; (c) control 
input. 

 

 
 
Fig. 13. Experimental results of AFNN-SMC+ H¥  for exponentially 
decreasing sinusoidal trajectory: (a) position control response; (b) 
control error; (c) control input. 
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During the second phase the piston must maintain the desired 
velocity. During the third phase the piston must be decelerated 
so that all motion will stop prior to the piston reaching the end 
of the cylinder. Fig. 14 shows the experimental result of the 
AFNN-SMC+ H¥  for the 120 mm/sec trapezoidal velocity 
profile. According to the experimental results, once the piston 
reaches the target velocity, the AFNN-SMC+ H¥  appears to 
be able to provide adequate control performance. However, 
the controller does not perform well during the initial phase of 
the trapezoidal velocity profile. During the initial phase, when 
the pressure difference between the two chambers is large 
enough, the friction force will be overcome by the valve. 
Since the piston does not begin to move during this time, no 
enough error is produced between the desired and actual ve-
locity. Therefore, the result is an initial lag in tracking the 
desired velocity.  

 
5.5 Robustness tests 

Robustness is very important for a practical control system. 
The concept of robustness is different from that of generality. 
Robustness is the ability of a control system to be insensitive 
to the variation of the plant parameters when using the nomi-
nal controller designed based on the nominal plant model, 
while generality means the control strategy design method can 
be applied to control systems with different dynamic. The 
nominal control strategies were designed for the Festo rodless 
PAS with a moving mass M = 6 kg. To test the robustness to 
the variation of the moving mass, we increased the moving 
mass to 13 kg without altering the nominal control strategies. 
The robustness of the proposed AFNN-SMC+ H¥  was tested 

under different mass payload disturbances. Fig. 15 shows the 
trajectory tracking response, control effort and tracking error 
of the sinusoidal trajectory with payloads changed from 6 kg, 
as in Fig. 12, to 13 kg. With this change of the mass of the 
payload, only a slight increase in the tracking error occurs, and 
the tracking error can still keep within 1.5± mm. The test 
results verify that the robustness of the proposed the AFNN-
SMC+ H¥  is satisfied. In Fig. 16, the integral time absolute 

error ITAE = e(t) dttò  is used to measure the tracking error 

of the sinusoidal trajectory tracking for AFNN-SMC, SFSMC, 
AFNN-SMC+ H¥ , and AFNN-SMC+ H¥  (payload is 
changed from 6 kg to 13 kg). Experimental results demon-
strated that the AFNN-SMC+ H¥ is very effective and ITAE is 
reduced by 63% on average. 

 
 
Fig. 14. Experimental results of AFNN-SMC+ H¥ for trapezoidal
velocity profile: (a) velocity control response; (b) control error; (c) 
control input. 

 

 
 
Fig. 15. Experimental results of AFNN-SMC+ H¥ for sinusoidal tra-
jectory with the payload changed from 6 kg to 13 kg: (a) position con-
trol response; (b) control error; (c) control input. 
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Fig. 16. Comparison of ITAE of tracking error for periodic sinusoidal 
tracking control of SFSMC, AFNN-SMC, AFNN-SMC+ H¥ and 
AFNN-SMC+ H¥ with payloads changed from 6 kg to 13 kg. 
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6. Conclusions 

We have developed the AFNN-SMC+ H¥ and successfully 
applied it to the position regulation, trajectory tracking, and 
velocity control of the rodless PAS under different loading con-
ditions. We chose AFNN as the identification technique be-
cause it has the elegant property of consisting of a family of 
orthogonal Fourier functions. That is, the structure of AFNN 
can be easily decided according to clear physical meaning. The 
proposed AFNN-SMC+ H¥ has the following advantages: (1) It 
can reduce the serious chattering phenomenon and (2) based on 
the H¥  tracking design technique, it can attenuate the uncer-
tainties caused by the un-modeled dynamics, the approximation 
error and the external disturbance. Compared with AFNN-SMC, 
the AFNN-SMC+ H¥ can result in a high tracking precision and 
reduce sensitivity to disturbance. The experimental results show 
our proposed AFNN-SMC+ H¥ can overcome the AFNN-SMC 
in tracking and robust performances.  
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