
 
 

 
Journal of Mechanical Science and Technology 30 (1) (2016) 1~14 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-015-1201-z 

 

 

 

 
Influence of flexibilities of cranes structural components on load trajectory† 

Arkadiusz Trąbka* 
Faculty of Mechanical Engineering and Computer Science, Department of Engineering Fundamentals, University of Bielsko-Biala, ul. Willowa 2, 

43-309 Bielsko-Biała, Poland  
 

(Manuscript Received November 24, 2014; Revised June 8, 2015; Accepted September 10, 2015)  

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
Building computational models of cranes requires using of simplifications. Frequently accepted simplification is ignoring deformations 

of structural components. At the same time there is no appropriate study concerning estimation of the influence of flexible crane compo-
nents on the movement of a load. In the paper, the influence of flexibilities of seven crane structural components on working accuracy in 
relation to the trajectory of the load has been estimated. Numerically efficient telescopic crane model has been developed with the use of 
the finite element method. Beside of qualitative analysis used in other works to evaluate the results, a method of quantitative analysis 
proposed by the author has been applied. The analyses show that based on computational models one can make proper assessment of 
a load motion. The condition is a proper selection of considered flexible components. A parametric identification and/or quantitative 
assessment should be a criterion of models configuration. 
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1. Introduction 

Cranes are hoisting devices that take many different forms 
of structure. Diversity of types and dimensions enables that, 
they are able to perform all works of reloading, loading and 
unloading in almost all conditions. For the work to be efficient 
and performed with high precision, numerous activities are 
carried out to improve operational parameters of cranes. 
Therefore, both existing and currently designed cranes are 
submitted for numerical analysis. Unfortunately, the analyses 
are frequently made without adequate care in relation to re-
producing dynamic characteristics of real structures in nu-
merical models. Of particular importance for the above-
mentioned problem are flexibilities of crane structural compo-
nents. Flexible components are included in computational 
models in varying numbers but without justification of selec-
tion criteria. 

Computational crane models composed of components 
treated as non-deformable and one flexible component were 
used in Refs. [1-5]. Models with an increased number of flexi-
ble components to two were used in Refs. [6-9]. In Refs. [10-
16] for slewing motion the number of flexible components 
was increased to three. In Refs. [16-18] for lifting motion four 
flexible components were used in addition to non-deformable 
components. Models made of non-deformable components 

and five flexible components were used in Refs. [19-21]. 
Models containing only flexible components were used in 
Refs. [22-25]. Among numerous scientific papers concerning 
cranes one can also find those in which computational models 
were completely deprived of flexible components [26-33]. 

Computational crane models differ not only in the number 
of flexible components taken into account, but also in the 
number of components considered as non-deformable. There 
are also differences in selection of the components used for 
building models. Therefore, cranes with similar or even iden-
tical structure are analysed on the basis of completely different 
models. For example, in Ref. [6] the flexibilities of a tower 
and a jib were taken into account in a tower crane model. At 
the same time a rope hoisting system and drives were treated 
as non-deformable. On the other hand, in Ref. [28] a simple 
system model consisting only of rigid components, i.e. a jib, a 
rope and a load was adopted for the analysis of the same kind. 
In this model the input was implemented in the form of the jib 
rotation directly in the joint between the jib and the tower. 

Similar cases of differences between the models are present 
in papers concerning floating cranes [3-5, 18, 22, 24, 26, 29, 
30]. 

Due to the complexity of the structure, much greater differ-
ences between the models can be seen in papers concerning 
the analysis of dynamic properties of cranes with telescopic 
booms [2, 7, 10-17, 19-21]. For example, in Ref. [10] the 
slewing motion of a crane body was analysed by means of a 
model which assumed a non-deformable crane frame rigidly 
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connected with the ground, a non-deformable slewing plat-
form, a non-deformable luffing hydraulic cylinder and an in-
extensible hoisting rope. However, bending flexibility of a 
three-member boom, flexibility of slide blocks and a drive 
were taken into account. The model, which was used in Ref. 
[14], assumed the following components as rigid: a support 
frame, a slewing platform, a slewing motion drive and a boom. 
For the boom, its substitute flexibility was taken into account 
by introducing a torsion spring in the joint which connects it to 
the platform. Spring-damper elements were also used to 
model the flexibilities of outriggers and a rope. 

Authors of models do not usually justify the selection crite-
ria. They limit themselves to sporadic verifying the obtained 
results by comparing them with the study results. Tests are 
frequently performed not on real objects but on specially built 
laboratory models. Examples of this approach may be found 
in Refs. [12, 17, 19, 23, 29, 33]. Sometimes verification boils 
down to performing analogous calculations using the model 
developed by means of another numerical method, such as in 
Ref. [18]. 

In only a few cases, the authors of papers attempted to jus-
tify the need to take into account the flexibility of selected 
structural components in computational models of cranes. For 
example, in Ref. [16] the luffing hydraulic cylinder was the 
subject of such considerations, in Refs. [2, 17] the outriggers, 
in Refs. [3, 5] the boom. 

One of a few attempts to comprehensive estimate the influ-
ence of the flexibility of components on dynamic properties of 
a crane model was performed by Jerman and Kramar in Ref. 
[27]. On the basis of an earlier developed mathematical model 
of a tower crane which consisted only of flexible components 
[23], neglecting deformability of the structure and energy 
dissipation, the authors compared the forces which act on the 
model in the horizontal plane with the results of a real crane 
tests, which allowed estimating the influence of the flexibility 
of crane components on the determined forces. 

A similar task as the one by Jerman and Kramar, but in rela-
tion to a telescopic crane model, was undertaken by Mijailović 
in Ref. [21]. He took into account the flexibility of five crane 
components, i.e. outriggers, a support frame, a slewing bear-
ing, a luffing hydraulic cylinder and a boom. As a result of the 
analyses he determined the amount of errors that is caused by 
not taking into account flexibility of individual components in 
the analyses of dynamic properties of cranes with telescopic 
booms. 

None of the found papers undertakes an analysis evaluating 
possible relations between the selection of flexible compo-
nents, the correctness of working movements and the influ-
ence of the selection on the movement of the load. 

Because within the scope of above-mentioned subject area 
an adequate study was not found this paper aims at estimating 
the influence of flexibilities of crane structural components 
(especially those frequently neglected) on working accuracy in 
relation to the trajectory of the load. 

To achieve the intended aim among different methods of 

description of dynamic systems (e.g. Lagrange, Hamilton, 
multibody systems, finite elements) the Finite element method 
(FEM) has been selected. This method allowed to develop 
numerically efficient and at the same time universal computa-
tional crane model. 

 
2. Computational model 

Among many crane types being analysed, the structure most 
frequently submitted for numerical analyses has been selected. 
For the purpose of the tasks carried out in the work a computa-
tional model of a so-called telescopic crane, based on the 
structure of the HYDROS T-161 hydraulic truck crane (Fig. 1) 
(with a three-member telescopic boom and a displaced axis of 
rotation), has been developed. This model took into account 
the flexibilities of until the seven structural components. Four 
of them, i.e. outriggers, a boom, a rope hoisting system and a 
luffing hydraulic cylinder, are frequently taken into account in 
computational models. Among rarely taken into account com-
ponents, a flexible support frame and flexible elements of a 
telescopic mechanism, i.e. a hydraulic cylinder and a rope 
system were used. The model also took into account the flexi-
bility of elements of a boom supporting system, overlooked in 
the dynamic analyses. 

 
2.1 Physical model 

On the basis of the information contained in the design 
crane documentation and the technical manual documentation 
a physical model has been developed. This model was ob-
tained as a result of the following simplifying assumptions in 
relation to the real crane structure [34]: 

(1) A car chassis, a slewing platform and a girder were as-
sumed as rigid. 

 
 
Fig. 1. Real structure of the HYDROS T-161 telescopic crane. 
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(2) All joints between parts were taken into account but 
clearances and friction were omitted. 

(3) The boom was modelled as a system of three flexible 
beams connected by means of slide blocks with the geometry 
consistent with the design documentation. 

(4) The masses of most of the parts mounted on the boom as 
well as the masses of the outriggers were taken into account. 

(5) The masses of hydraulic equipment parts were taken 
into account as well as the change in mass distribution caused 
by motion for the hydraulic cylinder. 

(6) The load and a hook block were assumed in the form of 
material points. 

(7) The possibility of the outriggers and the load deta-
chment from the ground was taken into account. 

 
2.2 Discrete model 

On the basis of the physical model a discrete model of the 
crane has been built (Fig. 2). This model was developed with 
the use of the FEM method and saved using the ANSYS pa-
rametric design language (APDL) in the ANSYS software 
[35] (APDL is a set of commands used to construct the model 
in Notepad without a Graphical user interface). 

For discretisation only finite elements were used allowing to 
take into account geometric nonlinearities such as large strains 
and large rotations. 

Large strains were calculated using an incremental solution 
procedure in accordance to the relation: 

 
1n n n-= + Dε ε ε   (1) 

 
where nε  is the total Hencky strain tensor at the time step n, 

1n-ε  is the total Hencky strain tensor at the previous time step 
n-1, nDε  is the strain increment tensor. 

The details about calculations of large strains are presented 
in Appendix A.1. 

Large rotations were analysed by means of a transformation 
matrix ωT  associated with a rotational pseudovector. 

 
2

211
2 2
ωæ ö= + - × + ×ç ÷

è ø
ωT Ι Ω Ω  (2) 

 
where I  is the identity matrix, ω  is the length of the rota-
tional pseudovector and Ω  is the pseudovector skew-
symmetric matrix representation. 

The details about the above matrix and its relationship with 
the rotational pseudovector are shown in Appendix A.2. 

 
2.3 Description of the dynamic system 

The dynamic system taken into consideration in the work 
describes the equation of motion of a form: 

 
2

2

d + =
dt

× ×
uM K u F  (3) 

 
where M  is the structural mass matrix, K  is the structural 

stiffness matrix, 
2

2

d
dt

u  is the nodal acceleration vector, u  is 

the nodal displacement vector, F  is the applied load vector. 
The Newmark time integration method was used for the so-

lution of Eq. (3). This method uses finite difference expan-
sions in a time interval tD . Eq. (3) is evaluated at time 
t t+ D  as: 

 

.
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Fig. 2. Discrete model of the HYDROS T-161 telescopic crane. 
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The Newmark equations are as follows: 
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where a and d  are the Newmark integration parameters. 

Solving Eq. (6) relative to the second derivative of the dis-
placement vector u for time t t+ D  and substituting the cal-
culated value into Eq. (5), Eqs. (7) and (8) are obtained. 
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Substituting Eq. (8) into Eq. (4) we obtain: 
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The resulting equation allows to determine the displacement 

vector u for time t t+ D . The velocity and acceleration vec-
tors are calculated from Eqs. (7) and (8). 

The Newmark method is unconditionally stable for the pa-
rameters a  and d  selected on the basis of conditions Eq. 
(10) [36]. 

 
0.5 ,d ³  ,20.25 ( +0.5)a d³ ×  + 0.5>0 .a d +   (10) 

 
Eq. (9), due to its non-linearity, at each time step is solved 

iteratively using the Newton – Raphson method [37]. 
By repeating the procedure outlined above for the next time 

steps we obtain a solution in the considered time interval. 

2.4 Model parameters 

The dimensions of the model, the cross-sections of particu-
lar crane components and their material parameters were 
specified based on the design of the HYDROS T-161 crane.  

The stiffnesses of the outriggers, the support frame, the 
boom, the boom supporting system elements and the hoisting 
rope system were based on the research results of this crane, 
described in Ref. [38]. 

For the outriggers, based on the shapes of the characteristics 
shown in Fig. 3, linear dependences of forces on displace-
ments were adopted as admissible [38]. For each outrigger, the 
average stiffnesses: kx = 0.6E6 N/m, kz = 0.6E6 N/m, 
ky = 12.5E6 N/m were determined. 

For the hoisting rope system (Fig. 4), according to depend-
ence Eq. (11) whose derivation is shown in Ref. [38], a substi-
tute stiffness kr = 13.33E6 N/m was determined. The average 
stiffness per length unit kru = 85.75E6 (N/m)/m was applied in 
calculations. The choice of the average as a value properly 
characterising the unit stiffness was based on the results of the 
tests of a rope test section performed on a testing machine. 

 
2

1 2
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r
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k ik
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×
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+ ×
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where ruk  is the rope unit stiffness, rsi  is the number of the 
rope strands in the sheave block, 1l  is the distance between 

    
               (a)                         (b) 
 
Fig. 3. Force - displacement dependences obtained on the basis of the 
HYDROS T-161 crane studies (described in Ref. [41]) for the rear pair 
of outriggers: (a) in horizontal plane; (b) in vertical direction. 

 

 
 
Fig. 4. Diagram of the hoisting rope system. 
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the hoisting winch and the boom head, 2l  is the distance 
between the hook block and the boom head (see Fig. 4). 

For the boom modelled as a system of flexible beams it was 
assumed that there is a compatibility of displacements of se-
lected points on the model of the boom and the real object (the 
masses and the mass moments of inertia for the particular 
boom components as well as the stiffnesses of slide blocks 
were chosen according to the above assumptions). The same 
approach was applied for the model of the support frame and 
the elements of the boom supporting system. All comparisons 
were made with reference to the results of measurements 
made with a photogrammetric method [38] for the real crane 
structure. Examples of the results of these measurements are 
shown in Fig. 5. 

The stiffnesses of the luffing hydraulic cylinder and the 
telescopic cylinder, due to the lack of access to research  
results, were based on the data taken from Refs. [39, 40]. Fol-
lowing the authors of the above-mentioned works the average 
stiffnesses of hydraulic cylinders were assumed respectively: 
klhc = 5E7 N/m for the luffing hydraulic cylinder and 
ktc = 1.6E6 N/m for the telescopic hydraulic cylinder. 

 
3. Numerical analysis of the model 

The analysis concerned the model of the crane with a com-
pletely extended boom (a length of 20 m), inclined at an angle 
of 60˚ (a crane radius of 7.8 m). A load of 1000 kg was 
adopted. Kinematic input functions were used for the drive of 
various crane mechanisms (Figs. 6(a) and (b)). 

 
3.1 Assumptions for the calculations 

The crane model was prepared for the calculations assum-

ing that the clearances and friction in drives as well as flexibil-
ities of joints and damping in the system are not taken into 
account. Additionally it was assumed that the outriggers rest 
on the rigid ground and the influence of external factors (e.g. 
wind pressure) on the crane components or the load is ne-
glected. A variable step of integration in the range of 0.001 to 
0.0001 s was adopted. 

 
3.2 Numerical simulations 

Numerical simulations were carried out for a sequence of 
working movements of lifting and slewing. In subsequent 
stages of the analysis the following were considered: 

(1) Bringing the crane to a state of static equilibrium. 
(2) Tensioning the rope up to the moment of separation of 

the load from the ground. 
(3) Lifting the load after separation from the ground. 
(4) Rotation of the crane body relative to the chassis after 

discontinuing of lifting. 
(5) Free movement of the load after stopping the slewing 

motion. 
 
As a reference model for the numerical simulations a sys-

tem (consisting of 370 nodes and 335 finite elements) was 
adopted, where all components were treated as non-
deformable. This model was referred to as "a rigid model". As 
a result of substituting the following non-deformable compo-
nents with flexible components in the rigid model, seven crane 
model variants were obtained, each containing one flexible 
component. As the final variant of the system the connection 
of flexible components into one structure was adopted. The 
resulting system (consisting of 1739 nodes and 1865 finite 
elements) was called "a flexible model". 

 
(a) 

 

 
(b) 

 
Fig. 6. Kinematic input functions: (a) lifting of the load; (b) rotation of 
the crane body. 

 

 
 
Fig. 5. Displacements of measuring points marked on the boom, the 
boom supporting system and the support frame, presented in YZ and 
YX planes (direction designations as shown in Fig. 2). 
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Variants of telescopic crane model for which numerical 
simulations were performed are summarised in Table 1. 

 
3.3 Results analysis 

The influence of the model components flexibility on the 
accuracy of the crane work was analysed on the basis of the 
load trajectory (Figs. 7 and 8) and time characteristics repre-
senting horizontal (radial) and vertical components of load 
positions during rotation of the crane body (Figs. 9(a) and (b)). 
Due to a close relationship between the load movement and 
the location of its suspension the trajectories of the boom head 
(Fig. 7) and the time characteristics of the head displacements 
during lifting and rotation were also analysed for each variant 
of the model (Figs. 11 and 13). 

To quantify the influence of the flexibility of the structural 
components on the load and the boom head movement, the 
average displacements of the load and the boom head were 
determined for each variant of the model. The average dis-
placements of the boom head for lifting motion of the load 

(Figs. 11(a) and 13(a)) were determined in relation to the time 
interval when the head was moving in harmonic motion (i.e. 
from about 4 to 10 s). Subsequently, the percentages of aver-
ages of individual values obtained for variants V2-V8 were 
calculated with respect to the average values obtained for the 
flexible and rigid model. These values are assigned respec-
tively 100% and 0% share. The results are shown in Figs. 10, 
12 and 14. 

On the basis of the numerical simulation results, it was 
found that: 

(1) The trajectories of the load obtained for the variants 
taking into account the flexibility of the outriggers, the support 
frame and the telescopic system are most similar to the results 
obtained for the rigid model treated as a reference model. 
However, the components introducing the greatest changes in 
the trajectory of the load are flexible members of the boom, 
the luffing hydraulic cylinder and elements of the boom 
supporting system (Figs. 7 and 8). 

(2) The influence of the support frame deformations on the 
trajectory of the boom head and the load is similar to the one 

Table 1. Variants of telescopic crane model. 
 

Crane components V1 V2 V3 V4 V5 V6 V7 V8 V9 

Hoisting rope system N F N N N N N N F 

Outriggers N N F N N N N N F 

Support frame N N N F N N N N F 

Elements of telescopic mechanism N N N N F N N N F 

Elements of boom supporting system N N N N N F N N F 

Luffing hydraulic cylinder N N N N N N F N F 
Boom N N N N N N N F F 

F – Designation of component assumed in a given variant of the crane model as flexible; 
N – Designation of component assumed in a given variant of the crane model as non-deformable. 

 

 
 
Fig. 7. Trajectories of the load and the boom head during rotation (visible in the plane of rotation), for variants V1-V9. 
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caused by deformations of the outriggers. 
(3) Despite the fact that the trajectory of the load deter-

mined for the model taking into account only the flexibility of 
the rope system (V2) does not differ in the scale assumed for 
Fig. 7 from the trajectories obtained for variants V3, V4 and 

V5, the comparison presented in Fig. 10(a) shows that the 
average displacement of the load in radial direction is signifi-
cantly larger for variant V2 than for V3, V4 and V5. The 
flexibility share of the rope system amounting to 9.59% of the 
flexibility of the whole system means that this component 

       
                                (a)                                                     (b) 
 
Fig. 8. Trajectories of the load during: (a) lifting; (b) rotation (visible in the plane of lifting), for variants V1-V9. 

 

       
                               (a)                                                      (b) 
 
Fig. 9. (a) Horizontal (radial); (b) vertical components of the load positions during rotation of the crane body, for variants V1-V9. 

 

       
                              (a)                                                         (b) 
 
Fig. 10. Percentage of the average values of: (a) the load horizontal displacements; (b) the load vertical displacements during rotation of the crane 
body, related to the value obtained for the flexible model: (a) 0.269 m = 100%; (b) 0.108 m = 100%. 
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flexibility could be taken into account especially during build-
ing of the models for analysis of the cranes in a slewing mo-
tion. 

(4) The time characteristics, which show selected compo-

nents of the load positions (Fig. 9) and components of the 
boom head displacements (Figs. 11 and 13), allow to deter-
mine whether the flexibility of a particular component con-
tributes to increase or decrease of load swings. In the analysed 

       
                               (a)                                                      (b) 
 
Fig. 11. Horizontal (radial) components of displacements of the boom head during: (a) lifting; (b) rotation, for variants V1-V9. 

 

       
                              (a)                                                        (b) 
 
Fig. 12. Percentage of the average values of the boom head horizontal displacements during: (a) lifting of the load; (b) rotation of the crane body, 
related to the value obtained for the flexible model: (a) 0.287 m = 100%; (b) 0.284 m = 100%. 

 

       
                               (a)                                                      (b) 
 
Fig. 13. Vertical components of displacements of the boom head during: (a) lifting; (b) rotation, for variants V1-V9. 
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system negative values of components of the boom head hori-
zontal displacements (V3, V4 and V5 in Fig. 11(a)) indicate 
that the deformations of the outriggers, the support frame and 
the telescoping system contribute to decrease in the boom 
head distance from the axis of rotation of the crane body. As a 
result, the rope angle of deviation from the vertical line de-
creases at the time of detaching of lifted load from the ground 
and the load swings are smaller. 

 
4. Conclusions 

Seven variants of a telescopic crane computational model, 
each of which contained one flexible item, were analysed in 
this paper. The influence of deformations of individual com-
ponents on the accuracy of a load movement in relation to 
a rigid and flexible model was examined. 

It has been determined that not all components of a tele-
scopic crane structure, despite their finite stiffness, result in 
significant disturbances in its work. Outriggers, a support 
frame and a telescoping system are so rigid that in relation to 
the basic motion carried out by a rigid model, changes of the 
load trajectory in a slewing motion, taking into account the 
deformations occurring in these components, are almost im-
perceptible. 

However, on the basis of the numerical analyses, primarily 
it has been found that: 

(1) Deformations that are experienced by components con-
tribute to differences in the load trajectories. These differences 
are related to a change in the distance of a boom head from the 
axis of rotation of a crane body as well as to a change in the 
force of inertia acting on the load during slewing motion. 

(2) Magnitude of a load swings which occur after stopping 
of a slewing motion is closely related to the flexibility of indi-
vidual structural components of the crane. Swings increase 
when the flexibilities of the components increase (Fig. 15). 

(3) Omitting components with high flexibility in computa-
tional models of cranes is unacceptable. Their lack in the 
models causes adulteration of their dynamic properties. This 
in turn leads to significant changes in trajectories of loads. 

(4) Comparison of time characteristics by means of a quan-
titative analysis method (as shown in Figs. 10, 12 and 14) 
enables an unambiguous classification of crane structural 
components in terms of the influence of their flexibility on the 
movement of a load (and also the movement of a boom head 
in telescopic cranes). 

(5) One of the most important tasks to be carried out during 
the development of computational models should be the pre-
cise identification of parameters characterising the main struc-
tural units of cranes. Properly defined stiffnesses of compo-
nents will enable the correct choice of those that can be con-
sidered as non-deformable. The possibility to neglect their 
deformations will contribute to improving the numerical effi-
ciency of the models. 
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Appendix 

A.1 Description of the large strains analysis method 

Some components of cranes (e.g. telescopic boom members, 
outriggers) under load are subject to such a large deformations 
that their shape change affects the location of the components 
associated with them. The above mentioned influence should 
be taken into account in calculations when the deformations 
exceeds a few percent (usually are 5%³ ). 

The large strains analysis method, used in this paper, is pre-
sented below. Explanations of the polar decomposition 
method and the midpoint method, are also included. 

Consider the two configurations of a body, e.g. structural 
component of a crane, before and after deformation (Fig. A.1). 
Suppose a material particle A in a reference configuration 

1Sn-  (corresponding to time 1nt - ) is defined by the vector X, 
and after applying a load vector p, due to the change of the 
configuration to Sn  (corresponding to time nt ), its position 
is defined by the vector x. The position vector x is given by: 

 
= +x X u  (A.1) 

 
where u  is the displacement vector determined from Eq. (3). 

In mathematical terms deformations describes the so-called 
deformation gradient tensor F : 

 

¶
=
¶

xF
X

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

.
x X x X x X
x X x X x X
x X x X x X

¶ ¶ ¶ ¶ ¶ ¶é ù
ê ú= ¶ ¶ ¶ ¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ ¶ ¶ ¶ë û

  (A.2) 

 
The components of tensor F  can be calculated based on 

the vector u : 

 
( )¶ + ¶ ¶ ¶

= = + = +
¶ ¶ ¶ ¶
X u X u uF Ι

X X X X
 (A.3) 

 
where Ι  is the 3x3 identity matrix. 

The tensor F  includes the information about all compo-
nents of the deformation process, i.e. the shape change, the 
volume change and the rotation. In order to separate from the 
tensor F  the information about the shape changes, this ten-
sor should be subjected to the so-called polar decomposition. 
The polar decomposition theorem is based on a division of the 
deformation process into two stages, i.e. the step of changing 
the shape and the step of rotation, wherein their order may be 
arbitrary: 

 
= ×F R U  (A.4) 
= ×F V R  (A.5) 

 
where R  is the rotation matrix (with the following proper-
ties: -× = × =T 1R R R R Ι ), U  is the right stretch (shape 
change) matrix determined with respect to the reference con-
figuration of the body (this matrix is symmetric, so T=U U  
and T × = ×U U U U ), V  is the left stretch matrix. 

The real strain (also called Hencky strain or logarithmic 
strain) in advanced materials models for one-dimensional 

 
 
Fig. A.1. Position vectors and deformation of a body. 
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(1D) deformations is defined as: 
 

ln l
L

e æ ö= ç ÷
è ø

 (A.6) 

 
where l  is the final length of a material fiber, L  is the ini-
tial length of the fiber. 

Taking into account that the individual elements of the ma-
trix U  contain information about the component stretches of 
a material particle, the real strain tensor for a three-dimen-
ional (3D) system may be determined as: 

 
ln .=ε U  (A.7) 

 
In this paper, the approximate 2nd order accurate calcula-

tions of the real strain tensor ε  (proposed by Hughes [41]), 
have been used. These calculations are based on the incre-
mental procedure, because the logarithmic strain provides the 
correct measure of the final strain when deformation takes 
place in a series of increments. The basis of this method is Eq. 
(A.8) from which the increase of a so-called pure (i.e. devoid 
of a rotational component) strain nDε , in the n-th time step is 
calculated. 

 
1/2 1/2

T R
n n n n- -D = ×D ×ε R ε R  (A.8) 

 
where R

nDε  is the tensor of the strain increment caused by the 
rotation in the n-th time step. 

In order to improve the approximation accuracy in the cal-
culations of Eq. (A.8) right side components, the so-called 
midpoint method has been applied. This method consists in the 
fact that the values in the subsequent time steps are deter-
mined on the basis of the values approximated at the points 
located midway between the actual value and the one that 
precedes it directly. Based on the above method the midpoint 
displacement vector 1/2n-u  is determined first: 

 

( )1/2 1

1
2n n n- -= × +u u u  (A.9) 

 
where nu  is the displacement vector for n-th step, 1n-u  is 
the displacement vector for n-1 step. 

Then the midpoint tensor 1/2n-F  (based on Eq. (A.3)) and 
the midpoint matrix 1/2n-R  (based on Eq. (A.4)), are deter-
mined: 

 
1/2

1/2
n

n
-

-

¶
= +

¶
uF Ι

X
 (A.10) 

1
1/2 1/2 1/2 .n n n

-
- - -= ×R F U  (A.11) 

 
In order to determine the shape change matrix for the mid-

point configuration 1/2n-U , first the tensor 1/2n-F  is premulti-
plied by its transpose: 

1/2 1/2
T
n n- -× =F F  

( ) ( )1/2 1/2 1/2 1/2

T

n n n n- - - -= × × × =R U R U  

1/2 1/2 1/2 1/2
T T
n n n n- - - -= × × × =U R R U  

2
1/2 1/2 1/2 1/2 1/2 .T

n n n n n- - - - -= × = × =U U U U U  (A.12) 
 
Then, in order to calculate the square roots of Eq. (A.12) the 

coordinate system is transformed to the orientation at which 

1/2 1/2
T
n n- -×U U  has the form of a diagonal matrix ( )2

1/2n diag-U . 

Since the elements of the transformation matrix 1/2n-Q  are 
eigenvectors (principal directions) iv  of the matrix 2

1/2n-U , 

and the elements of the diagonal matrix ( )2
1/2n diag-U  are ei-

genvalues (principal stretches) il  of this matrix, a spectral 
decomposition of the matrix 2

1/2n-U  is performed. This is done 
by calculation of iv  and il  from Eq. (A.13) (detailed de-
scription can be found in chapter 6 of Ref. [42]). 

 
( )2

1/2 0 .n l- - × × =U Ι v  (A.13) 
 
In the next step 1/2n-U  in the original coordinate system is 

calculated: 
 

( )2
1/2 1/2 1/2 1/2

T
n n n ndiag- - - -= × ×U Q U Q  (A.14) 

 
where: 1/2 1 2 3n- = é ùë ûQ v v v   (A.15) 
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1

2
1/2 2

3

0 0
0 0 .
0 0
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l
l

l
-

é ù
ê ú= ê ú
ê úë û

U   (A.16) 

 
Then the inverse of 1/2n-U  is determined, and finally 1/2n-R  

from Eq. (A.11) is calculated. 
The second component of the right side of Eq. (A.8), i.e. the 

tensor R
nDε  is determined on the basis of the corresponding 

vector R
nDe  obtained from the equation: 

 
1/2

R
n n n-D = ×De B u  (A.17) 

 
where 1/2n-B  is the strain–displacement relationship evaluated 
at the midpoint geometry (see Eq. (A.18)), nDu  is the dis-
placement increment vector ( 1n n n-D = -u u u ). 
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 (A.18) 
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where N  is the shape function depending on the type of 

finite element, ( ); 1/2 ; ; 1

1
2j n j n j nx x x- -= × +  is the midpoint con-

figuration of the body and 1,2,3j = . 

Since 11 22 33 12 23 31

TR
n e e e e e eD = D D D D D Dé ùë ûe , due 

to the symmetry we obtain: 
 

11 12 13

21 22 23

31 32 33

.R
n

e e e
e e e
e e e

D D Dé ù
ê úD = D D Dê ú
ê úD D Dë û

ε  (A.19) 

 
Tensor R

nDε  inserted into Eq. (A.8) allows the calculation 
of the pure strain increment nDε  in the n-th time step. In turn, 

nDε  added to the previous strain 1n-ε  allows determining the 
real strain in the n-th time step: 

 
1 .n n n-= + Dε ε ε  (A.20) 

 
A.2 Description of the relationship between the transforma-

tion matrix and the rotational pseudovector in a large 
rotation analysis 

Rotation in the 3D may be described by the nine direction 
cosines (Eq. (A.21)). 

 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

cos cos cos
cos cos cos
cos cos cos

x X x X x X

x X x X x X

x X x X x X

R
q q q
q q q
q q q

é ù
ê ú

= ê ú
ê ú
ë û

 (A.21) 

 
where 

1 1x Xq  is the angle that the rotated 1x axis makes with 
the fixed 1X axis, 

2 1x Xq  is the angle that the rotated 2x axis 
makes with the fixed 1X axis, and so on; { }1 2 3, ,X X X  is 
a fixed orthogonal coordinate triad, { }1 2 3, ,x x x  is an orthogo-
nal triad that rotates, and is initially coincident with the previ-
ous one. 

One of the Euler’s theorem states that any rotation may be 
specified in a simplified form by an axis and an angle of rota-
tion. According to this theorem, Argyris decided to describe 
a large rotation in space by a vector defined as q= ×θ e  [43]. 
He named this vector “rotational pseudovector”. Accordingly 
to the definition, pseudovector has a length equal to a rotation 
angle q  and is directed as a unit vector e , which defines an 
axis of rotation and passes through a fixed point placed at the 
origin of global coordinates (Fig. A.2). 

Pseudovector has three Cartesian components: 1 2 3, ,q q q , 
and its length (the norm) is: ( )

1
22 2 2

1 2 3q q q q= + + . So defined 
pseudovector fully describes 3D rotations using only three 
parameters instead of the nine employed in the matrix repre-
sentation. 

Based on the θ  definition, Eq. (A.22) describing a trans-
formation of a vector 0z  into a vector z  (Fig. A.2) by 
means of a generic large rotation is established. 

0= ×θz T z  (A.22) 
 

where θT  is a transformation matrix known as the Rodriguez 
formula: 

 
2

2sin 1 sin / 2( ) ( )
2 / 2

q q
q q
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è ø

θT Ι S θ S θ  (A.23) 

3 2

3 1

2 1

0
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0

q q
q q
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-é ù
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S θ  (A.24) 

 
Eq. (A.23) is derived based on the vector relations visible in 

Fig. A.2 (for detailed description of this derivation see chapter 
3.3 in Ref. [44]). 

Then adopting normalisation of Rankin and Brogan [45], i.e. 
scaling components 1 2 3, ,e e e  of the vector e  by a new quan-
tity (the norm) w  instead of q , a new rotational pseudovec-
tor ω  is written as: 

 
T

1 2 3ω ω ω w= = ×é ùë ûω e  (A.25) 

 
where 1 2 3, ,ω ω ω  are the normalised pseudovector compo-
nents, ω  is the length of the normalised pseudovector. 

Since in general the norm of e  is a function of q , follow-
ing Rankin and Brogan the relationship between w  and q  
is adopted as: 

 

2 sin .
2
qw = ×  (A.26) 

 
Thus: 
 

2 sin .
2
q

= × ×ω e  (A.27) 

 
Then Eq. (A.27) is inserted into Eq. (A.23). Thus the trans-

formation matrix ωT  associated with pseudovector ω  is 
obtained in the form: 

 
2

211
2 2
ωæ ö= + - × + ×ç ÷

è ø
ωT Ι Ω Ω  (A.28) 

 
 
Fig. A.2. Transformation of vector 0z  into vector z  by means of 
a generic large rotation with pseudovector θ . 
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where Ω  is the skew-symmetric matrix representation of ω . 
 

3 2

3 1

2 1

0
0 .

0

ω ω
ω ω
ω ω

-é ù
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Ω  (A.29) 

 
The transformation matrix enables monitoring the rotation 

of finite elements with respect to the global Cartesian coordi-
nate system. Obtained this way information allow to extract 
the deformational displacement from the total element dis-
placement, and then allow to compute the element stiffness  

matrix as well as the strains and stresses. 
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