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Abstract 
 
In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider-

crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle per-
formance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum 
mass distribution of crank and connecting rod using the equimomental system of point-masses in the first stage of the optimiza-
tion. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corre-
sponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both 
the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its com-
putational performance is compared with Genetic algorithm (GA).  
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1. Introduction 

The slider-crank mechanism consisting of crankshaft, con-
necting rod and piston is the fundamental mechanism used for 
vehicle engines. The shaking force and shaking moment in the 
mechanism are defined as the resultant inertial forces and 
moments of the moving links [1] and need to be eliminated to 
dynamically balance the mechanism. For an unbalanced 
mechanism, these forces and moments are transmitted to the 
frame which worsen the dynamic performance of vehicle en-
gine and generate vibrations, wear and noise. It leads to ex-
pensive repairs and replacement of crankshaft and connecting 
rod and their reverse effects on the other parts such as cylinder 
block and piston. Few review papers discuss the methods to 
reduce the shaking force and shaking moment based on differ-
ent approaches [2-4]. To achieve full force balance in the 
mechanism, the total mass center of moving links is made 
stationary either by adding counterweights [5] or by mass 
redistribution [6, 7]. The complete force balancing increases 
other dynamic quantities like shaking moment and driving 
torque in the mechanism [8]. For complete balancing of mo-
ment in the mechanism, the total angular momentum of the 
moving links is eliminated by using duplicate mechanism [3], 

inertia or disk counterweights [9-11] and moment balancing 
idler loops [12]. However, the complexity and overall mass 
for mechanism are increased in these methods.  

Alternatively, the shaking force and shaking moment are 
minimized simultaneously by optimizing links inertial proper-
ties, i.e., mass, center of mass location and moment of inertia. 
The conventional optimization technique is used to optimally 
balance the planar mechanisms [13, 14] and to analyse the 
sensitivity of shaking force and shaking moment to the design 
variables [15]. The mechanism balancing problem is formu-
lated as a multi-objective optimization problem and solved 
using evolutionary optimization techniques like particle 
swarm optimization [16] and genetic algorithm [17, 18].   

Once the optimized inertial properties of mechanism links 
are obtained, their shapes are to be decided to carry loads. A 
method to find link shapes is presented in Ref. [19] by discre-
tizing initial assumed shape into small mass elements and 
locate them systematically along the link length. The link 
shapes are synthesized on the basis of maximum work done 
by taking volume of all links as the constraint [20]. Similarly, 
the link shapes are formed through topology optimization 
based on parametric curves [21] and non-intersecting closed 
polygons [22]. The Evolutionary structural optimization 
(ESO) method is used to optimize the shaft shape for rotating 
machinery by gradually removing the ineffectively used mate-
rial from the design domain [23, 24]. Alternatively, by identi-
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fying the feasible material domain associated with the link 
geometries, the geometric shapes are determined for interfer-
ence free motion [25]. Some other methods are available in 
the literature for mechanism dimensional synthesis to generate 
specified path or motion based on graphical and analytical 
techniques [26, 27]. However, these methods have limitations 
as they require a pre-defined design domain to start with. Also, 
they do not consider the dynamic balance for the mechanisms. 

In this paper, a two stage optimization method is presented 
to synthesize link shapes for minimizing the shaking force and 
shaking moment in the planar slider-crank mechanism. In the 
first stage, the balancing problem is formulated as an optimi-
zation problem by modeling the rigid links of mechanism as 
dynamically equivalent system of point-masses, known as 
equimomental system [28, 29]. This problem is presented as a 
multi-objective optimization problem to minimize both shak-
ing force and shaking moment and is solved using Genetic 
algorithm (GA) and Teaching-learning-based algorithm 
(TLBO).   

For the optimum inertial properties found in the first stage, 
the link shapes are synthesized in the second stage by model-
ing the link geometries as closed parametric curves, i.e., cubic 
B-spline curve. The objective function is formulated as the 
difference between desired optimum inertia value and result-
ing link inertia value and minimized by taking the positions of 
the control points of curve boundary as the design variables. 
Note that evolutionary optimization algorithms don’t require 
initial values of the design variables to solve an optimization 
problem. Therefore initial shape or design domain for links 
shape synthesis is not required in this method. The desired 
optimum mass and location of mass centers of the links found 
in the first stage are considered as the constraints in the second 
stage. As a solution of this optimization problem, the bound-
ary domain defined by parametric curves is evaluated to ob-
tain mass and inertia of each link through Green’s theorem 
[30]. Hence, the dynamic balancing is achieved for a planar 
slider-crank mechanism by synthesizing its link shapes.    

Other evolutionary optimization algorithms such as Simu-
lated annealing (SA), Particle swarm optimization (PSO), 
Differential evolution (DE), Ant colony optimization (ACO), 
Artificial bee colony (ABC) etc. are used in different fields but 
for mechanism balancing problems, mostly GA is used [16-
19]. TLBO is used in designing mechanical components in 
Refs. [39, 42] and is used for mechanism design problem in 
this study. The balancing problem is solved using both GA 
and TLBO and performances of the algorithms are compared 
in terms of optimum solution and function evaluations re-
quired to solve the optimization problem. 

The structure of the paper is as follows. In Sec. 2 ,  the shak-
ing force and shaking moment are defined for a planar slider-
crank mechanism. The procedure for link shape synthesis is 
presented in Sec. 3 while Sec. 4 presents the two stage opti-
mization problem formulation. A numerical example is 
solved using the proposed method and results are discussed 
in Sec. 5. Finally, conclusions are summarized in Sec. 6 .  

2. Shaking force and shaking moment  

Fig. 1 shows an offset planar slider-crank mechanism where 
the fixed link is detached from the moving links to show the 
reactions. The shaking force is defined as the reaction of the 
vector sum of all the inertia forces whereas the shaking mo-
ment is the reaction of the resultant of the inertia moment and 
the moment of the inertia forces about a fixed point. Once all 
the joint reactions are determined, the shaking force and shak-
ing moment at and about joint 1 are obtained as [1]: 

 

sh 01 03( )= - +f f f  and e
sh 1 03 0 03(  x ) .n n n= - + + a f  (1) 

In Eq. (1), f01 and f03 are the reaction forces of the frame on 
the links #1 and #3, respectively. The driving torque applied at 
joint #1 is represented by e

1n while n03 represents the reaction 
of the inertia couple about joint #3. a0 represents the vector 
from O1 to O3. 

 
3. Link shape synthesis 

The link shape is synthesized using parametric closed cubic 
B-spline curve as shown in Fig. 2. This curve interpolates or 
approximates a set of n+1 control points, P0, P1,…, Pn [31, 32] 
and defined in Eq. (2).  
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0
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In Eq. (2), the parameters k, , ( )i kN u and u are defined as the 

degree of curve, B-spline blending function and parametric 
knots, respectively. The control points form the vertices of the 
characteristic polygon of the B-spline curve as shown in Fig. 2. 
The cubic B-spline curve is a composite sequence of curve 
segments connected with C2 continuity which blends two 
curve segments with same curvature. The coordinates of any 
point on the ith segment of the curve is given as:  

 
1 -1 2 3 1 4 2( )

6
i i i i
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=  (3) 

 
 
Fig. 1. Definitions of parameters for a planar slider-crank mechanism. 
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In Eqs. (3) and (4), xi and yi are the coordinates of points Pi. 

The geometrical and inertial properties of the link synthesized 
using closed cubic B-spline curve are calculated using Green’s 
theorem [33]. The area A, centroid ( x , y ) and area moment 
of inertia about centroidal axes (Ixx, Iyy, Izz) of the closed curve 
made of n cubic B-spline segments are calculated as: 

 

-11
( ) ( )i

i

n u
i iu

i
A x u y u  du

=

¢=åò  (5) 

-1

2

1

1 ( ) ( )
2

i

i

n u
i iu

i i
x y u x u  du

A =

¢= - åò  (6) 

-1

2

1

1 ( ) ( )
2

i

i

n u
i iu

i i
y x u y u  du

A =

¢= åò  (7) 

-1

3

1

1 ( ) ( )
3

i

i

n u
xx i iu

i
I y u x u  du

=

¢= - åò  (8) 

-1

3

1

1 ( ) ( )
3

i

i

n u
yy i iu

i
I x u y u  du

=

¢= åò  (9) 

.zz xx yyI I I= +
 

(10) 

 
The first derivatives ( )ix u¢

 
and ( )iy u¢

 
of ( )ix u and ( )iy u  with respect to u, respectively, in Eqs. (5)-(10) are given by: 
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where 2 2
1 -3 6 - 3β u ui i= +   

2 2
2 9 2 (3 - 9 ) - 3 9 - 6β u u i i i= + +   

2 2
3 -9 2 (-6 9 ) 9 12β u u i i i= + + - +  

2 2
4 3 2 (3 3 ) 3 3 6β u u i i i .= + - + + -  

For geometric properties defined in Eqs. (5)-(10), the mass 
and mass moment of inertia of a link with shape represented 
by closed curve are then obtained as: 

 
m Atρ=

 
(13) 

zzI I tρ=  (14)
 

 
 

where t is thickness which is kept constant and ρ is material 
density.   

 
4. Two stage optimization problem formulation 

4.1 First stage – dynamic balancing 

To dynamically balance the planar slider-crank mechanism, 
an optimization problem is formulated to minimize the shak-
ing force and shaking moment using the concept of equimo-
mental point-mass system. The crank and connecting rod are 
systematically converted into a system of three equimomental 
point-masses and the point-mass parameters are taken as the 
design variables. A point mass is identified by three parame-
ters, so 9-vector, xi, for i = 1, 2, of design variables for ith link 
is defined as:  

 
1 1 1 2 2 2 3 3 3[ ]Ti i i i i i i i i im l θ m l θ m l θ=x

 
(15) 

 
where mij is jth point mass of ith link, and lij and θij are polar 
coordinates of it in the body fixed frame (Fig. 3). If the mass 
of slider is kept constant, then its inertia force cannot be re-
duced for given motion. Because of its translation motion, 
moment of inertia will also not play any role in dynamic anal-
ysis. Hence, the crank and connecting rod are considered for 
the optimal distribution of their masses. Hence, the design 
vector, x, for the complete mechanism is given by: 

 
T T
1 2[ ] .T=x x x  (16) 

 
Considering the RMS values of the magnitude of shaking 

force, fsh,rms, and shaking moment, nsh,rms, defined in Eq. (1), 
the optimization problem is posed as weighted sum of the 
force and moment as: 

 
1 sh,rms 2 sh,rmsMinimize Z f nw w= +

 
(17)

       2
i,min i,max i,minSubject to ;   ij ij ij

j j
m m m I m l£ £ £å å  

for   i = 1, 2, and  j = 1, 2, 3
 

(18) 
 

where w1 and w2 are the weighting factors used to assign 
weightage to shaking force and shaking moment, respectively. 
The different approaches for selection of the weighting factors 
are presented in Refs. [34, 44]. The weights represent the rela-
tive importance of the various objectives. The method trans-
forms the number of objective functions into single function. 
In this study, both the objectives, i.e. shaking force and shak-
ing moment, are normalised with respect to parameters of 
driving link of the mechanism to avoid domination of one 

 
 
Fig. 2. Closed cubic B-spline curve and its control points. 



5192 K. Chaudhary and H.Chaudhary / Journal of Mechanical Science and Technology 29 (12) (2015) 5189~5198 
 

 

objective over other. For the normalised objective functions, it 
becomes easy to set the weights between 0 and 1 depending 
upon the application. For complete shaking force balance and 
complete shaking moment balance, these values are taken as 
(w1 = 1, w2 = 0) and (w1 = 0, w2 = 1), respectively. For giving 
equal importance to both the normalised objective functions, 
these values are chosen as (w1 = 0.5, w2 = 0.5). Similarly, 
weights for different objectives may be chosen by the mecha-
nism designer as per the requirement in real problems. 

 
4.2 Second stage – shape formation for balanced mechanism 

After obtaining optimized inertial parameters of the crank 
and connecting rod in the first stage, an optimization problem 
is now formulated to find the corresponding link shapes. The 
shape of each link is developed by the closed cubic B-spline 
curve. The Cartesian coordinates of control points of cubic B-
spline curve are taken as design variables as shown in Fig. 4. 
The number of control points are decided based on link length.  

The link length between joints origins Oi to Oi+1 is divided 
into equal parts. To maintain symmetrical shape and the prod-
uct of inertia zero, y-coordinates are taken as the design vari-
ables and kept same value for opposite control points. The 
extensions of link beyond joints origins Oi and Oi+1 are con-
trolled by P0, P1, Pn-1 at right end and Pn/2-1, Pn/2, Pn/2+1 at left 
end. At right end, x coordinate of P0, y coordinates of P1 and 
Pn-1 are chosen as the design variables and same is done at left 

end. Finally, the design vector is defined as:   
 

T
0 1 /2-1 /2 /2 1 -1[   ...    ... ] .n n n nx y y x y y+=x

 
(19) 

 
The inertial properties of resulting shapes are constrained to 

ensure that the links with optimum shapes have the same iner-

 
(a) Rigid link 

 

 
(b) Point-masses 

 
Fig. 3. The ith rigid link and its point-mass model. 

 
 
Fig. 4. Closed cubic B-spline curve representing link shape and its 
control points. 
 

 
 
Fig. 5. Two stage optimization scheme to balance mechanism and 
shape synthesis. 
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tial properties as that of the dynamically balanced mechanism 
links. The objective function is then formulated to minimize 
the percentage error in resulting links inertia values as: 

 
*

o
( )Minimize Z x 100 .i i

i

I I
I
-

=  (20) 

*Subject to ;i im m= ;* *
i i i ix x y y= = for   = 1, 2i  (21) 

 
here parameters with superscript ‘*’ represent optimum pa-
rameters obtained in the first stage and subscript ‘i’ is used for 
ith link of mechanism. The flow chart shown in Fig. 5 illus-
trates the proposed optimization method.    

 
5. Application, results and discussions 

The optimization problem formulated in previous section 
can be solved using either conventional or evolutionary opti-
mization methods. The conventional or classical methods use 
gradient information of objective function with respect to the 
design variables. These methods converge on the optimum 
solution near to the initial guess point and thus produce local 
optimum solution [34, 35]. The disadvantages associated with 
the conventional optimization methods are that (1) the end 
result depends upon starting point and (2) the computational 
complexity is involved in calculation of derivatives and hes-
sian matrices. 

The Genetic algorithm (GA) is an evolutionary search 
and optimization algorithm based on the mechanics of natu-
ral genetics and natural selection [36, 37]. This algorithm 
evaluates only the objective function and genetic operators - 
selection, crossover and mutation are used for exploring the 
design space. The drawbacks of GA are that (1) it requires a 
large amount of calculation and (2) there is no absolute 
guarantee that a global solution is obtained. These drawbacks 
can be overcome by using parallel computers and by executing 
the algorithm several times or allowing it to run longer [38].  

 
5.1 Teaching-learning-based optimization algorithm  

Teaching-learning-based optimization (TLBO) algorithm is 
a population based method and converges to the optimum 
solution by using a group of the solutions. TLBO is known as 
a parameter-less optimization algorithm as no algorithm spe-
cific parameters are required to be handled to implement it [39]. 

Whereas, in GA, the parameters like crossover rate and mu-
tation rate are to be optimally controlled to solve the optimiza-
tion problem. For different multi-objective unconstrained and 
constrained benchmark functions, TLBO was found more 
efficient than GA and other popular optimization techniques [40]. 

In TLBO, a group of learners is considered as the popula-
tion and different subjects offered to the learners are consid-
ered as design variables. The learners’ result is analogous to 
the objective function value of the optimization problem. 
Working of TLBO in two successive phases in each iteration 
is explained below: 

Teacher phase – learning from the teacher 
In this phase, the learners learn from the teacher. The 

teacher should be the most experienced and knowledgeable 
person for a subject, thus the learner with the best result is 
identified as the teacher. The teacher increases the mean result 
of the population and final outcome depends on the quality of 
teacher as well as learners. In this phase, subject marks of all 
learners are updated on the basis of subject marks of the 
learner with the best solution, i.e., teacher.  

Each learner’s results corresponding to initial and updated 
marks are compared and the subject marks corresponding to 
the better result are kept for the learner who becomes part of 
new population. The Teacher phase ends with creation of new 
population. This population of the Teacher phase is treated as 
the initial population in the second phase, i.e., Learner phase 
of the algorithm. 

 
Learner phase – learning through interaction 

In this phase, the learners should gain knowledge through 
discussion and interaction among themselves. The learner 
phase starts with the final population obtained in the Teacher 
phase. To improve the marks, each learner interacts randomly 
with at least one other learner in the population. The learner 
improves his/her subject marks if other learner has more 
marks in corresponding subjects.   

Similar to Teacher phase, each learner’s result correspond-
ing to initial and updated marks in this phase is compared and 
the subject marks corresponding to the better result are re-
tained for the final population. It ends the Learner phase of the 
algorithm.  

The various parameters of TLBO algorithm are defined as: 
 

p = Population size, i.e., number of learners 

s = Design variables, i.e., subjects offered to learners 
LLk,ULk = Lower and upper limits for kth subject marks 

N = Number of iterations 

i = ith Iteration, i.e., a teaching learning cycle, for i=1, 
2, …, n 

Zj = Objective function value of jth learner, i.e., Eq. (17) 
Mk = Mean of kth subject marks of all population 

Bk = Marks of kth subject of best learner whose objective 
function value, Zj, is minimum. 

 
Algorithm begins 
% Initialization of marks for each subject for whole popula-
tion 

for j = 1,…,p 
for k = 1,…,s 

% Marks of kth subject of jth learner, 0
jkm  

( )( )0
jk k k km LL UL LL R= + - ´

 
(22) 

end 
end 
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% Mean of kth subject of all population 
 

p
0
jk

j=1
k

m
M =

p

å
 (23) 

% Updation the subject marks of all learners 
for i=1,…,n 
 

( )( )RMBmm kkjkijk, ´-+= 01

 (24) 
 

% Compute and compare the updated value of 1
jZ
 
with pre-

vious one, 0
jZ  

If 0
jZ < 1

jZ  
% Updation of marks 

02
jkijk, mm =  

else 
12
jkijk, mm =  

% End of teacher phase 
% Start of learner phase 
% Result comparison of two learners j and l in popula-

tion, 2
jk,im  

for j=1,…,l,…,p  and  if  l ≠ j 
If  2

jZ < 2
lZ  

for  k=1,…,s   

( )( )3 2 2 2
jk,i jk jk lkm m m m R= + - ´

 
(25) 

else 

( )( )3 2 2 2
jk,i jk lk jkm m m m R= + - ´  (26) 

end 
end 
% Comparison of updated value of 3

jZ with previous one, 
2
jZ  

If 2
jZ < 3

jZ  

% Updation of marks 
4 2
jk,i jkm m=  

else 
4 3
jk,i jkm m=  

% Conditions to check limits of subject marks 
 

( )4 4max ,jk,i jk,i km m LL=  (27) 

( )4 4min ,jk,i jk,i km m UL=   (28) 
 

end 
% End of ith iteration. 

 
Algorithm end 

The parameter R represents a random number within range 
of 0 and 1 which may have different value for Eqs. (22), (24)-

(26). The population obtained at the end of Learner phase is 
treated as the final population of the current iteration and this 
is used as the initial population for Teacher phase in the next 
iteration. From the final population of the last iteration, the 
best solution is obtained as the optimum solution. To handle 
the constraints, the heuristic constrained handling method [41] 
is used in which the tournament selection operator selects and 
compares two solutions by following specific heuristic rules. 
These rules are implemented at the end of the teacher phase 
and the learner phase. This algorithm is successfully used for 
the optimization of mechanical design problems such as 
springs, bearings, pulleys and gear train [42]. However, it is 
applied for mechanism balancing in this study first time. 

 Note that the termination criterion for optimization algo-
rithm is specified as the number of iterations or the number of 
function evaluations. As the function evaluations is product of 
population size and number of iterations, so the number of 
iterations automatically gets fixed for specified population size. 
Thus, the increased number of design variables does not affect 
the function evaluations but may increase the overall compu-
tational time to evaluate the objective function and constraints. 
The complicated mechanism problem with large number of 
design variables can be solved using the proposed method that 
will take more time to find the solution of the optimization 
problem.  

 
5.2 Numerical example 

In this section, the effectiveness of proposed optimization 
method is shown by applying it to a numerical problem of 
planar slier-crank mechanism. As shaking force and shaking 
moment are of different units, these quantities need to be di-
mensionless for adding them in the objective function. For this, 
the mechanism parameters are made dimensionless with re-
spect to the parameters of the crank. Further the dimension of 
the problem is reduced by assigning five parameters for each 
link which are defined in Fig. 3(b) as: 

 
θi1 = 0; θi2 = 2π /3; θi3 = 4π /3 and li2 = li3 = li1. (29) 
 
Out of nine variables, mij, lij, θij, for j=1, 2, 3, for each link, 

the other four point-mass parameters, mi1, mi2, mi3 and li1 are 
brought into the optimization scheme as the design variables. 
Considering o o o

,min ,max ,min0.5 , 5 and 0.5i i i i i im m m m    I I= = = for 

crank and connecting rod, MATLAB codes are developed for 
the optimization problems and solved using TLBO and GA. 
The superscript ‘o’ represents parameters of the original 
mechanism. To find the link shapes, thickness of links is taken 
as 10 percent of the crank length and the link material is cho-
sen as the mild steel (density = 7850 kg/m3) for deciding the 
density and maximum permissible stress. The inertial proper-
ties of links are calculated using Eqs. (13) and (14). As shown 
in Fig. 1, link length, mass and other geometric parameters of 
the unbalanced planar slider-crank mechanism are given in 
Table 1 and they are defined in Fig. 3(a). 
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The comparison of original RMS values of shaking force 
and shaking moment with those of optimum values are pro-
vided in Table 2. Table 3 gives parameters of the optimized 
links for balanced mechanism. The optimization algorithm’s 
efficiency for converging to the optimum solution is shown by 
the plots between function value and function evaluations in 
Fig. 6. 

With the default values of genetic operators, the genetic 
algorithm was run for 100 iterations and reached to the 
optimum value of objective function as 1.9458 after 60160 
function evaluations whereas TLBO found the optimum 
value as 0.7006 after 32000 function evaluations as shown 
in Fig. 6. Thus TLBO found better result than GA and 
required 47% less function evaluations than those required by 
GA. This shows that TLBO is computationally more efficient 
algorithm than GA for the optimization problem consid-
ered to reduce approximately same amount of shaking force 

and shaking moment. The variations of the shaking force 
and shaking moment over the complete crank cycle are 
shown in Fig. 7. 

Next, the optimization problem for link shape formation 
presented in Eqs. (20) and (21) is solved and the resulting 
link shapes are shown in Fig. 8. CAD model developed from 
the optimal cubic B-spline boundary using Autodesk In-
ventor is shown in Fig. 9. The inertial properties of links are 
verified using this CAD model. In Ref. [43], a cam mecha-
nism and counterweight method is suggested to reduce the 
shaking force and shaking moment. 

Alternatively, here reductions in the shaking force and shak-
ing moment are achieved by redistributing masses optimally 
as shown in Fig. 8. Hence, the optimal dynamic balancing is 
achieved numerically by redistribution of link masses. The 
RMS values of shaking force and shaking moment are re-
duced by 48% and 44%, respectively.   

Table 1. Parameters of original mechanism. 
 

Link Length 
ai (m) 

Mass 
mi (kg) 

Moment of  
inertia  

Iczzi (kg-m2) 

CM  
distance 
di (m) 

CM  
location 
θi (deg) 

1 0.292 2 0.03 0.146 0 

2 0.427 3 0.14 0.214 0 

3 - 4 - 0 0 

 
Table 2. The RMS values of normalized dynamic quantities. 
 

 Shaking force Shaking moment 

Original mechanism 2.2188 0.4597 

Optimized mechanism GA 1.2314 

(-44.49%) 
0.2820 

(-38.66%) 

Optimized mechanism TLBO 1.1438 

(-48.45%) 
0.2568 

(-44.14%) 

 
Table 3. Parameters of balanced mechanism. 
 

Link Length 
ai (m) 

Mass 
mi (kg) 

Moment of 
inertia 

Iczzi (kg-m2) 

CM  
distance 
di (m) 

CM  
location 
θi (deg) 

1 0.292 3.7821 0.0494 0.0027 180 

2 0.427 1.5552 0.0285 0.1633 0 
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Fig. 6. Convergence of objective function for GA and TLBO algo-
rithms. 
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Fig. 7. Variations of shaking force and shaking moment for complete
crank cycle. 

 

 
 
Fig. 8. Optimized link shapes for planar slider-crank mechanism [fig-
ure on scale]. 
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The advantage associated with the proposed method is that 
the links of the balanced mechanism are of the uniform thick-
ness while the force and inertia counterweights added to the 
original mechanisms in traditional methods are of large thick-
ness and radius compared to the original link parameters. 
Also, the proposed method doesn’t require any pre-defined 
shapes or design domain to start with. The percentage error of 
resulting inertia values were found within ±5 percent. The 
resulting stresses for crank and connecting rod of the balanced 
mechanism can be calculated at the weakest sections under 
external loads. 

 
6. Conclusions 

A two stage optimization method for optimum dynamic 
balancing and synthesis of link shapes for planar slider-crank 
mechanism is proposed in this paper. It is demonstrated that 
the conversion of the rigid links into equimomental system of 
point-masses is useful in solving the balancing problem. The 
optimal mass distribution of links by taking point-mass pa-
rameters as the design variables reduce the inertial force and 
moment transmitted to the frame significantly. For the nu-
merical problem considered, the proposed method reduces the 
RMS values of shaking force and shaking moment by about 
48% and 44%, respectively. The method is quite general and 
equally applicable for all single or multiloop mechanisms 
where the analytical solutions are not available. The proposed 
method also demonstrates teaching-learning-based algorithm 
and genetic algorithm as a solver in mechanism balancing. In 
addition, the optimized values of link mass and inertia are 
effectively converted into physically possible shapes of links 
using closed B-spline curves. The novelty of the methodology 
is that it combines the dynamics and design solution for the 
mechanisms. 

 
Nomenclature------------------------------------------------------------------------ 

ia  : Vector representing ith link length 
ai : Magnitude of ai, the link length 

A : Area of region defining link shape 
Ci  : Mass centre of ith link 

id  : Vector from origin, Oi, to center of mass, Ci, of ith 
link 

shf  : Shaking force in complete mechanism 
iI  : Moment of inertia about origin, Oi, of ith link 
ijl  : Distance of point-mass ijm from origin, Oi, of ith link 
mi  : Total mass of ith link 
mij  : jth point-mass of ith link 

shn  : Shaking moment in mechanism about a fixed point 
perpendicular to the plane of motion 

iO  : Origin of body fixed frame Oi Xi Yi 
iP  : ith control point of closed parametric curve 

t : Thickness of links 
w i  : Weighting factors of optimality criterion 

ix  : Design vector for ith link 
x  : Design vector for whole mechanism 
αi  : Angular position of ith link 
θi  : Angular position of centre of mass of ith link 
θij  : Angular position of jth point-mass of ith link 
ρ : Material density of link’s material 
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