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Abstract 
 
This paper presents an adaptive-based fault detection and isolation scheme for a general class of robot manipulators, with 

characterizing the isolability conditions. The proposed algorithm consists of a nonlinear adaptive fault detection estimator and a bank of 
fault isolation estimators to determine the types of faults, which may be incipient or abrupt, while the fault parameter function may be 
time-varying. To demonstrate its effectiveness, the method is applied to a two-link robot manipulator and the simulation results are 
presented and discussed. 
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1. Introduction 

Robotic systems are extensively used in applications requir-
ing high accuracy, reliability and safety. Industrial manufac-
turing, demining, hazardous waste cleanup, medical surgeries 
and outer space exploration are examples of various applica-
tions of such systems. With increasing the degrees of freedom 
and the number of components of robot manipulators, accu-
rate monitoring of system malfunctioning has become more 
critical. In particular, the various faults that put the robot and 
the working environment at risk should be suitably detected 
and isolated. 

In general, the procedure for dealing with faults may 
in-clude (i) detecting the occurrences of faults (fault detection), 
(ii) indicating faulty components (fault isolation), (iii) 
identifying features of faults (fault identification), and (iv) 
accommodating faults by dedicated control algorithms (fault 
tolerant control). In recent decades, fault detection and 
isolation (FDI) schemes have been investigated by many 
authors [1-3], and successfully applied to various safety sys-
tems such as nuclear plants [4], satellite systems [5], rolling 
element bearing [6, 7], hydraulic actuators [8, 9] and robotic 
systems [10, 11]. Such a problem is particularly challenging in 
a robot manipulator, as a Multi-input multi-output (MIMO) 
system, subjected to uncertainties, drastic nonlinearities and 
external disturbances. Concerning detecting and isolating 

faults in MIMO systems, there are commonly used techniques 
in the literature, such as state and parameter estimation [12-18], 
parity equations [19], neural networks [20-22], and multiple-
model approaches [23-27]. In developing the FDI schemes, 
all of the state variables may be available for measurement [21, 
23]. Such assumptions can be relaxed by designing some 
nonlinear observers, such as second-order sliding modes [15], 
in which the sensor fault signal is time invariant. The 
time-variance nature of the faults has been taken into account 
in some more recent schemes [22]. Of course, the robustness 
properties against model uncertainties and disturbances should 
be also ensured by the FDI algorithms [20, 22]. 

In this paper, we focus on the FDI problem for robotic ma-
nipulators with n-degrees-of-freedom, based on adaptive esti-
mators. The fault is taken as a nonlinear function of both 
measurable and immeasurable states. Removing some of the 
previous restrictions, the main advantages of the proposed 
scheme are (i) using the soft sensor idea, the restriction of 
immeasurable states is overcome, (ii) distinguishing incipient 
faults and abrupt ones is possible, (iii) the fault parameter 
function may be time-varying, and (iv) the robustness property 
against unstructured uncertainties and external disturbances is 
ensured. Attaining such specifications, by using the proposed 
FDI scheme, is described more precisely via some remarks 
herein. 

This paper is organized as follows. The mathematical model 
description of robot manipulators and the required assump-
tions are given in Sec. 2. The FDI architecture, the isolability 
conditions and the relevant proofs are derived in Sec. 3. An 
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illustrative example is given in Sec. 4 to demonstrate the ef-
fectiveness of the proposed method. Finally, the concluding 
remarks are presented in Sec. 5. 

 
2. Mathematical model  

The dynamic model of an n-degree-of-freedom rigid robot 
in the continuous time is given by  

 ()̈() + (), ̇() = () + (, ̇, , ), 
 (1) 
 

where ℜ denotes the joint position vector,  ∈ ℜ is the 
joint torque vector, () ∈ ℜ∗  represents the positive 
definite inertia matrix. The coriolis/centrifugal and frictional 
terms are collected in (, ̇) ∈ ℜ, and (, ̇, , ) ∈ ℜ 
includes the model uncertainties, low velocity friction, links 
flexibility and external disturbances. 

Choosing a state vector as  
  =  = ̇, (2) 
 

the state space equations of the robot manipulator can be writ-
ten as 

 			̇() = () + ℎ() + ()() 																											+((), (), ) () = (), (3) 
 

where  =    ,  =  (()) ,  = [ ] 
and 

 ℎ() =  0−()(), ̇() , ((), (), ) 																			=  0()(, (), ̇(), ()), 
 

in which   denotes the ( ∗ )  null matrix, 0  is the ( ∗ 1) null vector, and   stands for the ( ∗ ) identity 
matrix. 

Remark 1. Many FDI algorithms refer to the case that all 
the state variables are measurable [28]. In practice, only the 
velocitimeters are commonly used to measure . To tackle 
this limitation, a soft sensor is used here to generate  from  to be adapted in FDI estimators. The structure of this soft 
sensor is given by 

 				 =  ′′
 =  (′)′

 =  ̇(′)′
 + (0), 

 
where the initial condition (0) is known. 

The mathematical model in the presence of the faults can be 
represented by 

			̇() = () + ℎ() + ()() 																	+((), (), ) + ( − )(((), ()) () = (), (4) 
 

where  is a constant matrix as  =    . In Eq. (4), 

the changes in the robot manipulator dynamics due to actuator 
faults are characterized by ( − )((), (), where ( − ) denotes the time profile of an actuator fault, oc-
curs at some unknown time , and (((), ()) repre-
sents the nonlinear fault function.  

The fault time profile, (. ) is adopted as a diagonal matrix 
of the form 

  −  = 0																											 < 1 − 				 ≥ 	,   = 1,… . ,2 (5) 
 

where the scalar  > 0 denotes the unknown fault evalua-
tion rate. 

Remark 2. Unlike some previous works in which the fault 
is only a function of input and output signals [29], such func-
tion may be dependent on all the state variables here. Moreo-
ver, the general form Eq. (5) facilitates taking both incipient 
and abrupt faults into account, respectively, by small values 
for , and large ones, by which the time profile behaves like 
a step function. 

As a preliminary step to design procedure, assume that there 
exist  types of possible faults in the fault set ℱ, i.e., the 
unknown fault function (((), ()) in Eq. (4) belongs to 
a finite set of fault types as 

 ℱ ≜ ((), ()), … . , (((), ()), (6) 

 
where each fault type (((), ()) for  = 1,… . , , is 
of the form 

 (), () ≜ () ℊ(), (), … . ,  () ℊ (), () 

 (7) 
 

in which for	 = 1,… . ,2, () is a time varying parameter 
vector and ℊ is a known regressor with appropriate dimen-
sion. 

Remark 3. Although the fault parameter is commonly as-
sumed to be constant [28], it can be time-varying here. 

The following assumptions are made for the system. 
Assumption 1. The system states   and   remain 

bounded before and after the occurrence of any faults. 
Assumption 2. There exists a bounded function, ̅, such 

that the unstructured modeling uncertainty satisfies the ine-
quality 
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|((), (), )| ≤ ̅((), (), ). (8) 
 
Assumption 3. The unknown fault evaluation rate in Eq. (5) 

satisfies  >  where  is a known lower bound and for 
simplifying the manipulation, take  = 		,  = 1, … . . ,2 . 
The rate of change of () in (7),  = 1,… , , is bounded 
as ̇() ≤  for all  ≥ 0. In practice, the rate bound can 
be assigned by the designer, using some a priori knowledge of 
the fault developing dynamics. 

 
3. Fault detection and isolation architecture 

The structure of the FDI system is established here based on 
a bank of  + 1 estimators, including a nonlinear adaptive 
estimator used to detect the occurrence of any faults, and re-
maining  estimators to determine the type of faults. 

 
3.1 Fault detection scheme 

Based on the robot manipulator dynamics Eq. (4), the archi-
tecture of Fault detection estimator (FDE) is chosen as 

 ̇ =  + ℎ() + ()() + ( − )   = ,  (9) 
 

where  and  denote the estimated state and output vectors, 
respectively, and  ∈ ℜ∗ is a gain matrix, chosen such 
that ̅ ≜ ( −  ) is Hurwitz. Defining  ≜  −  as the 
state estimation error, for  <  one obtains 

 ̇() = ̅() + ((), (), ). (10) 
 
The  -th output estimation error () ≜ () − () ,  = 1,… . ,2, is determined by 
 () = (), (11) 
 

where   is the -th row vector of matrix . Using Eqs. (10) 
and (11), it can be bounded as 

 () ≤ ∫ ′′, ′, ′ ′   																		+|(0)|, (12) 
 

in which  and  are two positive constants, chosen such 
that  ̅ ≤   (since ̅  is Hurwitz, such two con-
stants always exist [30] ).Taking into account the inequality 
Eq. (8) in Eq. (12) yields 

 () ≤ ∫ ′ ̅(), ′, ′ ′   																		+|(0)|. (13) 
 
By Eq. (13), a fault is detected at  =  , whenever at least 

one component of the modulus of the output estimation error 

(), exceeds its corresponding threshold (), specified 
by 

 () ≜ ∫ ′ ̅′, ′,  ′   															+|(0)|, (14) 
 

and 
  ≜ ∪  ≥ 0: () > (), (15) 
 

in which 	  stands for the infimum or the greatest lower 
bound. In this method, fault is detected immediately at  =  , 
whenever at least one component of the modulus of the output 
estimation error (t), exceeds its corresponding threshold (t). However, in a second-order sliding mode algorithm 
[15], as a nonlinear observer, the residual is generated by 
evaluating the inverse dynamic model, which may be useful 
for identifying slow fault signals but produces some delays in 
the FDI procedure. 

When a fault is detected at some time , the Fault isolation 
estimators (FIEs), designed based on the functional structure 
of the actuator faults defined by Eqs. (6) and (7), are activated. 
The following   FIEs correspond to actuator fault p,  = 1, … . , . 

 ̇ =  + ℎ() + ()()  													+() − () + ()̇()  													+ (), (), () , 	() = 0  ̇() = ̅() + (), (),				() = 0	   =  [ℊ(), (), … . ,  ℊ (), ()]   = (), (16) 
 

where ,  = 1, … . ,2 is the estimate of the fault parame-
ter vector in the -th state equation of the -th isolation esti-
mator and  ∈ ℜ∗, is a design gain matrix chosen such 
that ̅ ≜ ( − ) is Hurwitz. As the fault approximation 
model  is linear in the adjustable weights , the fault 
gradient matrix  

 			 =  (), (), ()()  						= diag[ℊ(), (), … , ℊ (), (),   
 

is not dependent on ().	Hence, it is sufficient to choose an 
adaptation mechanism for adjusting . 

To ensure the robustness properties, a projection algorithm 
may be adopted as [30] 

 ̇() = proj, (17) 
 

where () ≜ () − () denotes the output estimation 
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error of the -th estimator, and  > 0 is a symmetric posi-
tive definite adaptation gain matrix.  

While the fault function may be adopted as a function of 
state variables with time invariant intensity [28], it is taken 
here as a nonlinear function of state variable and torque signal 
with time variant intensity. 

 
3.2 Adaptive threshold for fault isolation 

One of the set of functions that plays a major role in fault 
isolation scheme is threshold functions set, represented here 
by (). The following theorem presents a bounding func-
tion for the output estimation error of the -th isolation esti-
mator in the case that a fault occurs. 

Theorem 1. If the actuator fault	 occurs at time  =  
and is detected at  =  , then for all  ≥ , the	-th com-
ponent of the output estimation error of the -th isolation 
estimator satisfies the inequality 

 			() ≤  
 ̅((), (), ) 

			+ 
 ‖()‖   () 																	 			+ ̇()‖()‖
  

			+ ‖()‖	
  																															×  1 − () 			+	‖()‖() 			+(1 − )‖()‖()																																			 +()|̅()|, (18) 

 
where () ≜ () − () is the parameter estimation 
error. 

Proof. By Eq. (4), the system dynamic for  >  is given 
by 

 ̇() = () + ℎ() + ()()  						+((), (), ) + (1 − )((), ())  () = (). (19) 
 
In the presence of actuator fault ,  = 1,… . , , let the state 

estimation error of the -th isolation estimator be () ≜() − (). Hence, using Eqs. (16) and (19) yields 
 ̇() = () + ℎ() + ()()			 		+((), (), ) + (1 − )(((), ()) 		− + ℎ() + ()() 							+() − () + ()̇() 							+ (), (), () 					= 	 ̅() + ((), (), ) 								+1 − (), () − ()̇() 					− (), (), ().	 (20) 

Substituting (, ) =   and (, ) =   and 
some manipulations, results in 

 ̇() = ̅() + ((), (), )  														+1 − (), ()()  														−()̇() − (), ()(). (21) 
 
Replacing () ≜ () − (), and ̇()  from Eq. 

(16)  gives 
 ̇() = ̅() + ((), (), )  							+1 −  ̇() − ̅()() ()  							−()̇()  							− ̇() − ̅()() (). (22) 
 
By letting 
 ̅() = () + ()()  															−1 − ()(), (23) 

 
and using Eq. (22), one obtains 

 ̇̅() = ̇() − 1 − ̇()() 																		−  1 − ()() 																		+̇()() 																		+  ()() 												= 	 ̅̅() + ((), (), ) 															−  1 − ()() 															+  ()() − ()̇(). (24) 
 
By defining () ≜ () − () and using Eqs. (19) 

and (16), the output estimation error satisfies 
 

 
 (25) 

or 
 () ≤  ′

 ̅(′), (′), ′′ 
	+ ′

 (′)  ′ ′(′) ′ 	+ ′ ̇() (′)
 ′ 

	+ ′′
  
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																							× ′ 1 − ′ (′) ′ 	+	−‖()‖()	 	+1 − ‖()‖() 	+()|̅(). |. (26) 
 
Taking the absolute value of both sides of Eq. (26), the con-

sequent Eq. (18) is concluded and this completes the proof.   
Remark 4. As the estimation () belongs to the un-

known compact parameter set   one concludes () −() ≤ (), where () is dependent on the geometric 
properties of . Moreover, incorporating assumption 3 into 
Eq. (18), the threshold functions for fault isolation are chosen 
as 

 

 
 (27) 
 

in which  and  are two positive constants, chosen such 

that  ̅ ≤ . 
Theorem 2. In the presence of faults in Eq. (4), the robust 

nonlinear fault isolation scheme formed by Eq. (16) guaran-
tees that () and (t) are uniformly bounded, and there 
exists a positive constant  and two bounded functions ̅() 
and ̅() such that for all  ≥  , the output estimation 
error satisfies the inequality 

 			 |()|
  ≤  + ∫ ̅() + ∫ ̅() . (28) 
 
Proof. The boundedness property and the closed loop sta-

bility are presented in two separate parts. 
(i) Boundedness. The equation of state estimation error Eq. 

(21) can be rewritten as 
 ̇() = ̅() + ((), (), )  															+1 − (((), (), ̅())  															− (), (), () + (),  (29) 

where () is called the bounded network approximation 
error and the parameter ̅ is the value of () that mini-
mizes the   norm between (((), ())  and  (), (), (). 

Now define 
 ̅() = () + ()()  															+(1 − )	()(), (30) 
 

and use Eq. (16) together with Eq. (29) to obtain 
 ̇̅() = ̅̅() + ((), (), ) 																+  ()() 												+  (1 − )	()() 		+ (), (31) 
 

where () ≜ () − ̅. The solution of Eq. (31) can be 
written as 

 ̅() = () + (),										∀ ≥   (32) 
 

in which () and () are the solutions of 
 ̇() = ̅() + ((), (), ) 												+  ()() 												+  1 − 	()() + () 				,			() = 0	 ̇() = ̅(), (33) 
 

which yields 
 () ≤ ∫  ̅′   × (′), (′), ′ + ′ ′ ()(′)  + ′ (1 − ′) 	(′)(′) 		+ (′) ′ (34) 
 
Taking Eq. (16), which ensures the boundedness of (), 

and using assumptions 2 and 3 satisfies that the right hand side 
of Eq. (34) is bounded. Consequently, from the boundedness of () by Eq. (34) and () by Eq. (33), one concludes that ̅() ∈  i.e., the signal boundedness property is proved. 

(ii) Stability. Take the Lyapunov function candidate 
  =  () + ∫ (′) ′. (35) 
 
Differentiating Eq. (35) and applying the projection algo-

rithm Eq. (17) gives 
 ̇ ≤ () − ()  									=  − ().  
 
Using Eq. (16) and completing the squares yields 
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̇ 	≤ () + () − ()()	  																																			−()] − ()  					≤ −|| + [() + ()  																													−()()] − ()  									≤ − ||4  							+ () + ()(). (36) 
 

Letting ̅() ≜ 2 ()   and ̅() ≜2 ()()   and integrating Eq. (36) 
from  =   to  =  , one can obtain 

 ∫ |()|  ≤  																						 + ∫ ̅() + ∫ ̅() , (37) 
 

where  ≜ sup4() −   ( sup  is the su-
premum or the least upper bound), which completes the proof. 

 
3.3 Fault isolability condition 

Define a fault mismatch function of the form 
 ℎ() ≜ 1 −  − 				  	,  = 1,… . , ,								 ≠ . (38) 
 
In fact, the fault mismatch function is a filtered version of 

the difference between the actual -th fault function, repre-
sented by 1 −   and some estimated fault 
function .  

The goal of introducing the fault isolability conditions is to 
specify the class of faults that can be isolated, i.e., the pro-
posed fault isolation algorithm makes a correct decision in a 
finite time. 

Theorem 3. The incipient fault  is isolable by the fault 
isolation scheme described by Eq. (30), if for each  =1,… ,	( ≠ ), there exist some time  >   and some  = 1,… ,2, so that ℎ  defined by Eq. (38) satisfies the 
inequality 

  ′ℎ′′
  > 

2 ()
 ̅(′), (′), ′′ 

+  	′ 	′′ + ′
 + 	′′ + ′ ′ + ′
 ′ + ′′ + ′(′)
 1 − ′ ̇′′ 

+	 ′(′)
 ′ (′)′			 +()()() +1 − ()() +2()|̅()|. (39) 

 
Proof. Using Eqs. (4) and (16), the dynamic equation of the -th isolation estimation error () ≜ () − (), in the 

presence of the -th fault for  > , satisfies 
 ̇() = ̅() + ((), (), ) 												+(1 − ) ̇() − ̅()() ()− ()̇() 								− ̇() − ̅()() (). (40) 
 
Taking Eq. (25) into account, and some simple manipula-

tions, one can obtain 
 ̇̅() = 	 ̅̅() + ((), (), ) 														−  1 − ()() 														+  ()() − ()̇(). (41) 
 
Based on Eq. (41), the -th component of output estimation 

error satisfies 
 

 (42)

 
 
Incorporating Eq. (38) into Eq. (42) yields () =̅() + ℎ(). Meanwhile, following the proof of theo-

rem 1 gives 
 () > 	 ℎ() −	 ̅′

 ̅(′), (′), ′′ 
− ̅′

 (′)  ′ (′) ′		 − ̅′ ̇() (′)
 ′ 

− ̅′′
  																												× ′ 1 − ′ ′ ′ −	−‖()‖()																												 −(1 − )‖()‖() −̅()|̅()|. (43) 

 
Taking the adaptive threshold Eq. (27) into account, if con-

dition Eq. (39) is satisfied at time  = ; thus one obtains () > (), which implies that the possibility of the 
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occurrence of fault  can be excluded at time  = .  

 
4. Simulation study 

To illustrate the performance of the proposed FDI scheme, 
it is applied to a two-link planar robotic system. The dynamics 
of the manipulator, schematically shown in Fig. 1, is written 
as 

 

 

(44)

 
 

where  ,  = 1, … ,11 , and the nominal values are intro-
duced in Table 1 [31]. The system physical parameters are 

also given in Table 2. Moreover,
  

in Eq.
 

(44) is considered as the system uncertainties, modeled by 	 
in dynamical Eq. (3). 

First, a PID controller is developed for normal control of 
healthy system (without faults), as 

 () = () ̈() + ̇() +  + ()+ (), ̇(), 
 

where () ∈ ℜ is desired joint position and defined track-
ing error () = () − (), and ,  	and	  are PID 
gain matrices. 

The desired trajectory in the joint space is chosen as [32] 
 

 
 
The gain matrices of PID controller are adopted as 
  = 800 00 1500 , 	 = 30 00 15 , 	 = 1.411 00 0.3. 
 
The multiplicative actuator faults take the form 
 (), () ≜ 1 −  × () ℊ(), (), … . ,  () ℊ (), () 

  = 1, 2, which results in two faults as fault 1 and fault 2 
with the following properties. 

 
 
Fig. 1. Schematic of robot manipulator. 

Table 1. Model parameters and their nominal values [31]. 
  =  + +1  +  1   0.3339  =  + 1   0.0048  =  1   0.0054  =  +1   2.1450  =  1   2.8219  =  1   1.5117  =  + 1   0.0240  =  1   0.0280  =  1   0.00002  =  1   1.2211  =  1   1.6282 

 
Table 2. Description of the model parameters. 
 , () Moment of inertia of the 1st (2nd) line , () Mass of the 1st (2nd) join , () Length of the 1st (2nd) joint , () Distance from the joint to the C.G. of the 1st (2nd) link , () Inertia of the motor’s rotor of the 1st (2nd) joint , () Gear ratio of the 1st (2nd) joint , () Lumped constants of motors in the 1st (2nd) joint , () Coulomb friction coefficients of the 1st (2nd) joint , () Combined viscous friction coefficients  Gravity acceleration 
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Fault 1. For  = 1, 	 ∈ [−0.5		0.5]  characterizes the 
magnitude of the fault. Note that the case 	 = 0 represents 
the normal operation condition (no fault), while 	 = 0.5 
corresponds to the complete failure of the actuator. Therefore, 
the actuator fault can be described by 

  (), () = (1 − )[0 0 ℊ 0] 
 
where

  
and  

Fault 2. For  = 2, 	 ∈ [−0.8		0.8] specifies the magni-
tude and the fault function is represented by 

  (), () = (1 − )[0 0 0 ℊ] 
 

where
  

and  
Based on the proposed FDI scheme, described in Sec. 3, a 

fault detection estimator and two fault isolation estimators are 
constructed. The initial condition of robot manipulator is as-
sumed as (0) = 0, the observer gain matrix  for fault 
detection as  and the design con-
stants  = 35	,  = 450	,  = 1,  = 0.8. 

Throughout the simulations, to smoothen the function 
(.)sign  in Eq. (44),	 it is replaced by  where  

is a sufficiently large constant. 
The fault detection residual and its threshold associated 

with ,  , when fault 1 occurs at  = 5.9	sec  with  = 0.5, are depicted in Fig. 2. In fact, fault 1 is detected at 
approximately  = 6.8	sec. Then, two FIEs are activated to 
determine the occurring fault type. The matrix gain 	 and 	 for fault isolator Eq. (16) are chosen as 

 

 = 12 0 0 00 80 0 000 00 200 00 600,		 = 15 0 0 00 80 0 000 00 85 00 680. 
 

Moreover, the design constants are λ = 75, λ = 580, λ = 55 , λ = 650 ,  = 0.1 ,  = 2.5 ,  = 1 ,  = 0.4	, and α = 0.4. The learning rates of the adaptive 
algorithm for fault parameter estimation in the FIEs are set to  = diag(20, 20, 20, 20) and 	 = diag(15, 15, 15, 15).  

The fault isolation residuals and their corresponding thresh-
olds, generated respectively by FIE 1 and FIE 2, are shown in 
Fig. 3. More precisely, Fig. 3(a) shows that the residual, asso-

 
Time (sec) 

(a) 
 

 
Time (sec) 

(b) 
 
Fig. 2. (The case of fault 1) Fault detection residual (Solid line) and its 
threshold (Dotted line) associated with (a) ; (b) . 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 3. Fault isolation residuals (Solid line) and their thresholds (Dot-
ted line) associated with (a) , generated by FIE 1; (b) , generated 
by FIE 1; (c)  generated by FIE 2; (d) , generated by FIE 2. 
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ciated with  and generated by FIE 1, exceeds its threshold, 
while in Figs. 3(b)-(d) all three residual components generated 
by the FIE 1 and FIE 2 always remain below their thresholds. 
Thus the occurrence of the actuator fault 1 is isolated at about 
tf = 7.6	sec.  

To show the ability of the method to isolate different faults 
with similar structures, the simulation results, when fault 2 
occurs at Tq	= 5.9	sec are shown in Figs. 4 and 5. Fig. 4 
shows the results of FDE, in which fault 2 is detected almost 
immediately at  = 6.3	sec. Analogously, the fault isolation 
residuals and their corresponding thresholds generated, re-
spectively, by FIE 1 and FIE 2, are shown in Fig. 5. Fig. 5(d) 
demonstrates that the residual, associated with  and gener-
ated by FIE 2, exceeds its threshold and this is sufficient to 
exclude the possibility of occurrence of  for fault isolation. 
On the other hand, Figs. 5(a)-(c) show that the other three 
residual components, generated by the FIE 1 and FIE 2, al-
ways remain below their thresholds, and consequently, the 
occurrence of fault 2 is isolated at about tf = 7.3	sec.  

However, considering fault 2 as the actuator fault, the pre-
sented FDI scheme in Ref. [28] is applied to the underlying 
robot. Fig. 6 demonstrates that such method can detect the 
fault type, but isolating the faulty state from other ones is not 
possible. Analyzing the simulation results confirms that the 
benefits of the proposed technique, claimed through the intro-
duction, are achieved. 

By increasing the number of links, the dimension of matri-
ces in the model and the number of states would be increased. 
Compared with a two-link robot manipulator, except some 
more computations for larger matrices, no other changes 
would be made in the FDI procedure for an n-link robot ma-
nipulator.  

 
5. Conclusions 

Design and analysis of a unified adaptive FDI scheme is 
presented for robot manipulators with n degrees of freedom. 

Introducing the isolability conditions, the stability properties 
and adaptive learning capability were analyzed. A two-link 
robotic arm was adopted to illustrate the effectiveness of the 
proposed FDI method. As a future work, taking into account 
the both sensor fault and actuator fault is under investigation 
by the authors. 

 
Time (sec) 

(a) 
 

 
Time (sec) 

(b) 
 
Fig. 4. (The case of fault 2) Fault detection residual (Solid line) and its 
threshold (Dotted line) associated with (a) ; (b) . 
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(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 5. Fault isolation residuals (Solid line) and their thresholds (Dot-
ted line) with applying the proposed FDI scheme, associated with (a) , generated by FIE 1; (b) , generated by FIE 1; (c) , generated 
by FIE 2; (d) , generated by FIE #2. 
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