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Abstract 
 
For a novel inertial piezoelectric rotary motor, the equation of the voltage response on the piezo-ceramic bimorph under the excitation 

signals is deduced and the dynamic equation of the motor rotor is given. Using the equations, the voltage responses on the piezo-ceramic 
bimorph and the responses of the displacement, velocity and acceleration on the rotor to the sawtooth voltage excitation are investigated. 
The results show that when the frequency of the excitation signal is quite low, the waveform of the displacement response of the rotor is 
identical to one of the excitation signal; the outer diameter of the rotor, its length and thickness, etc., have obvious effects on the inertial 
moment applied to the rotor. The results are useful for design and control of the operating performance of the motor.   
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1. Introduction 

Piezoelectric motors maintain relatively high torque at rela-
tively low speeds, without a reduction gear [1, 2]. They have 
been commercially employed for automated focusing systems 
of cameras and X-Y positioning systems [3]. There are two 
kinds of the piezoelectric motors: the rotational motor and the 
linear motor. As a linear type motor, an inertial drive motor 
has an advantage due to its simple construction. One of the 
inertial motors is an impact drive mechanism driven by im-
pulse inertial force [4]. Using the mechanism, micro-
manipulator for cell manipulation, and auxiliary positioning 
system for Scanning tunneling microscopy (STM) and Atomic 
force microscope (AFM) were developed [5, 6]. Another iner-
tial drive is the smooth impact drive mechanism. Here, a base 
plate or bar is driven with rapid expansion and slow shrinkage. 
The slider on the base slips during rapid motion and follows 
the base due to frictional force. With this principle, many ap-
plications have been proposed and fabricated [7-9]. The rota-
tional motor includes standing wave type ultrasonic motors 
and traveling wave ultrasonic motors. The standing wave mo-
tors have simpler construction than traveling wave ones [10]. 
The traveling wave motors represent a main generation of 
motors which are suited for many applications [11-13]. 

The structure of the rotational motors is relatively compli-
cated and further miniaturization is difficult. Authors proposed 
a novel inertial piezoelectric rotary motor in Ref. [14]. The 

motor structure is so simple that the further miniaturization of 
the rotational motor can be done easily. As shown in Fig. 1, 
the novel inertial rotary motor consists of a stator and a rotor. 
The rotor includes an outer ring, an inner ring, and two ribs 
connecting the outer ring to the inner ring. The inner ring is 
mounted on a supporting bearing and the outer ring is used as 
the inertial mass. The piezo-ceramic bimorph is adhibited on 
each side surface of the two ribs. As soon as a rapid rise input 
voltage is supplied to the motor, it excites the transverse bend-
ing vibration mode of the two ribs. Thus, inertial forces within 
the outer ring occur, which causes an inertial torque applied to 
the rotor and make it rotate. Then, a slow decreasing input 
voltage is supplied to the motor, so the inertial forces within 
the outer ring are so small that the inertial torque can be bal-
anced by the friction torque between the rotor and the bearing. 
Thus, the rotor does not rotate. The rapid increasing and slow 
decreasing input voltage with a special frequency is supplied 
to the motor periodically, and then the rotor can rotate con-
tinuously. In Fig. 1(b) is the effective width of the beam, h the 
thickness of the beam, R1 and R2 are the inter and outer diame-
ters of the rotor, respectively, Lp is the length of the piezo-
ceramic bimorph. 

The working principle of the motor was elucidated, the 
model machine was manufactured [14], and its output torque 
was analyzed [15]. However, the forced response of the motor 
to the electric excitation has not been investigated yet. The 
inertial moment applied to the rotor has not been determined 
yet. It is unfavorable to design the load-carrying ability of the 
motor. 

In this paper, from the driving circuit equation of the motor, 
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the equation of the voltage response on the piezo-ceramic 
bimorph to the excitation signals is determined. The equation 
of the strain energy in the piezo-ceramic bimorph, the equa-
tions of the strain energy and the kinetic energy in the rotor 
beam are given. Substituting these energy equations into La-
grange equation, the dynamic equation of the rotor is obtained. 
Using these equations, the responses of the voltage on the 
piezo-ceramic bimorph and the responses of the displacement, 
velocity and acceleration on the rotor to the sawtooth voltage 
excitation are investigated. The effects of the system parame-
ters on the responses are analyzed. The condition to make the 
motor rotate in one direction is discussed. The results show 
that the same waveform of the voltage response on the piezo-
ceramic bimorph as one of the excitation signal can be ob-
tained when the frequency of the excitation signal is much 
smaller than the first order natural frequency of the rotor. 
When the frequency of the excitation signal is quite low, the 
waveform of the displacement response of the rotor is identi-
cal to one of the excitation signal. As the frequency of the 
excitation signal grows, the waveform of the displacement 
response becomes more different from one of the excitation 
signal. The outer diameter of the rotor, its length and thickness, 
etc have obvious effects on the inertial moment applied to the 
rotor. The results are useful for design and control of the oper-
ating performance of the motor. 

 
2. Voltage excitation  

For the motor motion, a voltage excitation with sawtooth 
wave is applied to the piezo-ceramic bimorph (see Fig. 2). 
Here, t is the time, T is the period of the excitation signal, μ(0 
< μ < 1) is the ratio of the rise time to the period, A is the peak 
voltage. The voltage excitation can be written by 
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The piezo-ceramic bimorph can be considered as an equiva-

lent capacitance. Thus, the driving circuit equation of the mo-
tor can be given as 

 
0R CV V V- - = , (2) 

 
where V is the excitation voltage, VR is the voltage on the re-
sistance (VR = iR, i is the current, i = dq/dt, q is quantity on the 
piezo-ceramic bimorph and R is the resistance), VC is the volt-
age on the piezo-ceramic bimorph( CV =

0

1 t
idt

C ò , C is the 
capacitance). 

Substituting Eq. (1) and related equations into Eq. (2), 
yields 
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The initial condition is q(0) = 0. From Eq. (3a), it is known 
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Let t = μT, Eq. (4) can give the initial condition of the Eq. 

(3b) as below: 
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Thus, the solution of the Eq. (3b) is 
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In the same manner, the voltage VC for any rise excitation 

voltage can be given as 

 
(a) Motor structure 

 

 
(b) Rotor structure 

 
Fig. 1. Motor and rotor structure. 

 

  
 
Fig. 2. Applied electrical signal wave. 
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The voltage VC for any trailing edge of the excitation volt-

age can be given as 
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3. Forced responses  

For simplifying the analysis, the rotor of the motor is con-
sidered as a beam with inertial mass at its two ends (see Fig. 
3). From the model, the dynamics equation of the rotor can be 
given as follows: 
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where y(x,t) is transverse displacement of the beam, x is length 
coordinate of the beam, ρl is material density per unit length of 
the beam, E is modulus of elasticity of the beam material, I = 
bh3/12, it is the second moment of area of the beam, Lb is the 
length of the rotor, Cd is the damping coefficient. 

The transverse displacement of the beam can be given as 
[16] 
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where ( )i xf  is the mode function,  
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It is obtained from the boundary condition of the central 
support beam such as shown in Fig. 3; qi(t) is the time func-
tion. 

From piezoelectric equation, the stress in the piezo-ceramic 
bimorph is [17] 

 
( )1 31 3 11, Ex t e E cs e= - + , 

 
where E3 is the electric-field intensity on the piezo-ceramic 
bimorph, e31 is the piezoelectric stress constant, 11

Ec  is the 
stiffness constant, ε is the strain. 

The piezo-ceramic bimorph is adhibited on each side sur-
face of the beam; the strain in the piezo-ceramic bimorph can 
be calculated as 
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Substituting Eq. (10) into piezoelectric equation, yields 
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where ( ) ( )
3 , c

p

V x
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h
= , hp is the thickness of the piezo-

ceramic bimorph. 
The strain energy in the piezo-ceramic bimorph is 
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Substituting Eqs. (10) and (11) into Eq. (12), yields 
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The strain energy in the rotor beam is 
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where ( ) ( )
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-

¢¢ ¢¢= = ò , l is the length of the rotor 

beam. 
The four piezo-ceramic bimorphs are used in the motor, so 

the total strain energy in the beam and the piezo-ceramic bi-
morph is 

 
\4 p L PU U U= + . (15) 

 
The kinetic energy of the beam is 

 
 
Fig. 3. Dynamics model of the rotor. 
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it is the equivalent mass of the motor rotor, m is the inertial 
mass.  

Considering the damping of the rotor, letting dissipation 
function as below: 
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= = ò is the generalized damping. 

Substituting the dissipation function, Eqs. (15) and (16) into 
Lagrange equation, yields 
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where ijmé ù= ë ûM , it is the mass matrix, ijké ù= ë ûK , it is the 

stiffness matrix, p l
ij ij ijk k k= + , ( )tF  is the generalized force 

vector, ijcé ù= ë ûC , which is the damping matrix, 
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Using the orthogonality of the mode functions, Eq. (17) can 
be changed into following form uncoupled from each other: 
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where Mn, Cn and Kn are the diagonal mass, damping and 
stiffness matrixes. ( ) { }1F F
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regular force vector. 
The each element of the regular force vector is 
 

( ) ( ) ( )(
( ) ( ) )
( ) ( )( )

31 3

31 3

31

2
4

2

2

l

i a il

l

b il

c
i a i b

p

bhF t e E x x x dx

e E x x x dx

bhe V x x
h

d f

d f

f f

-

-

¢¢= -

¢¢+ -

¢¢ ¢¢= +

ò

ò  (19) 

 
where xa and xb are the average positions of the piezo-ceramic 
bimorphs. 

During 0 ≤ t ＜ μT, the solution of Eq. (18) is 
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where rjw  is the jth natural frequency of the rotor, 
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= , it is the relative damping coeffi-

cient. 
During μT≤t≤T, the solution of Eq. (18) is 
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During (n+1)T≤t≤(n+1)T+μT (n = 1,2,3…) , the solution 

of Eq. (18) is 
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During nT+μT≤t≤(n+1)T (n = 1,2,3…), the solution of Eq. 
(18) is 
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During (n+1)T≤t≤(n+1)T+μT (n = 1,2,3…), the displace-
ment, velocity and acceleration of the motor rotor can be giv-
en as 
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Here, ( )(2 1)n jq t-  is calculated from Eq. (22). 
During nT+μT≤t≤(n+1)T (n = 1,2,3…), the displacement, 

velocity and acceleration of the motor rotor can be given as 
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Here ( )2n jq t  is calculated from Eq. (23). 

 
4. Results and discussion 

Eq. (7) is utilized for the voltage analysis on the piezo-
ceramic bimorph. The parameters of the numerical example 
are shown in Table 1. Based on Eq. (7), the voltage response 
on the piezo-ceramic bimorph to the excitation signals under 
the different exciting frequencies is given (see Fig. 4). Here, ω 
is the frequency of the excitation signals. From Fig. 4, the 
following observations are worth noting: 

Table 1. Parameters of the numerical example. 
 

A(V) μ R(Ω) C(nF) 

100 0.8 100 2.4 

 

 
          (a) ω = 500 rad/s             (b) ω = 1000 rad/s 
 

 
        (c) ω = 111240 rad/s            (d) ω = 1×106 rad/s 

 

 
       (e) ω = 5×106 rad/s             (f) ω = 1×107 rad/s 

 
Fig. 4. The voltage on piezo-ceramic bimorph under different fre-
quency excitation signals. 
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(1) When the frequency of the excitation signal is smaller 
than 111240 rad/s (it is the first-order natural frequency of the 
rotor), considered to be low frequency. When the frequency of 
the excitation signal is low, the waveform of the voltage re-
sponse on the piezo-ceramic bimorph is completely identical 
to one of the excitation signal. However, the peak value of the 
voltage is slightly smaller than that of the excitation signal.  

(2) When the frequency of the excitation signal is high, the 
waveform of the voltage response on the piezo-ceramic bi-
morph is different from one of the excitation signal. The peak 
value of the voltage is much smaller than that of the excitation 
signal. As the frequency of the excitation signal grows, the 
peak value of the voltage on the piezo-ceramic bimorph drops 
obviously and its waveform becomes more different from one 
of the excitation signal. 

(3) When the frequency of the excitation signal is smaller 
than 111240 rad/s, the waveform of the voltage response on 
the piezo-ceramic bimorph is identical to one of the excitation 
signal. The frequency 111240 rad/s is the first-order natural 
frequency of the rotor. Hence, the frequency of the excitation 
signal should be smaller than the first-order natural frequency 
of the rotor to obtain the same waveform of the voltage re-
sponse on the piezo-ceramic bimorph as one of the excitation 
signal. 

Eqs. (22)-(25) are utilized for the response analysis of the 
rotor to pulse voltage signals. The parameters of the numerical 
example are shown in Table 2. Based on Eqs. (24) and (25), 
the displacement and acceleration responses of the rotor end to 
voltage excitation signals are investigated (see Fig. 5). From 
Fig. 5, we know: 

(1) The displacement response of the rotor end to the excita-
tion signals is similar to the voltage response on the piezo-
ceramic bimorph. When the frequency of the excitation signal 
is low, the waveform of the displacement response of the rotor 
end is identical to one of the excitation signal. When the fre-
quency of the excitation signal is smaller than 111240 rad/s (it 
is the first-order natural frequency of the rotor), it is consid-
ered to be low frequency. As the frequency of the excitation 
signal grows, the waveform of the displacement response 
becomes more different from one of the excitation signal. The 
first-order natural frequency of the rotor is the critical excita-
tion frequency for the waveform change of the displacement 
response. 

(2) The rise edge of the excitation voltage corresponds to a 
slow voltage change velocity, and its trailing edge corresponds 
to a rapid voltage change velocity in the opposite direction. 
Hence, the velocity response of the rotor end to the excitation 
voltage is the oscillation between two different velocities: one 
positive, and  the other negative.  

Under the excitation voltage, the rotor end velocity changes 
between two different values. When the rotor end velocity 
changes from one value to another, velocity oscillation occurs. 
As the frequency of the excitation signal is low, the time of the 
velocity oscillation is short, the time of the steady velocities is 
long. As the frequency of the excitation signal grows, the time 

of the velocity oscillation increases, and the time of the steady 
velocities is reduced. The steady velocity corresponding to the 
trailing edge first vanishes and then the steady velocity corre-
sponding to the rising edge vanishes when the frequency of 
the excitation signal is getting to the first-order natural fre-
quency of the rotor system.   

(3) The steady values of the acceleration response corre-
sponding to both rising edge and trailing edge of the excitation 
voltage are zero. When the excitation voltage changes from 
rising edge to the trailing edge or from trailing edge to the 
rising edge, the acceleration oscillation of the rotor occurs. 
The acceleration oscillation from rising edge to the trailing 
edge is more obvious than that from trailing edge to the rising 
edge. 

As the frequency of the excitation signal grows, the steady 
acceleration corresponding to the trailing edge first vanishes, 
and then the steady acceleration corresponding to the rising 
edge vanishes when the frequency of the excitation signal is 
near to the first-order natural frequency of the rotor system. 

The operating principle of the inertial piezoelectric rotary 
motor can be given as below. The friction torque of the motor 
bearing is 

 

2c
dM f F= ,  (26) 

 
where f is the rolling friction coefficient of the bearing, it is 
taken as 0.001~0.015; d is the inner diameter of the rolling 

Table 2. The parameters of the system. 
 

R1(mm) R2(mm) h(mm) l(mm) E(GPa) μ 

12 13 1 12 119 0.9 

lp(mm) b(mm) hp(mm) e31(C/m2) ρ(kg/m3) ξ1 

10 5 0.5 -5.2 8500 0.2 

 

 
               (a)                         (b) 
 

  
               (c)                         (d) 
 
Fig. 5. The displacement, velocity and acceleration responses of the 
rotor to pulse signals. 
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bearing; F is the load on the bearing, equal to the weight of the 
rotor. 

The inertial torque applied to the rotor is 
 

2
4h l
aM m al m læ ö= +ç ÷

è ø
,  (27) 

 
where mh is the equivalent mass of the vibrator ring, ml is the 
mass of the vibrator beam. 

When the inertial torque applied to the rotor is larger than 
the friction torque of the motor bearing, the motor can rotate. 
Thus, the critical acceleration for the motor rotation is 

 

0 2
2 4

l
h

d ma f F m læ ö= +ç ÷
è ø

.  (28) 

 
Fig. 6 shows the displacement and acceleration responses of 

the rotor end. In Fig. 6(b), there are six zones (a, b, c, d, e and 
f). The zones a, c, d and f correspond to the situation that the 
inertial torque applied to the rotor is larger than the friction 
torque of the motor bearing. The zones b and e correspond to 
the situation that the inertial torque applied to the rotor is 
smaller than the friction torque. The imaginary lines represent 
the critical acceleration a0. 

If the acceleration curve appears in the zone a or d (the ac-
celeration is larger than the critical value), the inertial torque 
applied to the rotor is larger than the friction torque of the 
motor bearing. Hence, the motor rotates in one direction. If the 
acceleration curve appears in the zone c or f (the acceleration 
is larger than the critical value as well), the inertial torque 
applied to the rotor is larger than the friction torque of the 
motor bearing and the motor rotates in another direction. If the 
acceleration curve appears in the zone b or e (the acceleration 
is smaller than the critical value), the inertial torque applied to 
the rotor is smaller than the friction torque of the motor bear-
ing. Thus, the motor does not rotate. 

The area enclosed by the acceleration curve and the critical 
acceleration line in zone a represents the impulsive moment 
applied to the rotor in one direction. The area enclosed by the 
acceleration curve and the critical acceleration line in zone f 
represents the impulsive moment applied to the rotor in an-
other direction. To make the motor rotate in one direction, the 
area enclosed by the acceleration curve and the critical accel-

eration line in zone a should be increased as large as possible, 
and the area enclosed by the acceleration curve and the critical 
acceleration line in zone f should be removed. 

The impulsive moment applied to the rotor can be calcu-
lated by 

 

( )( )2

1
0

t

t
v a t a dt= -ò ,  (29) 

 
where t1 and t2 are two instant of the time, respectively, corre-
sponding to the two crossing points of the critical acceleration 
line and the acceleration curve. 

For different μ and different ξ1, based on Eqs. (24) and (25), 
the displacement and acceleration responses of the rotor end to 
voltage excitation signals are investigated (see Figs. 7-9). 
They show: 

(1) When the exciting frequency of the voltage signals is 
much smaller than the natural frequency of the rotor system(ω 
<< ωj), the displacement and acceleration responses of the 
rotor end to voltage excitation signals are quite small and the 
impulsive moment applied to the rotor does not occur under 
the ratio range of μ = 0.1~0.9.  

For the ratio range of 0 < μ < 0.1, the slope ratio of the ris-
ing edge of the excitation voltage grows, and the impulsive 
moment applied to the rotor occurs. The motor can rotate in 
one direction. 

 
       (a) Displacement                   (b) Acceleration 

 
Fig. 6. The displacement and acceleration responses of the rotor end. 

 

 
           (a) μ = 0.02                    (b) μ = 0.05 

 

 
           (c) μ = 0.2                     (d) μ = 0.5 

 

 
           (e) μ = 0.95                    (f) μ = 0.98 

 
Fig. 7. The displacement and acceleration responses of the rotor end 
under different (ω = 10000 rad/s, ξ1 = 0.1). 
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For the ratio range of 0.9 < μ < 1, the slope ratio of the trail-
ing edge of the excitation voltage grows, and the impulsive 
moment applied to the rotor occurs. The motor can rotate in 
another direction. 

(2) When the exciting frequency of the voltage signals is 
near to the natural frequency of the rotor system (10000 rad/s) 
and the damping coefficient is relatively large (ξ1 = 0.3), the 
displacement and acceleration responses of the rotor end to 
voltage excitation signals are relatively large and the impul-
sive moment applied to the rotor occurs. However, for larger 
ratio range (μ = 0.1~0.4) or smaller ratio range (μ = 0.6~0.9), 
the impulsive moments applied to the rotor in positive and 
negative two directions are all relatively large. So, the rotation 
in one direction could not be obtained. 

As the ratio μ is near to 0.5, the impulsive moment corre-
sponding to the rising edge vanishes and the impulsive mo-
ment corresponding to the trailing edge remains. So, the rota-
tion in one direction can be obtained. 

(3) When the exciting frequency of the voltage signals is 
near to the natural frequency of the rotor system (10000 rad/s) 
and the damping coefficient is relatively small (ξ1 = 0.1), the 
displacement and acceleration responses of the rotor end to 
voltage excitation signals are relatively large and a large im-
pulsive moment applied to the rotor occurs. However, for 
different ratio μ (μ = 0.1~0.9), the impulsive moments applied 
to the rotor in positive and negative two directions are all rela-

tively large. So, the rotation in one direction cannot be ob-
tained. 

Based on Eqs. (28) and (29), the effects of the geometric pa-
rameters of the motor rotor on the impulsive moment are also 
investigated (see Tables 3-5). Here, A = 400V, ω = 1×104. V is 
the integral value of Eq. (28); it represents the impulsive mo-
ment applied to the rotor. The Tables show: 

(1) As the outer diameter R2 of the rotor increases, the criti-
cal acceleration drops and the integral value v grows. So, the 
impulsive moment applied to the rotor grows with increasing 
the outer diameter R2. 

(2) As the length l of the rotor beam increases, the critical 
acceleration drops and the integral value v drops as well. As 
the length of the rotor beam increases, its stiffness decreases, 
which causes decrease of the acceleration of the rotor. So, the 
impulsive moment applied to the rotor grows with decreasing 
the length l of the rotor beam. 

Thus, the impulsive moment applied to the rotor grows with 
decreasing the length l of the rotor beam. 

(3) As the thickness h of the rotor beam increases, the criti-
cal acceleration grows, but the integral value v grows more 
obviously. So, the impulsive moment applied to the rotor 
grows with increasing the thickness h of the rotor beam. 

Larger outer diameter and thickness of the rotor, smaller 
length of the rotor can give larger moment of inertia applied to 
the rotor. 

 
           (a) μ = 0.1                     (b) μ = 0.3 

 

 
            (c) μ = 0.5                      (d) μ = 0.7 

 

 
(e) μ = 0.9 

 
Fig. 8. The displacement and acceleration responses of the rotor end 
under different μ (ω = 10000 rad/s, ξ1 = 0.3). 

 

 

 
           (a) μ = 0.1                      (b) μ = 0.3 

 

 
           (c) μ = 0.5                      (d) μ = 0.7 

 

 
(e) μ = 0.9 

 
Fig. 9. The displacement and acceleration responses of the rotor end 
under different μ (ω = 10000 rad/s, ξ1 = 0.1). 
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5. Conclusions 

The equation of the voltage response on the piezo-ceramic 
bimorph and the dynamic equation of the rotor was deter-
mined. Using the equations, the responses of the voltage on 
the piezo-ceramic bimorph and the responses of the displace-
ment, velocity and acceleration on the rotor to the sawtooth 
voltage excitation were investigated. The condition to make 
the motor rotate in one direction was discussed. The results 
show: 

(1) The frequency of the excitation signal should be smaller 
than the first-order natural frequency of the rotor to obtain the 
same waveform of the voltage response on the piezo-ceramic 
bimorph as one of the excitation signal. 

(2) Larger outer diameter and thickness of the rotor, smaller 
length of the rotor can give larger moment of inertia applied to 
the rotor. 
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Nomenclature------------------------------------------------------------------------ 

b     : The effective width of the beam    
h     : The thickness of the beam 
R1    : The inter diameters of the rotor 
R2 : The outer diameters of the rotor 
Lp : The length of the piezo-ceramic bimorph 
t  : Time 
T   : The period of the excitation signal 
μ     : The ratio of the rise time to the period  
A     : The peak voltage 
V     : The excitation voltage 
VR     : The voltage on the resistance 
VC     : The voltage on the piezo-ceramic bimorph 

y     : Transverse displacement of the beam 
x     : Length coordinate of the beam  
ρl     : Material density per unit length of the beam 
E     : Modulus of elasticity of the beam  
I     : The second moment of area of the beam    
Lb     : The length of the rotor 
Cd    : Damping coefficient 

( )i xf  : Mode function 
( )iq t  : Time function 

E3    : Electric-field intensity  
e31   : Piezoelectric stress constant 

11
Ec     : Stiffness constant 

ε     : Strain 
hp    : The thickness of the piezo-ceramic bimorph  
m  : Inertial mass 
M  : The mass matrix 
K : The stiffness matrix 
C   : The damping matrix 
xa, xb : The average positions of the piezo-ceramic bimorphs 
ωj     : The jth natural frequency of the rotor 
ξj     : The relative damping coefficient 
f : The rolling friction coefficient of the bearing 
d : The inner diameter of the rolling bearing 
F  : The load on the bearing 
mh  : The equivalent mass of the vibrator ring 
ml     : The mass of the vibrator beam 
t1,2  : Two instant of the time 
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