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Abstract 
 
We numerically investigated three-dimensional (3-D) natural convection in a vertical cubic enclosure with an inner cube for Rayleigh 

numbers (Ra) in the range of 3 610 10Ra£ £ . For the inner cube at the center, four different thermal boundary conditions (adiabatic, 
neutral, and hot and cold isothermal conditions) were considered in order to investigate their effect on flow and thermal fields. For 

310Ra =  and 410Ra = , single circulation appears regardless of the thermal boundary condition of the inner cube. When 510Ra =  
and 610Ra = , the combined effects of the inner cube as a bluff body and the thermal condition imposed on the inner cube on the fluid 
flow and thermal fields are significant, and intensify the 3-D effect. Generally, for 510Ra =  and 610Ra = , the convective flow is 
characterized by the formation of two inner vortices embedded in the primary circulation, and by secondary vortices due to flow separa-
tion at the edge of the inner body. As Ra increases, the local Nusselt number varies rapidly in the vertical direction, which is supported by 
the temperature isosurfaces that form an S-shape. The total surface-averaged Nusselt numbers for the different cases have approximately 
the same profile with respect to the Rayleigh number as the power function.  
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1. Introduction 

The natural convection in an enclosure is relevant to many 
industrial and environmental applications such as heat ex-
changers, nuclear and chemical reactors, the cooling of elec-
tronic equipment, and stratified atmospheric boundary layers. 
In engineering applications, the geometries that arise in prac-
tice are more complicated than a simple enclosure filled with 
convective fluid [1-3]. A geometric configuration of interest 
includes the presence of bodies embedded within the enclo-
sure. We investigated the natural convection in the annuli 
between an inner cube and an outer cubical enclosure with a 
vertically-imposed temperature difference. Thus, the 3-D nat-
ural convection in a vertical cubic enclosure without an inner 
body can be considered as an elementary problem and also a 
probem related to the present topic. 

Mallinson and de Vahl Davis [4] numerically studied the 3-
D natural convection in a rectangular cavity as a result of dif-
ferential side heating. According to their calculations, the flow 
field in the cavity was strongly 3-D, with spiraling streamlines 

transporting fluid from the core to the side walls and back. 
Hiller et al. [5] experimentally investigated thermal convec-

tion in a cubic cavity with two opposite vertical walls kept at 
prescribed temperatures. They considered high Prandtl num-
bers (from 5.8 to 36 10´ ) and Rayleigh numbers ranging 
from 104 to 72 10´ . Thier experimental results showed that 
streamlines spiral from the foci on the walls toward the foci in 
the vertical midplane and vice versa, which is similar to the 
findings of Mallinson and de Vahl Davis [4]. Additionally, 
they observed the transition from one-roll to two-roll convec-
tion according to the Rayleigh number. 

Fusegi et al. [6] numerically studied 3-D steady-state natu-
ral convection in a cubical enclosure for a Rayleigh number 
range of 3 610 10Ra£ £ . The enclosure was heated differen-
tially at two vertical side walls. They considered the 3-D effect 
on the natural convection, particularly near the end walls in 
the transverse direction. As the Rayleigh number increased, 
the convective behavior intensified, and significant transverse 
variations tended to be confined into narrower areas close to 
the end walls. 

Pallarès et al. [7] numerically characterized natural convec-
tion in the range of 3500 10000Ra£ £  in a cubical cavity, 
where buoyancy was induced by imposing a moderate tem-
perature difference between the heated bottom and the cooled 
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top plates with perfectly adiabatic vertical walls. They ob-
served four different structures, and the existence of the four 
structures made the surface-averaged Nusselt number depend-
ent on the pattern adopted by the flow. 

Hernández and Frederick [8] studied numerically the effect 
of an enclosure’s aspect ratio on the supercritical Rayleigh 
number ( 38 10Ra = ´ ). They found a new type of convective 
structure that exhibits a characteristic toroidal-like form, with 
flow descending near the four vertical edges and ascending at 
the central vertical axis of the cube. The overall Nusselt num-
ber changed continuously when the aspect ratio was increased. 

Frederick and Quiroz [9] numerically studied the steady-
state laminar natural convection in a cubical enclosure with a 
cold vertical wall and a hot square sector on the opposite wall. 
They showed that the flow pattern consists of a single sym-
metric circulation cell and thermally-stratified 3-D flow, and 
the circulation cell exhibited cross-sectional changes at a high 
Rayleigh number. 

The other geometry relevant to the present study is a cube in 
a cubical enclosure with a vertically-imposed temperature 
difference. Ha and Jung [10] investigated the 3-D heat transfer 
and flow phenomena of natural convection in a vertical cubic 
enclosure within which a centered cubic heat-conducting body 
generated heat. The presence of a cubic conducting body in a 
cubic enclosure resulted in a larger variation of the local Nus-
selt number at the hot and cold walls in the z-direction, com-
pared to cases without a cubic conducting body in the cubic 
enclosure. This indicates the existence of strongly three-
dimensional natural convection with the conducting body. 

Few studies have been performed on the effect of thermal 
boundary conditions imposed on the inner cube for 3-D natu-
ral convection in a vertical cubic enclosure. The inner cube is 
not calculated but treated a rigid wall, which means a non-
conducting body and a no-heating condition. 

Therefore, in the present study, we considered an inner cube 
that maintains adiabatic and isothermal thermal boundary 
conditions for different Rayleigh numbers in the range of 103 

to 106. The flow structures and the characteristics of heat 
transfer, such as the distributions of the isothermal lines, local 
surface Nusselt numbers, and surface-averaged Nusselt num-
bers, are discussed with respect to the Rayleigh number and 
the thermal boundary conditions of the inner body. In addition, 
the results for the inner cube are compared to those without 
the inner cube to determine the effects of the inner cube's 
thermal condition on the fluid flow and heat transfer in the 
enclosure. 

 
2. Computational details 

A schematic of the system considered in the present study is 
shown in Fig. 1. The system consists of a cubic enclosure with 
sides of length L , within which a cube with sides of length 
W  is centered. 

The temperatures of the left- and right-side walls are main-
tained at hT  and cT , respectively. The bottom, top, front-

side, and rear-side walls are adiabatic. We assumed that the 
radiation effects can be taken to be negligible. The fluid prop-
erties are also assumed to be constant, except for the density in 
the buoyancy term, which follows the Boussinesq approxima-
tion. The gravitational acceleration acts in the negative y -
direction. The immersed boundary method is used to handle 
the inner cube, which is located at the center of the enclosure 
in Cartesian coordinates. Therefore, the governing equations 
describing unsteady incompressible viscous flow and the ther-
mal fields are the continuity, momentum, and energy equations 
in their non-dimensional forms, which are defined as 
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The dimensionless variables in Eqs. (1)-(3) are defined as 
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In the above equations, r , T  and a  represent the den-

sity, dimensional temperature, and thermal diffusivity, respec-
tively. The superscript * in Eq. (4) represents the dimensional 
variables. ix  are Cartesian coordinates, iu  are the corre-
sponding velocity components, t  is the time, P  is the pres-
sure, and Q  is the temperature. 

The preceding non-dimensionalization produces two di-

mensionless parameters, defined as Pr n
a

=  and Ra =  

3( )h cg L T Tb
na

- , where n , g , and b  are the kinematic 

viscosity, gravitational acceleration, and thermal expansion 

 
 
Fig. 1. Schematic of the system. 
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coefficient, respectively. In our simulations, the Prandtl num-
ber Pr , and ( / )r R L= , were taken to be 0.7 (corresponding 
to that of air) and 0.5, respectively. The Rayleigh number, 
Ra , varies in the range of 3 610 ~ 10 . 

The mass source/sink q and momentum forcing if  in Eqs. 
(1) and (2), respectively, were applied to the body surface, or 
inside the body, in order to satisfy the no-slip condition and 
mass conservation in the cell containing the immersed bound-
ary. In Eq. (3), the heat source/sink h  was applied to satisfy 
the isothermal boundary condition on the immersed boundary. 

A two-step time-split scheme was used to advance the flow 
field. This scheme is based on the works of Kim and Moin 
[11] and Zang et al. [12]. First, the velocity was advanced 
from time level "n" to an intermediate level "* " by solving 
the advection-diffusion equation without the pressure term. In 
the advection-diffusion step, the nonlinear terms were treated 
explicitly using a third-order Adams-Bashforth scheme. The 
diffusion terms were treated implicitly using a Crank-Nicolson 
scheme. Then, the Poisson equation for pressure, which was 
derived by using mass conservation, was solved in a fully 
implicit manner. Once the pressure was obtained, the final 
divergence-free velocity field at "n+1" was obtained with a 
pressure-correction step. The temperature field was advanced 
in a manner similar to the third-order Adams-Bashforth 
scheme for the advection term, and the Crank-Nicolson 
scheme for the diffusion term. 

A central difference scheme with second-order accuracy 
based on the finite volume method was used for spatial discre-
tization. Additionally, a second-order linear or bilinear inter-
polation scheme was applied to satisfy the no-slip and iso-
thermal conditions on the immersed boundary. Further details 
of the immersed-boundary method are given in Mohd-Yusof 
[13], Fadlun, et al. [14], Kim et al. [15] and Kim and Choi 
[16]. The present numerical methods were successfully used 
in the authors’ previous studies of natural convection prob-
lems with a body in an enclosure for both the 2-D case [17-19] 
and the 3-D case [20].  

For the velocity field, no-slip and no-penetration boundary 
conditions were imposed on the walls. Hot and cold wall tem-
peratures of 1Q = and 0 were imposed on the left and right 
walls of the enclosure, respectively, and the rest of the walls 
were considered to be adiabatic. For the thermal boundary 
condition of the inner cube at the center, we considered four 
different cases: an adiabatic body ( 0body nq¶ ¶ = ), a neutral 
isothermal body ( 0.5bodyq = ), a hot isothermal body 
( 1bodyq = ), and a cold isothermal body ( 0bodyq = ), in order 
to investigate their effects on the flow and thermal fields in the 
system. 

Once the velocity and temperature fields were obtained, the 
local and surface-averaged Nusselt numbers were defined, 
respectively, as 

 

wall
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where n  is the normal direction to the walls and S is the 
surface area of the walls. 

The typical 3-D view and 2-D ( y , z )-plane view at 0x =  
with nonuniform grid distribution are shown in Figs. 2(a) and 
2(b), respectively. The inner cube in Fig. 2(a) and the square 
curve in Fig. 2(b) denote the immersed boundary. Further 
details of the method of handling arbitrarily complex 3-D 
immersed boundaries on Cartesian grids are given in Gil-
manov et al. [21]. A grid resolution of 131 131 131´ ´  along 
the x -, y - and z-directions was employed in our computa-
tions. The denser grids were uniformly distributed within the 
inner cube. The grid independence of the solution was tested 
with additional simulations on much finer grids, up to 
201( ) 201( ) 201( )x y z´ ´ points. The difference in the Nusselt 
number results obtained using the coarse and fine grids is less 
than 0.2%. 

For the purpose of 3-D code validation, the natural convec-
tion problem in an enclosure without an inner cube in the cen-
ter of the cubic enclosure was tested for Ra = 103, 104, 105, 
and 106 using a grid size of 131 131 131´ ´  in the x -, y -  
and z -directions. The calculated average Nusselt numbers at 
the hot wall for the test cases were compared with the values  

    
(a) 

 

 
(b) 

 
Fig. 2. Grid distribution of computational domain: (a) typical 3-D view;
(b) 2-D (y, z)-plane view at x = 0 with non-uniform grid distribution. 
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calculated by Fusegi et al. [6] and Ha and Jung [10], where the 
Prandtl number was taken to be 0.7. As shown in Table 1, the 
calculated Nusselt numbers are in good agreement with the 
values calculated by Fusegi et al. [6] and Ha and Jung. [10]. In 
addition, the temperature and velocity profiles from the pre-
sent calculation for Ra = 105 are in good agreement with the 
results obtained by Fusegi et al. [6] and Ha and Jung [10], as 
shown in Fig. 3. 

 
3. Results and discussion 

3.1 Flow and thermal fields 

3.1.1 Case of Ra = 103 
Fig. 4 shows the isotherms and superimposed streamlines in 

the cubic enclosure involving the inner cube with different 
thermal boundary conditions for 310Ra =  at z-plane loca-
tions of z = 0.125, z = 0.5 and z = 0.875.  

For an adiabatic thermal boundary condition ( body nq¶ ¶  
0= ) on the body, the streamlines at the z = 0.125 and 0.875 

planes corresponding to the center plane of the front and rear 
channels are similar to the natural convection in a cubic enclo-
sure without the inner body (Fusegi et al. [6]), which forms a 
single shell in the enclosure, as shown in Figs. 4(a) and 4(c), 
respectively. However, the streamlines on the midplane at the 
z = 0.5 do not form a single eddy with the center, due to the 
presence of the inner body, as shown in Fig. 4(b).  

When 0.5bodyq = , the flow circulates in the clockwise di-
rection since the temperature of the inner cube is midway 
between the hot and cold wall temperatures on the left and 
right sides of the enclosure, respectively, regardless of the z-
plane. Thus, the streamlines for 0.5bodyq =  show almost the 
same distribution as those for 0body nq¶ ¶ = , as shown in 
Figs. 4(d)-4(f). However, the diagonally symmetric shape of 
isotherms for 0body nq¶ ¶ =  changes the fourfold symmetric 
shape about x = 0 and y = 0, regardless of the z variation, as 
shown in Figs. 4(d)-4(f), since the temperature of the inner 
cube is midway between the hot and cold wall temperatures.  

Figs. 4(g)-4(i) show the isotherms and streamlines for dif-
ferent z-planes when 1bodyq = . In general, the streamlines 
have the single circulating formation as the cases with 

0.5bodyq =  and 0body nq¶ ¶ = . However, when the fluid 
moves away from the inner body and flows into the void  

Table 1. Comparison of average Nusselt numbers at the hot wall with 
the values calculated in previous studies. 
 

Average Nusselt number at the hot wall 
Ra 

This study Ha and Jung 
[7] 

Fusegi et al. 
[3] 

103 1.044 1.072 1.085 

104 1.925 2.070 2.100 

105 4.329 4.464 4.361 

106 8.656 - 8.770 

 
 

 
(a) 

 

 
(b) 

 

         
(c) 

 

 
(d) 

 
Fig. 3. Comparison of present results (shown in solid curves) for tem-
perature and velocity profiles in the symmetry plane for z = 0.5 with 
results of Ha and Jung [11] (□) and Fusegi et al. [12] (▲) for Ra = 105: 
(a) results at various heights; (b) results at x = 0.5; (c) results at x = 0.5;
(d) results at y = 0.5. 
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                          (a)                                 (e)                                 (i) 
 

       
                           (b)                                (f)                                 (j) 
 

       
                           (c)                                (g)                                 (k) 
 

        
                          (d)                                 (h)                                 (l) 
 
Fig. 4. 2-D isotherms and superimposed streamlines in cubic enclosure involving inner cube with different thermal boundary conditions for Ra = 103

at z = 0.125, 0.5, and 0.875: (a-c) ∂θbody / ∂n = 0; (d-f) θbody = 0.5; (g-i) θbody = 1; (j-l) θbody = 0. 
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space where the inner body does not interrupt the fluid flow, 
the center of the large eddy locates around the center of the 
right half of the enclosure. This change in the large eddy cen-
ter is induced by the occurrence of a noticeable temperature 
variation only in the right half of the enclosure. 

The temperature fields are symmetric across the horizontal 
centerline (y = 0.5). The variation of the isotherms almost 
limits in the right region which is bounded by the largest tem-
perature difference between the right cold and hot side walls 
of the enclosure and the inner cube, respectively, regardless of 
the z-plane (see Figs. 4(g)-4(i)). Thus, the right channel be-
tween the right side walls of the enclosure and the inner cube 
forms a linear distribution of the temperature contours at 

310Ra = , where conduction is the dominant mode of heat 
transfer. Otherwise, the left half of the enclosure is occupied 
by the hot fluids, resulting in no heat transfer since no iso-
therms exist in this region, as shown in Figs. 4(g)-4(i). 

Figs. 4(j)-4(l) show the isotherms and streamlines for dif-
ferent z-planes when 0bodyq = , corresponding to the case of a 
cold isothermal body. The shapes of isotherms and stream-
lines for 0bodyq =  at 310Ra = , as shown in Figs. 4(j)-4(l), 
are similar to those for 1bodyq =  at the same Rayleigh num-
ber shown in Figs. 4(g)-4(i), except that the isotherms and 
streamlines for 0bodyq =  are symmetric with respect to the 
vertical centerline (x = 0.5) compared with those for 1bodyq = . 

 
3.1.2 Case of Ra = 104 

In the case of the adiabatic body, the circulation has a 
slightly elliptic shape with the axis rotating diagonally on the 
planes at z = 0.125 and z = 0.875, as shown in Figs. 5(a) and 
5(c), respectively. Then, the isotherms for 0body nq¶ ¶ =  
circulate further in the clockwise direction by following the 
flow fields, regardless of the z-plane. Consequently, the iso-
therms in the left bottom and right top corner become denser 
than those in the case of 310Ra = . Simultaneously, the left 
top and the right bottom corners show coarser isotherms than 
in the case of 310Ra = . Otherwise, the diagonally symmetric 
isotherms and streamlines are maintained even as Ra  in-
creases from 310  to 410 . 

In the case of 0.5bodyq = , when 410Ra = , the fourfold 
symmetric shape about x = 0 and y = 0 of isotherms at 

310Ra =  broke and changed their shapes to diagonally sym-
metric ones, regardless of the z variation, as shown in Figs. 
5(d)-5(f). This distribution of isotherms follows the single 
circu- lation of fluid flow due to increased convection with an 
increasing Rayleigh number. Eventually, the isotherms and 
streamlines reveal a distribution similar to that of the cases of 

0body nq¶ ¶ = . 
For 1bodyq =  and 0bodyq = , the isotherms and stream-

lines on different z-planes for 410Ra =  are plotted in Figs. 
5(g)-5(l), respectively. Because the isotherms follow this cir-
culating flow, they rotate in the clockwise direction and 
change from a symmetric shape across the horizontal center-
line (y = 0.5) at 310Ra =  to an asymmetric shape at 

410Ra = . In addition, the center of the circulation slightly 

inclines in the clockwise direction on the z = 0.125 and z = 
0.875 planes, as shown in Figs. 5(g) and 5(i), respectively. 
Thus, for 1bodyq = , the isotherms are more compressed to-
ward the right upper side and more deflected toward the left 
lower side, as shown in Figs. 5(g)-5(i), compared with those at 

310Ra = . Eventually, a hot zone is formed in the left upper 
region at 410Ra = , instead of in the left half of the enclosure 
at 310Ra = . For 0bodyq = , the shapes of isotherms and 
streamlines, as shown in Figs. 5(j)-5(l), exhibit diagonal sym-
metry with respect to those of 1bodyq =  at the same Rayleigh 
number (shown in Figs. 5(g)-5(i)). Thus, the cold zone ap-
pears in the right lower region. 

 
3.1.3 Case of Ra = 105 

In general, at 510Ra = , the combined effects of the inner 
cube as a bluff body and the thermal condition imposed on the 
inner cube on the fluid flow and thermal fields are significant 
and intensify the 3-D effect compared to the case without the 
inner cube (Fusegi et al. [6]). Thus, the streamlines and iso-
therms strongly depend on the z-direction. 

In the case of the adiabatic body, the large single eddy at 
310Ra =  and 410Ra =  changes into two vortices at 
510Ra =  in the side planes at z = 0.125 and z = 0.875, as 

shown in Figs. 6(a) and 6(c), respectively. The inner vortex 
remains elongated and eventually separates into two inner 
vortices, since strong flow limits near the vertical isothermal 
walls where the thermal boundary becomes noticeable. Simul-
taneously, the isotherms in the interior become more horizon-
tally formed. This variation of the streamlines and isotherms 
according to the Rayleigh number is almost the same as in the 
case without an inner body.  

Otherwise, on the mid-plane at z = 0.5, the flow circulates 
around the inner body without the inner vortex because of the 
presence of the inner body, as in the cases of lower Ra s. 
However, at this large value of 510Ra = , the secondary vor-
tices newly appear on the side walls of the inner cube due to 
flow separation at the top right and bottom left corners of the 
inner cube, as shown in Fig. 6(b).  

The shapes of streamlines and isotherms for 0.5bodyq = , as 
shown in Figs. 6(d)-6(f), are similar to those for 

0body nq¶ ¶ =  except for the secondary vortices on the inner 
cube. The neutral isothermal condition of 0.5bodyq =  fully 
satisfies the weak variation of temperature with the half value 
of the hot and cold isothermal conditions in the central region 
for the case without the inner cube.  

For 1bodyq =  and 0bodyq = , the isotherms and stream-
lines in different z-planes at 510Ra =  are plotted in Figs. 
6(g)-6(l), respectively. On the front and back channel center 
planes at z = 0.125 and z = 0.875 for 1bodyq = , the circula-
tion becomes more oblique and forms a triangular shape with 
the center close to the right lower corner. This is due to 
stronger circulation in the clockwise direction, as shown in 
Figs. 6(g) and 6(i), respectively. Thus, for 1bodyq = , the 
isotherms are more compressed toward the right upper side 
and are then widely spread through the lower half of the  
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                            (a)                               (e)                               (i) 
 

   
                            (b)                               (f)                               (j) 
 

   
                            (c)                               (g)                               (k) 
 

   
                            (d)                               (h)                               (l) 
 
Fig. 5. 2-D isotherms and superimposed streamlines in cubic enclosure involving inner cube with different thermal boundary conditions for Ra = 104

at z = 0.125, 0.5, and 0.875: (a-c) ∂θbody / ∂n = 0; (d-f) θbody = 0.5; (g-i) θbody = 1; (j-l) θbody = 0. 
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                           (b)                                (f)                                (j) 
 

     
                           (c)                                 (g)                               (k) 
 

    
                            (d)                               (h)                                (l) 
 
Fig. 6. 2-D isotherms and superimposed streamlines in cubic enclosure involving inner cube with different thermal boundary conditions for Ra = 105

at z = 0.125, 0.5, and 0.875: (a-c) ∂θbody / ∂n = 0; (d-f) θbody = 0.5; (g-i) θbody = 1; (j-l) θbody = 0. 
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enclosure by a strong returning cold fluid flow. Consequently, 
the hot zone gradually shrinks with an increasing Rayleigh 
number.  

In the mid-plane at z = 0.5 for 1bodyq = , the isotherms 
form along the channel from the right top corner of the enclo-
sure to the center (y = 0.5) of the left channel, as shown in Fig. 
6(h). The strong circulating flow accelerates from the right top 
region with the sharp temperature gradient. Then, the flow is 
separated at the right top corner of the inner cube, forming a 
single secondary circulation on the right surface of the inner 
cube. The flow loses inertia and decelerates due to friction 
with the channel walls. Thus, flow separation does not occur 
at the other corners of the inner cube, as shown in Fig. 6(h). 
For 0bodyq = , the shapes of the isotherms and streamlines 
shown in Figs. 6(j)-6(l) exhibit diagonal symmetry with re-
spect to those for 1bodyq =  at the same Rayleigh number 
shown in Figs. 6(g)-6(i). 

 
3.1.4 Case of Ra = 106 

Figs. 7 and 8 show the streamlines and isotherms in the cu-
bic enclosure with an inner cube with different thermal 
boundary conditions for 610Ra =  at z = 0.125, z = 0.5, and z 
= 0.875. 

For 0body nq¶ ¶ = , on the side planes in Figs. 7(a) and 7(c), 
the centers of the inner vortices for 610Ra =  are closer to the 
vertical isothermal walls than those for 510Ra = . Also, the 
vortices near the isothermal walls are more elongated along 
the vertical direction than those for 510Ra = . On the mid-
plane (z = 0.5) in Fig. 7(b), the two inner vortices become 
larger and their length covers the side wall of the inner cube, 
since the formation of both inner vortices starts from the edge 
of the inner cube due to flow separation at the corresponding 
edge. This enlarged shape of the inner two vortices suggests 
that the inner two vortices in the midplane have the combined 
effects of the bluff body of the inner cube, and strong natural 
convection.  

For 0.5bodyq = , the centers of the inner vortices occur near 
the corners of the enclosure and almost on the diagonal line, as 
shown in Figs. 7(d)-7(f), compared to those on the horizontal 
line for 0body nq¶ ¶ =  as shown in Figs. 7(a)-7(c). The dif-
ferent formation and location of the inner vortices between 

0.5bodyq =  and 0body nq¶ ¶ =  is caused by the distribution 
of the isotherms. Namely, the deflection points of the iso-
therms appear near the left top and right bottom corners, 
which are away from the center (y = 0) as shown in Figs. 8(d)-
8(f). This is because the isothermal condition of the inner cube 
with the medium temperature of the hot and cold walls con-
tributes the temperature in the central region to be neutral. In 
addition, the isotherms near both corners are denser, with 
sharper gradients than those in the case of 0body nq¶ ¶ = .  

For 1bodyq =  and 0bodyq = , the streamlines and iso-
therms in different z-planes at 610Ra =  are plotted in Figs. 
7(g)-7(l) and 8(g)-8(l), respectively. For 1bodyq = , the hot 
right side wall of the inner cube and the cold right side wall of 
the enclosure form a narrow channel, and is predominant to 

the convection temperature variation. Also, the intensity of the 
clockwise rotating circulation increases with an increasing 
Ra . Thus, on the midplane, as Ra  increases, the inner vor-
tex in the right channel becomes larger and its center moves 
slightly in the clockwise direction.  

On the front or rear side of the enclosure, the inner vortex 
within the right channel shown on the midplane moves in the 
clockwise direction as the main circulation direction, leading 
to the center of the inner vortex moves downward in the 
channel and locates near the right corner. Also, the inner vor-
tex reveals a horizontal formation and eventually separates 
into two vortices, as shown in Figs. 7(g) and 7(i), respectively. 
Finally, in the vicinity of the front and rear adiabatic walls, 
the inner vortices disappear (not shown here for the sake of 
brevity). 

The thermal boundary layer on the right cold vertical wall is 
thinner than that on the left hot vertical wall because the hot 
right side wall of the inner cube and the cold right side wall of 
the enclosure form a narrow channel bounded by a large tem-
perature difference. Also, because the intensity of the clock-
wise rotating circulation increases as the Rayleigh number 
increases, a temperature variation with a large deformation of 
the isotherms is noticeable in the region near the lower right 
corner of the enclosure. 

 
3.2 Local Nusselt number and temperature isosurfaces 

The local Nusselt number ( Nu ) distributions on the iso-
thermal vertical wall at different thermal boundary conditions 
of the inner body for 310Ra =  are shown in Fig. 9. In addi-
tion, the temperature isosurfaces are plotted to identify the 3-D 
effect of the inner cube on convection and support the varia-
tion of the local Nusselt number distribution on the isothermal 
vertical walls in Fig. 9 where the distribution of Nu  on the 
left hot wall is only presented.  

In the case of 0body nq¶ ¶ = , the large values of Nu on the 
left hot vertical wall locate near the bottom wall, as shown in 
Fig. 9(a), since the isotherms on the upper part lean slightly on 
the cold wall, due to the presence of a small fluid flow circu-
lating in the clockwise direction. The convex shapes of the 
temperature isosurfaces are formed over both the hot and cold 
vertical walls, as shown in Fig. 9(b). However, the focuses of 
the convex isosurfaces over the hot and cold vertical walls are 
eccentric with respect to the horizontal center (y = 0.5), due to 
the clockwise circulation. Thus, the minimum of Nu  on the 
hot wall appears at a location slightly over the horizontal cen-
ter (y = 0.5) at the center of the z-direction (z = 0.5), respec-
tively, as shown in Fig. 9(a). 

For 0.5bodyq = , Nu s on the hot wall reveal a radial distri-
bution with the maximum at the center of the surface (y = 0.5, 
z = 0.5), as shown in Fig. 9(c). The isotherms are compressed 
into the hot and cold vertical walls by the presence of a neural 
isothermal inner body, resulting in denser isotherms in the left 
and right channels ( 0 0.25z< < , 0.75 1z< < ), as shown in 
Figs. 4(d)-4(f). Therefore, the concave shape of the tempera- 
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Fig. 7. Streamlines for Ra = 106 at z = 0.125, 0.5 and 0.875: (a-c) ∂θbody / ∂n = 0; (d-f) θbody = 0.5; (g-i) θbody = 1; (j-l) θbody = 0. 
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Fig. 8. Isothermals for Ra = 106 at z = 0.125, 0.5, and 0.875: (a-c) ∂θbody / ∂n = 0; (d-f) θbody = 0.5; (g-i) θbody = 1; (j-l) θbody = 0. 
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ture isosurfaces with their focus at the centers of the hot and 
cold walls (y = 0.5, z = 0.5) occurs as shown in Fig. 9(d), 
which supports the central location of the maximum local 
Nusselt number.  

For 1bodyq =  and 0bodyq = , in general, Nu s on each 
wall present a similar radial distribution to 0.5bodyq = , as 
shown in Figs. 9(e) and 9(g), respectively. The small Nu s 
with the minimum and large Nu s with the maximum distrib-
ute on the left hot and right cold walls for 1bodyq =  and 

0bodyq = , as shown in Figs. 9(e) and 9(g), respectively. The 
large concave shapes of the temperature isosurfaces with their 
focus at the center in Figs. 9(f) and 9(h) support the presence 
of the maxima of Nu s at the centers of the corresponding 
walls.  

When 410 ,Ra =  for 0,body nq¶ ¶ =  the location of the 
minimum Nu s on the right hot wall moves to the top wall, as 
shown in Fig. 10(a), because stronger circulation lifts the iso-
therms containing relatively cold fluids. Thus, the small con-
vex shape of the temperature isosurfaces appears near the top 
and bottom walls, regarding to the right hot and left cold verti-
cal walls, respectively, as shown in Fig. 10(b). Otherwise, the 
maximum of Nu s appears in the vicinity of the bottom wall 
in the center of the z-direction (z = 0.5). 

For 0.5bodyq = , when 410Ra = , the maximum of Nu s 
occurs near the bottom and decreases as we moves from the 
bottom wall to the top wall where the minimum of Nu s ap-
pears, as shown in Fig. 10(c). The S-shape of the temperature 
isosurfaces near the isothermal vertical walls indicate the posi-
tion of the maximum and the minimum Nu s, as shown in Fig. 
10(d). 

For 1bodyq = , on the left wall, the smaller values of Nu s 
appear in the upper half of the surface, as shown in Fig. 10(e), 
which corresponds to the hot zone as observed in the distribu-
tion of isotherms. The Nu s on the right cold wall for 

1bodyq =  are much larger than those on the left hot wall. The 
maximum occurs near the top wall at z = 0.5, and decreases as 
we moves from the top wall to the bottom wall. The upside-
down distribution of Nu s on the left hot wall for 0bodyq = in 
Fig. 10(g) corresponds to the distribution of Nu s on the 
right cold wall for 1bodyq = . Thus, the radial distribution of 
Nu s on the isothermal walls at 310Ra =  does not appear at 

410Ra = . Therefore, the S-shape of the temperature isosur-
faces govern the distributions of Nu s on the isothermal 
walls, as shown in Figs. 10(f) and 10(h) for 1bodyq =  and 

0bodyq = , respectively. 
For 510 ,Ra =  in the cases of 0body nq¶ ¶ =  and 

0.5,bodyq =  the distributions of Nu s show approximately 
the same pattern as those shown in Figs. 11(a) and 11(c), re-
spectively. Namely, on the left hot wall, the maximum occurs 
near the center of the bottom, and its minimum appears near 
the top wall. In between the maximum and minimum values, 
Nu  reveals an almost linear relation with respect to the y-
direction. The distribution of Nu s on the right cold wall is an 
upside-down distribution of Nu s on the left hot cold (not 
shown in here for the sake of brevity). These similar distribu-
tions of Nu s between 0body nq¶ ¶ =  and 0.5bodyq =  
originate from the S-shape of the isotherms, which can be 
identified by the temperature isosurfaces shown in Figs. 11(b) 
and 11(d), respectively. 

For 1bodyq = , because the clockwise circulation becomes 

    
                 (a)                          (c)                          (e)                          (g) 
 

    
                (b)                          (d)                           (f)                         (h) 
 
Fig. 9. Local Nusselt number distributions on isothermal vertical wall and temperature fields at different thermal boundary conditions of inner body 
for Ra = 103: (a-b) ∂θbody / ∂n = 0; (c-d) θbody = 0.5; (e-f) θbody = 1; (g-h) θbody = 0. 
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stronger, denser isotherms form in the regions near the left 
bottom and right top walls for 1bodyq = . For 0bodyq = , 
denser isotherms appear in the regions opposite to 1bodyq = . 
Therefore, on the left hot wall, Nu  has a maximum near the 
center of the bottom wall, and decreases in the upward direc-
tion, as shown in Figs. 11(e) and 15(g), respectively. On the 

right cold wall, Nu  has near the center of the top wall and 
decreases in the downward direction (not shown here for the 
sake of brevity). Thus, for 1bodyq =  and 0bodyq = , the S-
shape is predominant to temperature isosurfaces, as shown in 
Figs. 11(f) and 11(h), respectively. In the hot and cold zones 
for 1bodyq =  and 0bodyq = , temperature isosurfaces rarely 

    
                  (a)                          (c)                          (e)                         (g) 
 

    
                (b)                          (d)                           (f)                         (h) 
 
Fig. 10. Local Nusselt number distributions on isothermal vertical wall and temperature fields at different thermal boundary conditions of inner 
body for Ra = 104: (a-b) ∂θbody / ∂n = 0; (c-d) θbody = 0.5; (e-f) θbody = 1; (g-h) θbody = 0. 

 

    
                (a)                          (c)                          (e)                          (g) 
 

    
                (b)                         (d)                           (f)                           (h) 
 
Fig. 11. Local Nusselt number distributions on isothermal vertical wall and temperature fields at different thermal boundary conditions of inner 
body for Ra = 105: (a-b) ∂θbody / ∂n = 0; (c-d) θbody = 0.5; (e-f) θbody = 1; (g-h) θbody = 0. 
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appear in one-half of the upper part of the left hot wall and 
one-half of the lower part of the right cold wall, respectively.  

When 610Ra = , the distribution of the local Nusselt num-
bers on the isothermal vertical side walls shows the same pat- 
tern as that of the corresponding thermal condition of the inner 
cube for 510Ra = , which is not shown in here for the sake of 
brevity. In addition, the distributions of Nu  for all thermal 
boundary conditions of the inner cube considered in this study 
reveal a similar pattern: Nu s are maximum near the center of 
the bottom, decrease in the increasing y-direction, and are 
eventually minimum near the top wall. 

 
3.3 Line and surface-averaged Nusselt numbers 

The local Nusselt numbers on the hot wall are averaged 
along the y-direction and then depend only on the z-direction, 
which are identified as follows: 

 

0

1 yL
z

y
Nu Nudy

L
= ò   (6) 

 
where yL  is the vertical length of the enclosure. 

Fig. 12 shows the profiles of zNu  for different thermal 
boundary conditions of the inner cube at different Rayleigh 
numbers. In general, the profiles of zNu along the z-direction 
are symmetric about the center of z (z = 0.5), regardless of the 

thermal boundary of the inner cube and Ra. For 310Ra = , in 
the case without the inner body, the profile of zNu  is inde-
pendent of z, thereby identifying this case as a 2-D problem. 
In contrast to the case without the inner body, zNu  depends 
on z, which confirms the existence of a 3-D effect in the pres-
ence of the inner cube regardless of the thermal boundary 
condition imposed on the inner body.  

For 0body nq¶ ¶ = , the minimum of zNu  locates at z = 
0.5 as shown in Fig. 12(a), due to the focus of the convex 
shape of the temperature isosurfaces over the hot wall. Other-
wise, for 0.5bodyq = , as z approaches from z = 0 and z = 1 to 
z = 0.5, zNu  increases and reaches its maximum value, be-
cause the concave shape of the temperature isosurfaces with 
the focus at z = 0.5 results in the radial distribution of Nu s 
with a sharp temperature gradient at z = 0.5. 

For 1bodyq = , the values of zNu  for all values of z are 
negligible on the left hot wall, since heat transfer rarely occurs 
in the left half of the enclosure bounded by the same hot ther-
mal conditions imposed on the left hot wall and the inner body. 
For 0bodyq = , as z approaches from z = 0 and z = 1 to z = 0.5, 

zNu  increases and reaches its maximum, as shown in Fig. 
12(a). In addition, at a fixed z, zNu  for 0bodyq =  reveals 
the largest value among the cases considered in this study. 
This profile of zNu  on the left hot wall for 0bodyq =  corre-
sponds to that on the right cold wall for 1bodyq = . 

When 410Ra = , the profiles of zNu  along z for each case 

      
                                   (a) Ra = 103                                                      (b) Ra = 104 
 

      
                                   (c) Ra = 105                                                         (d) Ra = 106 

 
Fig. 12. Profiles of Nuz for different boundary conditions at the hot wall for different Rayleigh numbers. 
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is similar to that at 310Ra = , which can be demonstrat ed by 
comparing Figs. 12(a) and 12(b) for 310Ra =  and 410Ra = , 
respectively. However, the magnitude of zNu  increases due 
to augmentation of the convection by increasing the Rayleigh 
number. 

When the Rayleigh number increases to 510Ra =  and 
610Ra = , strong convection limits the sharp temperature gra-

dient near the vertical walls and forms a thermal stratification 
in the interior. Thus, Rayleigh numbers 510Ra =  and 

610Ra =  show the same pattern of zNu  along z, independ-
ent of the inner cube and the thermal boundary conditions 
imposed on the inner cube. All cases reveal that zNu  is in-
variant in the interior corresponding to 0.2 0.8z< <

% %
, and has 

a small value near the front and rear walls due to the effect of 
the adjacent adiabatic walls, as shown in Figs. 12(c) and 12(d) 
for 510Ra =  and 610Ra = , respectively.  

Fig. 13 shows the surface-averaged Nusselt number of the 
hot wall ( HNu ), the cold wall ( CNu ), and the total surface-

averaged Nusselt number ( TNu ) as a function of the Rayleigh 
number for different thermal boundary conditions of the inner 
cube and the case without the inner cube. The cases of 

0body nq¶ ¶ =  and 0.5bodyq =  exhibit almost the same 

profiles of HNu  and CNu  for the case without the inner 
body, as shown in Figs. 13(a) and 13(b), respectively. 

At a fixed value of Ra, 1bodyq =  and 0bodyq = present the 

smallest and the largest values of HNu  among the present 

cases, as shown in Fig. 13(a). Regarding CNu , the opposite 

is also true, as shown in Fig. 13(b). At 310Ra = , the HNu  
of 1bodyq =  and 0bodyq =  decreases and increases to about 

100% and 180% of the case without the inner cube, respec-
tively. As Ra  increases, the difference becomes smaller for 
both 1bodyq =  and 0bodyq = , and reaches around 50% of 

the reduction and the augmentation, respectively.  
The profiles of the total surface-averaged Nusselt number 

( TNu ) for the different cases almost overlap with each other, 

as shown in Fig. 13(c). The increment of TNu  is governed 

by the power function of 0.3040.1307TNu Ra= , which is the 
same as the function proposed by Fusegi et al. [6]. 

 
4. Conclusions 

We investigated numerically the 3-D natural convection in a 
vertical cubic enclosure with an inner cube for different Ray-
leigh numbers in the range of 3 610 10Ra£ £ . For a thermal 
boundary condition of the inner cube at the center, four differ-
ent thermal boundary conditions were examined: adiabatic 
( 0body nq¶ ¶ = ), neutral isothermal ( 0.5bodyq = ), hot iso-
thermal ( 1bodyq = ), and cold isothermal ( 0bodyq = ). These 
boundary conditions were used to investigate their effects on 
the flow and thermal fields in the system. 

For 310Ra = , single circulation dominates the fluid flow 
for all thermal boundary conditions of the inner cube and the 
case without inner body, regardless of the relation to the z-
plane. A single large circulation was maintained at 410Ra = , 
regardless of the thermal boundary condition of the inner cube. 
However, the formation has a slightly elliptic shape with the 
axis rotating diagonally, due to the enhancement of convection 
by increasing the Rayleigh number. 

When 510Ra =  in the case without the inner body, the 

 
(a) 

 

 
(b)  

 

 
(c) 

 
Fig. 13. Surface-averaged Nusselt number on isothermal vertical walls 
and total surface-averaged Nusselt number as a function of Rayleigh 
number for different thermal boundary conditions of the inner cube and 
the case without the inner cube: (a) hot wall; (b) cold wall; (c) total 
surface-averaged Nusselt number.  

 
 



4542 H. S. Yoon et al. / Journal of Mechanical Science and Technology 29 (10) (2015) 4527~4543 
 

 

convective flow is characterized by the formation of inner two 
vortices embedded in the primary circulation. For the case of 
the inner body at 510Ra = , the formation of streamlines is 
dependent on the inner cube. Thus, outside the inner body, the 
cases of 0body nq¶ ¶ =  and 0.5bodyq =  reveal the forma-
tion of two inner vortices embedded in the primary circulation. 
For 1bodyq =  and 0bodyq = , the circulation becomes more 
oblique and forms a triangular shape outside the inner body. 

At the largest 610Ra = , in the case without the inner body, 
the formation of two inner vortices near the rear and front 
walls changes to four inner vortices. In the cases of 

0body nq¶ ¶ = , the isotherms and streamlines have distribu-
tions very similar to the case without the inner cube for 

610Ra = . Otherwise, the case of 0.5bodyq =  reveals the 
formation of two inner vortices regardless of the z-direction. 
For 1bodyq =  and 0bodyq = , in the region occupied by the 
inner body, the occurrence of flow separation forms a single 
secondary circulation. Outside the inner body, the inner vortex 
reveals a horizontal formation and eventually separates into 
two vortices. 

The temperature isosurfaces show concave or convex 
shapes according to the thermal boundary condition of the 
inner body at 310Ra = . As the Rayleigh number increases, 
the S-shape of the temperature isosurfaces dominates the tem-
perature distribution regardless of the thermal boundary condi-
tion of the inner body. Thus, the local Nusselt numbers on the 
hot wall have their maximum near the bottom wall and de-
crease along the vertical direction, independent of the Ray-
leigh number. The variation of the local Nusselt number along 
the z-direction is distinct only in the areas near the front and 
back walls. 

The total surface-averaged Nusselt number ( TNu ) for the 
different cases have about the same profile with respect to the 
Rayleigh number. The increment of TNu  is governed by the 
power function. 
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