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Abstract 
 
Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle 

enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function 
(DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the en-
hancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparti-
cles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the 
insertion of nanoparticles in PCM has no effect on the average Nusselt number.  
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1. Introduction 

The use of Phase change materials (PCMs) is one of the 
most effective ways of storing thermal energy. However, 
PCMs loaded in Latent heat thermal energy storage (LHTES) 
units possess a low thermal conductivity, which undesirably 
affects the thermal performance of storage units. In order to 
design an efficient LHTES unit, different methods have been 
proposed in the literature including inserting metal fins, po-
rous matrix materials and microencapsulation of PCMs.  

Recently, with the development of nanotechnology, re-
searchers have started to investigate the thermal conductivity 
performance of dispersing nanoparticles in PCMs because 
Nano-enhanced phase change materials (NEPCM) have some 
unique characteristics like improvement in thermal conductiv-
ity, enhancement of heat transfer and appreciable melting rate. 

Khodadadi and Hosseinizadeh [1] reported the enhanced 
functionality of Phase change materials (PCM) through dis-
persion of nanoparticles. Ho and Gao [2] carried out a study in 
which the NEPCMs were prepared by mixing alumina (Al2O3) 
nanoparticles in paraffin (n-octadecane). Kuravi et al. [3] nu-
merically investigated the melting of PCM slurries as a heat 
transfer fluid in microchannels. Fan and Khodadadi [4] con-
ducted an experimental study of nanoparticle suspensions 
utilized as NEPCM. Cyclohexane as a PCM and copper oxide 

nanoparticles with various mass concentrations were used. 
Jesumathy et al. [5] designed an energy storage system in 
order to investigate the thermal characteristics of paraffin with 
embedded CuO nanoparticles. Kashani et al. [6] studied nu-
merically the effects of surface waviness and nanoparticle 
dispersion on the solidification process of Cu-water nanofluid 
in an enclosure. The numerical study of unconstrained melting 
of NEPCM inside a spherical container using RT27 and cop-
per nanoparticles was performed by Hosseinizadeh et al. [7]. 
Rao et al. [8] performed the Molecular dynamics (MD) simu-
lations in order to assess the heat and mass transfer mecha-
nisms of the nano-encapsulated and nanoparticle-enhanced 
PCM. The NEPCM were prepared by mixing Al nanoparticles 
into n-nonadecane. The melting of NEPCMs in a bottom-
heated vertical cylindrical cavity was done experimentally by 
Zeng et al. [9]. Although different geometrical setups were 
used by many researchers in the literature, no work was done 
on the melting of NEPCM in a semicircle enclosure except the 
study of PCM melting within a half disc in Ref. [10]. 

The problem of predicting the position of the solid-liquid 
interface is challenging due to the nonlinearities at the moving 
boundaries and the effect of natural convection induced in the 
melted zone. To overcome this problem, different methods 
have been used in the literature such as front-tracking methods 
[11], adaptative grid approaches [12], level set techniques [13] 
and phase-field models [14].  

Methods based on the Lattice Boltzmann equations (LBE) 
have recently evolved as an approach to direct solutions of the 
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macroscopic equations in porous media [15-18], nanofluid 
[19], phase change [20-35], shock tube problem [36], droplet 
formation [37, 38], turbulent natural convection [39] and so on 
[40-42]. Due to its particulate nature, the LBM has some 
benefits over the conventional Computational fluid dynamics 
(CFD) techniques such as handling complex boundaries and 
physical phenomena, the straightforward implementation on 
parallel machines, the incorporation of microscopic interac-
tions and high speed of solving. 

In this paper, the convection-controlled melting of NEPCM 
in a semicircle enclosure filled with copper-water nanofluid is 
investigated by using enthalpy-based LBM. The Prandtl num-
ber, Stefan number and Rayleigh number are fixed to 6.2, 1 
and 104-106, respectively. Lattice Boltzmann equations for 
velocity and temperature fields in curved boundary condition 
are derived and discussed in detail. To validate convection 
melting consequences in a square cavity, liquid fraction and 
average Nusselt number on the hot wall are compared with the 
work of Huber et al. [23] for Pr = 1, Ste = 10 and Ra = 
1.7×105. The effects of varying the Rayleigh number and solid 
concentration of nanoparticle (j = 0, 0.02, 0.04) on the aver-
age Nusselt number on the vertical hot wall, liquid fractions, 
temperature contours, streamlines, melting rate and average 
melting front position are demonstrated. 

 
2. Prescribed assumptions and governing equations  

(1) Flow in the liquid phase is assumed laminar, incom-
pressible and Newtonian. (2) There is no slip between the 
nanoparticles and the base fluid. (3) The thermo-physical 
properties of the nanofluid are presumed to be fixed except for 
the density difference because of the Boussinesq approxima-
tion. (4) The process is considered as a conduction/convection 
controlled phase change problem. With the above simplifying 
assumptions, the two dimensional system of equations for 
natural convection coupled with phase change can be written 
as follows [22, 23]: 
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In these relations, ui is the fluid velocity, ρnf is the 

NEPCM’s density, μnf is the dynamic viscosity of NEPCM, P 
is the pressure, gi is the gravitational acceleration, Lnf is the 
effective latent heat of phase change, keff is the effective  

thermal conductivity. The density of the nanofluid is given by: 
 

(1 )nf f sr j r jr= - +  (4) 

 
whereas the heat capacitance of the nanofluid and part of the 
Boussinesq term are: 

   
( ) (1 )( ) ( )p nf p f p sc c cr j r j r= - +  (5) 
( ) (1 )( ) ( )nf f srb j rb j rb= - +  (6) 

 
with j  being the volume fraction of the solid particles and 
subscripts f, nf and s stand for base fluid, nanofluid and solid 
particle, respectively. The viscosity of the nanofluid contain-
ing a dilute suspension of small rigid spherical particles is 
given by Brinkman (1952) model: 

 

2.5 .
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The effective thermal conductivity of nanofluid was given 

by Patel et al. [43] as follows: 
 

p p
f p peff

f f

A A
k k k c k Pe

A A
¢= + +  (8) 

 
where cʹ  is a constant (3.6×104) and must be determined ex-
perimentally, Ap/Af and Pe here are defined as: 
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where dp is the diameter of solid particles. Based on the micro-
convection model proposed by Patel et al. [43], the Eq. (8) can 
be used to accurately predict the thermal conductivity of nan-
ofluids over a range of particle sizes between 10-100 nm. In 
this study, it is assumed to be equal to 100 nm. df is the mo-
lecular size of liquid that is taken as 2 Å for water. Also, up is 
the Brownian motion velocity of a nanoparticle which is de-
fined as:  

 

2

2 b
p

f p

k Tu
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=  (11) 

 
where kb is the Boltzmann constant. The latent heat that is 
evaluated using: 

 
( ) (1 )( ) .nf fL Lr j r= -  (12) 

 
It is clear that Eqs. (11) and (12) were employed in liquid 

region of NEPCM while other relations were applied in all  
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region of NEPCM. 

 
3. Lattice Boltzmann method 

3.1 LB equation for velocity field 

In the LBM, particles are described by quantities fi repre-
senting the particle density distributions. The evolution equa-
tion to be solved can be written as: 

 

{( , ) ( , ) .
Streaming Collision

i i i if x c t t t f x t+ D +D - = W
r

144444444444424444444444443  (13) 

 
The collision term Ωi on the right-hand side of Eq. (13) 

uses the so called Bhatangar-Gross-Krook (BGK) approxima-
tion [44]. This collision term will be substituted by the well-
known classical single time relaxation approach: 

 
eq

i i
i i i

f f tc F
nt

-
W =- + D

r
 (14) 

 
where nt  is the relaxation time depending on the fluid vis-
cosity and eq

if  is the local equilibrium distribution functions 
which is essentially defined by the local hydrodynamic mo-
ments. iF

r
 is the external force in direction of lattice velocity. 

To formulate buoyancy force in the natural convection prob-
lem, the Bousinesq approximation was applied. As heat trans-
fer by radiation can be neglected in our study, the force term 
in Eq. (14) can be computed as follows [45]: 

 
3 ( , ) ( ( , ) ) . .i i ref iF x t T x t T g cw r b= -

r r
 (15) 

 
Tref is the reference temperature. The common form of the 

equilibrium distribution function for density can be set as [46]: 
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For ease and without lack of generalization, we assume here 

the two-dimensional square lattices with 9-velocities (Fig. 1).  
The weights for the D2Q9 model are  
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ci is the local particle velocity and is defined according to: 
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where the propagation speed is: 

 

1 .xc
t

D
= =

D
 (19) 

 
The density and velocity are described as functions of the 

particle distribution functions as: 
 

( , ) ( , )i
i

x t f x tr =å  (20) 
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 (21) 

 
The Chapman - Enskog expansion allows to obtain the cor-

responding macroscopic equations as well as an expression for 
viscosity as a function of the microscopic relaxation time. The 
viscosity is related to the relaxation time by: 

 
2( 0.5) .sc tnn t= - D  (22) 

 
cs is a lattice-dependent quantity that is called the speed of 

sound and identified via:  
 

22 .
3

ccs =  (23) 

 
3.2 LB equation for temperature field 

Generally, LBMs for a fluid flow involving heat transfer in 
a plain medium can be grouped into four categories: Multis-
peed (MS) [47], entropic [48], hybrid [49] and DDF models 
[50]. In this study, we prefer the DDF approach because as 
stated in the literature, some limits such as the slight range of 
temperature difference, the numerical instability, and the con-
stant value of the Prandtl number can be eliminated in the 
DDF model.  

 
 
Fig. 1. 2-D nine-velocity models. 
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Shi and Guo [51] proposed a LB model for the convection-
diffusion equation having nonlinear convection and isotropic 
diffusion terms. Based on the work of Shi and Guo [51], the 
Nonlinear convection-diffusion equation (NCDE) with a 
source term can be defined as 

 
( ) ( ) ( ). . ,t B D R x ty y a yé ù¶ + Ñ = Ñ Ñ +ë û  (24) 

 
where ψ is a scalar function. B(ψ) and D(ψ) are the known 
functions of ψ. According to the work of Shi and Guo [51] 
work, the evolution equation of the temperature distribution 
function can be given by 
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Tt  is the relaxation time for the temperature field and Ri is 

the source term of the temperature distribution function. In 
this model, the equilibrium distribution function can be de-
fined as [51]: 
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where I is the unit tensor and E is the second order moment of 
equilibrium distribution function, 
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E0(ψ) is a tensor function of ψ which details can be found in 

Ref. [51]. ψ and B(ψ) are determined as:  
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The corresponding source term of Eq. (25) is taken as (Shi 

and Guo [51]): 
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Consequently, the phase change term has the following 

form: 
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Based on the Eq. (26), the equilibrium temperature distribu-

tion function is calculated as: 
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The macroscopic temperature is determined by: 
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The thermal diffusivity is associated with the non-

dimensional thermal relaxation time by:  
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In the enthalpy method, the local enthalpy is split into sen-

sible and latent heat components and is evaluated as: 
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The liquid fractions are then updated: 
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3.3 Nanofluid treatment with LBM 

The dimensionless relaxation time for velocity and thermal 
fields which are evaluated by the nanofluid properties are 
defined as follows: 
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That lbm subscript relates to the lattice scale. This scaling 
technique is taken from Das et al. [52] and Wang et al. [53] 
for the case of simulating a variable thermal conductivity in 
LBM. Also, the parameters of cp, β and Lf should be replaced 
with (cp)nf, βnf and Lnf in the corresponding equations in previ-
ous section. 

 
3.4 Boundary condition in LBM 

Fig. 2 shows a part of an arbitrary curved wall geometry 
separating a solid region from fluid where the black small 
circles on the boundary xw, the open circles represent the 
boundary nodes in the fluid region xf and the grey solid circles 
indicate those in the solid region xb. 

In the boundary condition both fi(xb,t) and gi(xb,t) are needed 
to perform the streaming steps on fluid nodes xf. The fraction 
of an intersected link in the fluid region is Δ, that is, 

 

.f w

f b

x x

x x

-
D=

-
 (38) 

 
Obviously, 0 ≤ Δ ≤ 1. As indicated in Ref. [54], the standard 

(half-way) bounce back boundary condition always assumes a 
delta value of 0.5 to the boundary wall (Fig. 3(a)) which satis-
fies the no-slip boundary condition. Due to the curved 
boundaries, delta values in the interval of (0,1) are now possi-
ble. Fig. 3(b) shows the bounce back behavior of a surface 
with a delta value smaller than 0.5 and Fig. 3(c) shows the 
bounce back behavior of a wall with delta bigger than 0.5.  

In all three cases, the reflected distribution function at xf is 
unknown. Since the fluid particles in the LBM are always 
considered to move one cell length per time step, the fluid 
particles would come to rest at an intermediate node xi. In 
order to calculate the reflected distribution function in node xf, 
an interpolation scheme has to be applied.  

For treating velocity field in curved boundaries, the method is 
based on the method reported in Refs. [50, 55, 56] while for 
handling temperature field the method is based on an extrapola-
tion method of second-order accuracy applied in Refs. [50, 57]. 

 
3.4.1 Velocity in curved boundary condition 

To evaluate the distribution function in the solid region 

( , )bif x t based upon the boundary nodes in fluid region, the 
bounce-back boundary conditions combined with interpola-
tions including a one-half grid spacing correction at the 
boundaries. Then, the Chapman-Enskog expansion for the 
post-collision distribution function is conducted as: 
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wu
r  denotes the velocity of solid wall, bfu

r  is the imaginary 
velocity for interpolations. 

 
3.4.2 Temperature in curved boundary condition 

The temperature distribution function can be divided into 
two parts: equilibrium and non-equilibrium: 

 
( ) ( ) ( ), , , .neq eq

b b bi i ig x t g x t g x t= +  (43) 

 
By substituting Eq. (43) into Eq. (25) and in the absence of 

 
 
Fig. 2. Layout of the regularly spaced lattices and curved wall boundary. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 3. Illustration of the bounce-back boundary conditions: (a) Δ = 
1/2, the perfect bounce-back without interpolation; (b) Δ < 1/2, the 
bounce-back with interpolations before the collision with the wall 
located at xw; (c) Δ > 1/2, the bounce-back with interpolations after the 
collision with the wall. 
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the source term, we have: 
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Obviously to calculate ( , ),b iig x c t t t+ D + D

r both ( , )eq
big x t  

and ( , )neq
big x t are required. The equilibrium and non-

equilibrium parts of Eq. (44) are defined as: 
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As proposed by Yan and Zu [54], to eradicate numerical in-

stability in the simulation, bu
r can be estimated by: 

 
1, 0.75b bu u= D ³

r v  (46) 

1 2(1 ) , 0.75b b bu u u= D + - D D <
r v v  (47) 

 
where the components are 

 

1
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bT *  is computed by linear extrapolation using either: 

 
1, 0.75b bT T* = D ³  (50) 

( )1 21 , 0.75b b bT T T* =D + -D D<  (51) 

 
where Δ is the fraction of the intersected link in the fluid re-
gion and: 
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where Tf and Tff denote the fluid temperature in node xf and xff, 
respectively. The next step is to calculate ( , )neq

i bg x t . As a sec-
ond-order accurate approximation, ( , )neq

i bg x t  can be com-
puted as: 
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( ) ( ) .
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i b i f
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g x ,t Δ g x ,t

1 Δ g x ,t
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-
 (54) 

 
From the Chapman-Enskog analysis, ( )neq

ig x,t can be ex-
pressed as: 

( ) ( )neq 1
i ig x,t g x,t δx=  (55) 

 
where 0 ( )ig x,t is the same order as ( )neq

ig x,t and, 
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1 1
i w i f
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by the same token, it can be proven that 

 
( ) ( ) ( )2, , .neq neq

i w i ffg x t g x t xd- =O  (57) 

 
That implies that the approximation of ( , )neq

i bg x t is of sec-
ond order in space which is in consistent with Thermal lattice 
Boltzmann equation (TLBE). 

 
3.4.3 Wall boundary condition 

A Dirichlet boundary condition can be imposed on the left 
vertical wall which is kept at T1 = 1: 

 
1 1 3

1 5 7

1 6 8

(1,0, ) ( ) (3,0, )
(5,0, ) ( ) (7,0, )
(8,0, ) ( ) (6,0, ) .

g j T g j
g j T g j
g j T g j

w w
w w
w w

= + -

= + -

= + -
 (58) 

 
4. Validation of LBM code 

Authors in a previous work [19] performed an LB simula-
tion of heat transfer enhancement in a lid driven cavity sub-
jected to various side wall temperatures and filled with nan-
ofluid. It was found that the straightforward implementation of 
effective thermal conductivity is the significant benefit of this 
method.  

For a convective melting process in a square cavity (Fig. 4), 
the average Nusselt number on the left wall and the average 
melt front position as a function of dimensionless time, SteFo, 
were compared with Huber et al. [23] work for Ra = 1.7×105, 
Pr = 1 and Ste = 10. 

As shown in Fig. 5, the comparison between the present 
study and Huber et al. [23] work is quite satisfying. 

According to Jany and Bejan [58], at the beginning of melt-
ing the equation for average Nusselt number has the following 

      
               (a)                          (b) 
 
Fig. 4. Configuration of Huber et al. [23] work: (a) pure conduction;
(b) conduction and convection regimes.  
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form: 
 

1
2 .m

HNu
s

q
-

= µ  (59) 

  
As shown in Fig. 4(a), s is the melting front position in the 

pure conduction limit and H is the height of the cavity. 
During an initial period, each ( )mNu q curve decreases with 

time due to domination of conductive heat transfer followed 
by a temperature minimum until eventually reaching a plateau 
[23]. 

As time elapses, the slope of each average Nusselt number 
curve changes at a specific time indicating the intensification 
of natural convection effect. 

So, at this time it can be said that the average Nusselt num-
ber consists of two parts: conduction and convection as shown 
in Fig. 4(b): 

 
1 3
2 2 .mNu Raq q

-
µ +  (60) 

    
One significant finding is that the contribution of natural 

convection increases with θ. 
The height-averaged melting front location, ( )avS t , and the 

average Nusselt number on the hot wall, ( )mNu q , are com-
puted as in Jany and Bejan [58]: 

 

( ) 1/4

0

1 H

av mS t x dy HRa
H

q= µò  (61) 

( )
*

*
0

0,
H

m

TNu x y dy
x

¶
= =ò

¶
 (62) 

 
where xm is the deformed melting front in the convection re-
gime. x and T are equal to: 

 
* *

1 0

, .mx T Tx T
l T T

-
= =

-
 (63) 

 
As shown in Fig. 6, for the case of pure PCM melting in the 

semicircle case, diverse grid sizes were chosen and checked to 
ensure the independency of result from the adopted grid size 

based on the comparison of melting fractions.  
As can be seen obviously, an arrangement of 100 × 200 

grids was found enough for this study. All simulations were 
done with the computer with Dual cores CPU and 4G RAM. 
The maximum simulation time was 10 minutes for each step. 
The end of simulation time was based on the unchanging the 
simulation results. 

 
5. Problem geometry 

As shown in Fig. 7, the semicircle enclosure is initially 
filled with the copper-water nanofluid as NEPCM. The ther-
mophysical properties of copper particles and water base are 
listed in Table 1. 

In this study, the subcooling case is neglected thus T0 = Tm. 
The Rayleigh number, Prandtl number and Stefan number are 
fixed to 104-106, 6.2 and 1, respectively 

At the initial time θ = 0, the vertical hot wall is kept at the 
constant temperature of T1 which is higher than the melting 
temperature. The semicircle surface is remained at the tem-
perature of T0 during melting. 

      
              (a)                             (b) 
 
Fig. 5. Comparison of average melting front position (a); and average 
Nusselt number (b) versus dimensionless time between present study 
and Huber et al. [23] work for Pr = 1, Ste = 10 and Ra = 1.7×105. 

Table 1. Thermophysical properties of NEPCM. 
 

Property Copper nanoparticles Based fluid 

r [kg m-3] 8954 997.1 

m [Pa s] - 8.9×10-4 

pc [J kg-1 K-1] 383 4179 

k [W m-1 K-1] 400 0.6 

b [K-1] 1.67×10-5 2.1×10-4 

 
 

 
 
Fig. 6. Mesh independency tests in the vertical semicircle enclosure. 

 
 

 
 
Fig. 7. Physical model geometry. 
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6. Results 

6.1 Phase change material (PCM) 

Fig. 8 exhibits the temperature contours (right) and stream-
line and phase change front (left) in a semicircle enclosure 
filled with a pure PCM for various dimensionless times and 
Rayleigh numbers. The dark blue portion of the temperature 
contours indicates the solid phase of pure PCM. 

At the beginning of process, conduction is the main mode 
of heat transfer and phase change front resembles a straight 
line. As time progresses, the warm liquid next to the heated 
wall moves upward and cold liquid next to the solid phase 
replaces. One recirculating vortex is appeared between two 
phases. 

It can be found that the position of centre point of this vor-
tex does not change during melting at Ra = 104 and solid-
liquid interface keeps a straight line shape. At Ra = 105, before 
θ = 0.012, the melting front is analogous to previous cases 
demonstrating low speed of liquid phase. But after θ = 0.012, 
the phase change front deviates from a straight line shape. 
This is due to the intensification of natural convection effect 
on the process. Moreover, the centre of appeared recirculating 
vortex is shifted upwardly. The buoyancy-driven convection 
effect becomes stronger as the Rayleigh number augments. 
Hence, the deviation of the phase change front from a straight 
line for Ra = 106 occurs earlier than previous cases. 

The variations of average melting front position as a func-
tion of dimensionless time for a pure PCM are depicted in Fig. 
9. The slopes of these graphs indicate the melting rate. The 
sharp slope at the beginning of the process is because of the 
direct contact between the solid phase and the heated wall 
where the thickness of the liquid phase is small. So, conduc-
tion heat transfer has a great influence. As the dimensionless 
time progresses, the melting rate abates gradually. It is due to 
the increase in the thickness of melted PCM, which yields to 
the thermal resistance of fluid. 

Furthermore, it can be said that before θ = 0.006 the 
melting rate is alike for all Rayleigh numbers and the natural 
convection has an insignificant effect on the process. After  

that time, the liquid fraction for Rayleigh numbers of 105 and 
106 increase faster than the case with Ra = 104. For example, 
at θ = 0.03, by increasing the Rayleigh number from 104 to 
105 and 106, the average melting front position can be en-
hanced 12 and 28 percent, respectively. 

Fig. 10 reveals the evolutions of average Nusselt number on 
the hot wall as a function of dimensionless time for different 
Rayleigh numbers. 

Based on the Eq. (59), at the beginning of melting with the 
evolution of time the average Nusselt number on the hot wall 
is declined. As time progresses, the slope of each average 
Nusselt number curve alters at a specific dimensionless time 
exhibiting the intensification of natural convection effect on 
the process. It can be said that there is no obvious difference in 
Nusselt number between the cases with Ra = 104 and Ra = 105. 
But at Ra = 106, the effect of second term in Eq. (60) becomes 
more significant due to the greater effect of natural convection. 

 
6.2 Nanoparticle-enhanced phase change material (NEPCM) 

Fig. 11 shows the isotherms of pure PCM and NEPCM for 
different dimensionless times and Rayleigh numbers. The 
solid lines are indicator of isotherm of pure PCM, whereas the 
dashed lines depict that of NEPCM with j = 0.04. 

For all Rayleigh numbers, it can be said that the temperature 
of PCM increases when the solid concentration of nanoparti-
cles is enhanced from 0 to 0.04. At the beginning of melting, 
there is no obvious difference between the isotherm of PCM 
and that of NEPCM. As the time progresses, the difference 
grows in the melt region. 

Also, the difference becomes stronger where extreme con-

 

(a) 

    

(b) 

    

(c) 

    
 θ = 12×10-5 θ = 6×10-3 θ = 12×10-3 θ = 3×10-2 

 
Fig. 8. Streamlines and melting fronts (Left) and temperature contours 
(Right) versus various dimensionless times for different Rayleigh 
numbers in a pure PCM: (a) Ra = 104; (b) Ra = 105; (c) Ra = 106. 

 

 
 
Fig. 9. Evolution of the average melting front position for different 
Rayleigh numbers in a pure PCM. 

 

 
 
Fig. 10. Evolution of the average Nusselt number on the hot wall for 
different Rayleigh numbers in a pure PCM. 
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vection flow is evident. At Ra = 104, there is no change in the 
shape of isotherms for both PCM and NEPCM during the 
process because the effect of conduction heat transfer is more 
than that of natural convection. 

However, for Rayleigh numbers of 105 and 106, the natural 
convection becomes the dominant mode of heat transfer and 
the effect of viscosity on the fluid flow is substantial. Based 

on the Eq. (7), by enhancing the solid concentration of 
nanoparticles, the viscosity of nanofluid increases and hence, 
the effect of convective heat transfer dwindles. However, the 
heat transfer rate can be generally enhanced with the increase 
in the thermal conductivity of nanofluid. 

For all the Rayleigh numbers prescribed, the time-
dependent variations of average melting front position for 
different concentration of nanoparticles are given in Fig. 12. 
The increase in solid concentration results in the enhancement 
of thermal conductivity of PCM and the decrease in the latent 
heat of fusion. 

As can be found, at the early stages of process, melting rates 
are approximately equal and sharp where conduction heat 
transfer is dominant between the hot wall and solid phase. As 
time passes, the effect of nanoparticles becomes more signifi-
cant where higher melting of NEPCM can be achieved in any 
dimensionless time in comparison with the pure PCM. 

For example, at j = 0.03, by increasing the solid concen-
tration of nanoparticles from 0 to 0.04, the average melting 
front position enhances 19, 13 and 7 percent for Ra = 104, 105 
and 106, respectively. It can be said that inserting nanoparti-

(a) 

   

(b) 
   

(c) 

   
 θ = 6×10-3 θ = 12×10-3 θ = 3×10-2 

 
Fig. 11. Variations of isotherms of a pure PCM (Solid line) and a 
NEPCM with j  = 0.04 (Dashed line) versus different dimensionless 
times for different Rayleigh numbers: (a) Ra = 104; (b) Ra = 105; (c) 
Ra = 106. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 12. Evolution of average melting front position for different solid 
concentration of nanoparticles: (a) Ra = 104; (b) Ra = 105; (c) Ra = 106. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 13. Evolution of average Nusselt number on the hot wall for dif-
ferent solid concentration of nanoparticles: (a) Ra = 104; (b) Ra = 105;
(c) Ra = 106. 

 

RETRACTED A
RTIC

LE



3828 M. Jourabian and M. Farhadi / Journal of Mechanical Science and Technology 29 (9) (2015) 3819~3830 
 

 

cles in pure PCM is more beneficial at low Rayleigh numbers, 
while a higher melting rate can be obtained at high Rayleigh 
numbers. 

Fig. 13 reveals the evolutions of average Nusselt number on 
the hot wall as a function of dimensionless time for various 
solid concentration of nanoparticles and Rayleigh numbers. 

After a fast transition period, where the conduction heat 
transfer is dominant, the average Nusselt number curve drops 
to a minimum value between 14 and 16 at θ = 0.006. 

As mentioned in Feng et al. [59], the local Nusselt number 
on the heated wall can be calculated as the product of the in-
stantaneous dimensionless temperature gradient and the ratio 
of the thermal conductivity of NEPCM to that of the pure 
PCM. 

The addition of nanoparticles to the base PCM enhances the 
thermal diffusion in NEPCM and also the thermal boundary 
thickness ultimately leading to a decrease in the dimensionless 
temperature gradient. However, based on the values consid-
ered in this study, this effect may be balanced with an increase 
in the ratio of thermal conductivities. 

As a result, the effect of adding nanoparticles on the aver-
age Nusselt number becomes insignificant for all Rayleigh 
numbers considered in this study. 

 

7. Conclusions 

In this study, we numerically examined the melting process 
of Cu/water nanofluids PCMs in a semicircle enclosure using 
enthalpy-based LBM. For pure PCM, the buoyancy-driven 
convection effect becomes stronger as the Rayleigh number 
augments. So, the deviation of the phase change front from a 
straight line for Ra = 106 occurs earlier than the cases with 
lower Rayleigh numbers. At θ = 0.03, by increasing the 
Rayleigh number from 104 to 105 and 106, the average melting 
front position can be enhanced 12 and 28 percent, respectively. 
By enhancing the solid concentration of nanoparticles, the 
viscosity of nanofluid increases and hence, the effect of con-
vective heat transfer dwindles. The increase in the solid con-
centration of nanoparticles results in the enhancement of 
thermal conductivity and temperature of PCM and the de-
crease in the latent heat of fusion. The insertion of nanoparti-
cles in pure PCM is more beneficial at low Rayleigh numbers, 
while a higher melting rate can be obtained at high Rayleigh 
numbers. Finally, the effect of adding nanoparticles on the 
average Nusselt number is insignificant for all Rayleigh num-
bers. 

 
Nomenclature------------------------------------------------------------------------ 

cp     : Heat capacity    
En    : Enthalpy 
Ens   : Enthalpy of the solid phase 
Enl   : Enthalpy of the liquid phase 
Fo     : Fourier number 
fl     : Liquid fraction 

feq     : Equilibrium distribution for velocity field 
g     : Gravitational acceleration 
geq     : Equilibrium distribution for temperature field 
gneq    : None-equilibrium distribution for temperature field 
l     : Appropriate length scale 
Lf     : Latent heat of phase change 
Pr     : Prandtl number 
R     : Radius of semicircle 
Ra     : Rayleigh number 
s     : Melting front position 
Ste     : Stefan number 
T0     : Initial temperature of PCM and semicircle 
T1     : Temperature of hot wall 
Tm     : Melting temperature of PCM 
u     : Velocity 

 
Greek symbols 

α     : Thermal diffusivity 
β     : Thermal expansion coefficient 
ν     : Kinematic viscosity 
ρ     : Density 
j      : Volume fraction of nanoparticles 
θ     : Dimensionless time 
ψ     : Scalar equation 
ω     : Equilibrium distribution weight 

 
Subscripts 

f     : Based fluid 
i     : Direction 
nf     : Nanofluid 
s     : Nanoparticles 
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