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Abstract 
 
In this study, the thermal effect on the free vibration characteristics of embedded Single-walled carbon nanotubes (SWCNTs) based on 

the size-dependent Reddy higher order shear deformation beam theory subjected to in-plane thermal loading is investigated by presenting 
a Navier-type solution and employing a semi-analytical Differential transform method (DTM) for the first time. In addition, the exact 
nonlocal Reddy beam theory solution presented here should be useful to engineers designing nanoelectromechanical devices. The small-
scale effect is considered based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamil-
ton’s principle, and they are solved by applying DTM. Numerical results reveal that the proposed modeling and semi-analytical approach 
can provide more accurate frequency results of the SWCNTs compared to analytical results and some cases in the literature. The detailed 
mathematical derivations are presented, and numerical investigations are performed, whereas emphasis is placed on investigating the 
effect of several parameters such as small-scale effects, boundary conditions, mode number, thickness ratio, temperature change, and 
Winkler spring modulus on the natural frequencies of the SWCNTs in detail. The vibration behavior of SWCNTs is significantly influ-
enced by these effects. Results indicate that the inclusion of size effect results in a decrease in nanobeam stiffness and leads to a decrease 
in natural frequency. Numerical results are presented to serve as benchmarks for future analyses of SWCNTs.   

 
Keywords: Differential transformation method; Nonlocal elasticity; Reddy beam theory; SWCNT; Thermo-mechanical vibration    
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

Nanoscale engineering materials have attracted great inter-
est in modern science and technology after the invention of 
Carbon nanotubes (CNTs) by Iijima [1]. They are character-
ized by significant mechanical, thermal, and electrical per-
formances that are superior to conventional structural materi-
als. In recent years, nanobeams and CNTs hold a wide variety 
of potential applications [2, 3] such as sensors, actuators, tran-
sistors, probes, and resonators in Nano-electro-mechanical 
system (NEMS). Continuum mechanics offers an easy and 
useful tool for the analysis of CNTs because conducting ex-
periments at the nanoscale is a daunting task and atomistic 
modeling is restricted to small-scale systems owing to com-
puter resource limitations. However, classical continuum 
models need to be extended to consider the nanoscale effects, 
and this extension can be achieved by nonlocal elasticity the-
ory proposed by Eringen [4], which considers the size-
dependent effect.  

Furthermore, with the development of material technology, 

Single-walled carbon nanotubes (SWCNTs) have been em-
ployed in Micro/Nano-electro-mechanical systems (MEMS/ 
NEMS) [5]. Understanding their mechanical properties and 
vibration behavior is significant in their design and manufac-
ture because of the high sensitivity of these systems to exter-
nal stimulations. Thus, establishing an accurate model of 
nanobeams is a key issue for successful NEMS design. Ped-
dieson et al. [6] proposed a version of nonlocal elasticity the-
ory employed to develop a nonlocal Euler beam model. The 
thermo-mechanical vibration of short CNTs embedded in 
Pasternak foundation was presented by Amirian et al. [7] 
based on nonlocal elasticity theory. They also concluded that 
the high temperature change and nonlocal parameter play 
important roles in the vibrational response of the CNTs. Mur-
mu and Pradhan [8] used Euler-Bernoulli beam theory (EBT) 
to investigate thermo-mechanical vibration analysis of 
SWCNTs embedded in an elastic medium. They noticed that 
small-scale effects are significant in the vibration response of 
a SWCNT. Zhang et al. [9] studied the thermal effect on the 
vibration of double-walled CNTs based on thermal elasticity 
mechanics and nonlocal elasticity theory. Wang et al. [10] 
exploited the thermal effect on the vibration and instability of 
conveying fluid SWCNTs based on the Euler beam. Through 
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the Galerkin method, the transverse vibration of embedded 
SWCNTs with light waviness based on nonlocal Euler-
Bernoulli and Timoshenko beam models is studied by Soltani 
et al. [11]. Most of the recent studies on SWCNTs have been 
conducted based on EBT and Timoshenko beam theory (TBT). 
However, the effects of rotary inertia and shear deformation 
are neglected in EBT, so EBT always overestimates buckling 
load and natural frequency of free vibration and underesti-
mates deflection. Moreover, in TBT, a shear correction factor 
is required to compensate for the difference between the actual 
stress state and the constant stress state. In avoiding the use of 
shear correction factor and obtaining a better prediction of the 
response of a deep beam, many higher-order shear deforma-
tion theories have been developed, such as the third-order 
shear deformation theory proposed by Reddy [12], which 
presents a more realistic model of the beam in the determina-
tion of higher modes of vibration. To the author’s best knowl-
edge, no work has reported on the application of the Differen-
tial transform method (DTM) on the thermo-mechanical vi-
bration analysis of embedded SWCNTs within the framework 
of Reddy higher order beam theory (RHOBT). In this study, 
the non-classical third-order shear deformation beam model is 
developed, and governing equations and boundary conditions 
for the free vibration of a nonlocal embedded SWCNT have 
been derived through Hamilton’s principle. A new semi-
analytical method called DTM is employed for the vibration 
analysis of size-dependent SWCNTs with four combinations 
of boundary conditions for the first time. The superiority of 
the DTM is found in its simplicity and good precision and 
depends on the Taylor series expansion, and it takes less time 
to solve polynomial series. With this method, obtaining highly 
accurate results or exact solutions for differential equations is 
possible. The detailed mathematical derivations are presented, 
and numerical investigations are performed, whereas empha-
sis is placed on investigating the effects of several parameters 
such temperature change, mode number, thickness ratios, 
boundary conditions, Winkler spring modulus, and small-scale 
parameter on the vibration characteristics of SWCNTs. Com-
parisons of the results with those from the existing literature 
are provided, and the good agreement between the two sets of 
results validated the presented approach.  

 
2. Theory and formulation 

2.1. Nonlocal elasticity model for SWCNT 

In the classic elastic continuum theory, the stress field at a 
point x  only depends on the strain field at the same point. 
However, according to Eringen’s nonlocal elasticity theory 
[13], the stress field at a point is dependent on the strains at all 
other points in the body. Therefore, the nonlocal stress ten-
sor ijs at point x is defined by the following: 

 

( ) ( , ) ( ) ( )ij ijx x x t x d xs a t
W

¢ ¢ ¢= - Wò   (1) 

ij ijkl klt C e=  (2) 

 
where ( )ijt x¢  is the classical macroscopic stress tensor at 
point x , the kernel function ( , )x xa t¢ -  is the nonlocal 
modulus, x x¢ - is the distance, and t  is a material constant 
that depends on type of material. ijt is the macroscopic stress 
tensor at a point x in a Hookean solid, which is dependent on 
the strain e  at the same point according to generalized 
Hooke’s law. C is the fourth-order elasticity tensor. A simpli-
fied equation of differential form is used as a basis of nonlocal 
constitutive formulation because solving the integral constitu-
tive Eqs. (1) and (2) are complicated: 

 
2 2

0(1 ( ) ) kl kle a ts- Ñ =   (3) 

 
where 2Ñ is the Laplacian operator. The scale length 0e a  
considers the size effect on the response of nanostructures. 
The nonlocal parameter 0e a  is experimentally obtained for 
various materials. Thus, in the present study, a conservative 
estimate of the nonlocal parameter 2

0( )e a  for SWCNT is 
considered in the range of 0-4 2(nm) [8]. For an elastic mate-
rial, the nonlocal constitutive relations may be simplified as 
the following: 

 
2

2 ( )xx
xx xx xE T

x
ss m e a¶
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¶
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2
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x
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- =
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where s  and e are the nonlocal stress and strain, respec-
tively, 2

0( )e am =  is the nonlocal parameter, E is the elastic-
ity modulus, / 2(1 )G E n= +  is the shear modulus, and n  
is Poisson’s ratio. xa and T are the thermal expansion and 
temperature change, respectively. 

 
2.2 Kinematic relations 

As shown in Fig. 1, a SWCNT is modeled as a higher order 
beam with length L and circular cross-section of radius R, 
where the x  axis is taken along the central axis, and the z -
axis is considered in the width direction. The SWCNT vi-
brates only in the x-z plane. Based on RHOBT, the displace-

 
 
Fig. 1. Schematic of embedded SWCNT. 
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ment of an arbitrary point in the beam along the x- and z-axes, 
denoted by ( , , )U x z t%  and ( , , )W x z t% , respectively, is the fol-
lowing [14]: 

 
3

2
4 ( , )( , , ) ( , ) ( , )
3

z w x tU x z t z x t x t
xh

j j ¶æ ö= - +ç ÷¶è ø
%   (6) 

( , , ) ( , )W x z t w x t=%   (7) 
 

where t  is time, w and j are the transverse displacement 
and angular displacement of the cross-sections at any point on 
the neutral axis of the beam, respectively. Based on Eqs. (6) 
and (7), the nonzero strains of the Reddy beam theory can be 
obtained as the following: 

 
3 2
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4
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j je

æ ö¶ ¶ ¶
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2
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¶
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In defining the nonlocal stress resultants, M, P, Q, and R are 

defined as the following: 
 

3
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,

,

xx xx
A A

xz xz
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    (10) 

 
where xxs and xzs are the normal and shear stresses, respec-
tively. Through Eqs. (8)-(10), based on Hamilton’s principle 
[15] and nonlocal elasticity theory, the governing equations 
are obtained as the following: 

 
2 3

2 2 2 2
4 4 68 16
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 (12) 

 
where wK is the Winkler modulus and TempN is the thermally 
induced axial force derived from the constitutive relationship 
between the thermal strain and thermal stress as follows [15]: 

 
Temp xN EA Ta= - .  (13) 

 
Furthermore, the following boundary conditions at the edg-

es of the nanobeam ( x = 0, L) are obtained as follows: 
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The integration of Eqs. (4) and (5) constitutive equations of 

nonlocal elasticity for a nanobeam may be written as the fol-
lowing: 
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As a final point, the nonlocal governing equations in terms 

of the displacement can be written by substituting M, P, Q, 
and R from Eq. (17) into Eqs. (11) and (12) as follows: 
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3. Solution method 

3.1 Analytical solution 

Here, based on the Navier-type solution method for the free 
vibration of a simply supported SWCNT, the displacement 
functions are expressed as the product of undetermined coeffi-
cients and known trigonometric functions to satisfy the gov-
erning equations and the conditions at x = 0, L. The follow-
ing displacement fields are assumed to be of the form: 

 

1
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where ( nW , nf ) are the unknown Fourier coefficients to be 
determined for each n value. By substituting Eq. (20) into Eqs. 
(18) and (19) and setting the determinant of the coefficient 
matrix, the analytical solutions can be obtained from the fol-
lowing equation: 

 

{ }2[ ] [ ] 0n

n

W
K Mw

f
ì ü

- =í ý
î þ

  (21) 

 
where [K] and [M] are the stiffness matrix and mass matrix, 
respectively. By setting the determinant of the coefficient 
matrix, one obtains a quadratic polynomial for 2

nw , and then 
by setting this polynomial to zero, one can find nw . 

 
3.2 Implementation of DTM 

Some of the common numerical methods used to solve the 
initial- and boundary-value problems occurring in engineering 
are homotopy perturbation method, variational iteration 
method, parameter-expanding methods, and others [16]. 
Moreover, the principle of DTM is to transform the differen-
tial equations of governing and boundary equations into a set 
of algebraic equations using Taylor series expansion with 
transformation rules. The details of DTM have been described 
elsewhere [17]. Therefore, the elaborate information on this 
aspect is not attempted here. Based on the basic transforma-
tion operations introduced in Table 1, the transformed form of 
the governing Eqs. (18) and (19) may be obtained as the fol-
lowing: 
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where [ ]kf  and [ ]W k  are the transformed functions of j  
and w , respectively. By employing DTM theorems into Eqs. 

(14)-(16), the transformed boundary conditions are obtained. 
For instance, the transformed simply supported edge condition 
can be given as the following: 

 
68 16[0] 0, [1] [2] 0

105 105
W Wf= - =   (24) 

0 0 0
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By using Eqs. (22) and (23) together with the transformed 

boundary conditions, one arrives at the following eigenvalue 
problem: 
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where [ ]C corresponds to the missing boundary conditions at 
x = 0. For the non-trivial solutions of Eq. (25), the determi-
nant of the coefficient matrix should be equal to zero. In solv-
ing Eq. (25), the ith estimated eigenvalue for nth iteration 
( ( )n

iw w= ) may be obtained, and the total number of iterations 
is related to the accuracy of the calculations, which can be 
determined by the following equation: 

 
( ) ( 1)n n
i iw w e-- < .  (26) 

 
In this study, ε = 0.0001 is considered in the process of de-

termining eigenvalues, resulting in a four-digit precision in the 
estimated eigenvalues. 

 
4. Convergence and correctness of the method 

Through this section, a numerical testing of the procedure 
will be performed, and the effects of several parameters on the 
natural frequencies of the SWCNT will be identified. The 
effective properties of SWCNT are taken as that of Reddy and 
Pang [18]. The Young’s modulus E = 1000 GPa, mass density 
r = 2300 3Kg/m , Poisson’s ratio ν = 0.19, and diameter d = 1 
nm are considered in the analysis. As indicated by Jiang et al. 
[19], the coefficients of thermal expansion for CNTs are nega-
tive at a lower temperature and become positive at a higher 
temperature; for the case of room or low temperature, we sup-
pose a xa = 61.6*10-- 1/K [20]. The following relation is 

Table 1. Some of the transformation rules of DTM. 
 

Original function Transformed function 

( ) ( ) ( )f x g x h x= ±  ( ) ( ) ( )F K G K H K= ±  

( )  ( )f x g xl=  ( ) ( )F K G Kl=  
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n
d g xf x

dx
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performed to calculate the non-dimensional natural frequen-
cies: 

 
2ˆ /L A EIw w r=   (27) 

 
where I is the moment of inertia of the cross section of the 
nanotube. It is found that in DTM after a certain number of 
iterations eigenvalues converged to a value with good preci-
sion, so the number of iterations is important in DTM conver-
gence. Table 2 tabulates the convergence study for the first 
three natural frequencies of the simply supported SWCNT. As 
seen in Table 2, the third natural frequency converged after 38 
iterations with 4-digit precision, whereas the first and second 
ones converged after 20 and 28 iterations, respectively. To 
evaluate the accuracy of the natural frequencies predicted by 
the present method, Table 3 compares the semi-analytical 
results of the present study and the results obtained for the 
simply supported SWCNT with different nonlocal parameters 

(varying from 0 to 4) and length-to-thickness ratios (L/d = 10) 
presented by Reddy [12], which has been obtained by the 
analytical method. The parameters used in this table are the 
following [12]: L = 10, E = 630*10 , r = 1, ν = 0.3. One may 
clearly notice that the non-dimensional fundamental frequency 
parameters obtained in the present investigation are in excel-
lent agreement to the results presented by Reddy [12] for all 
compared cases and validate the proposed method of solution. 

 
5. Numerical results and discussions 

After the approaches are validated, some parametric studies 
are conducted in this section to examine the influences of vari-
ous parameters such as nonlocal parameters, length-to-
thickness ratios, temperature changes, and boundary condi-
tions on the natural frequencies of the SWCNT. Four different 
combinations of edge conditions at x =0, L are considered as: 
simply-supported/simply-supported (S-S), clamped/simply-
supported (C-S), clamped/clamped (C-C), and clamped/free 
(C-F). In Table 4, the first three dimensionless frequencies of 
the S-S SWCNT are presented for the various values of the 
aspect ratios (L/d = 10, 50) and nonlocal parameters ( m  = 
0,1,2,3,4) for low temperature change (T = 30 K) based on 
both DTM and analytical Navier solution method. First, when 
the nonlocal parameter vanishes, Reddy’s classical isotropic 
beam theory is rendered. An increase in nonlocal scale pa-
rameter gives rise to a decrement in the first three dimen-
sionless frequencies because the presence of the nonlocal ef-
fect tends to decrease the stiffness of the nanostructures and 
hence decreases the values of natural frequencies. The dimen-
sionless natural frequencies predicted by DTM are in close 
agreement with those evaluated through analytical solution. 
Moreover, the first three dimensionless natural frequencies 
increase by increasing aspect ratio (L/d). In investigating the 
effects of different boundary conditions and nonlocal parame-
ters on the vibration characteristics of SWCNT, the non-
dimensional frequencies of SWCNT under low temperature 
change (T = 50 K) with different edge conditions (i.e., C-C, 
C-S, and C-F) are tabulated in Table 5. This table shows that 
frequencies predicted by the nonlocal solution are smaller than 
those of the local frequency because of the small-scale effects. 
For this reason, the size effect plays a major role in the vibra-
tion behavior of CNTs. Moreover, for a C-F SWCNT, increas-
ing the nonlocal parameter leads to an increase in fundamental 
frequency. Furthermore, a beam with stiffer edges, such as C-
C and C-S, shows higher natural frequencies than those of 
other boundary conditions, as expected. The fundamental 
frequency parameter as a function of aspect ratio and tempera-
ture increase is presented in Fig. 2 for the S-S SWCNT with 
different nonlocal parameters. Similarly, the variation of the 
first dimensionless frequency with temperature change for 
different nonlocality is depicted in Fig. 3. Observing these two 
figures shows that increasing the nonlocality parameter yields 
the reduction in dimensionless frequencies for all temperature 
changes and aspect ratios, which highlights the significance of 

Table 2. Convergence study for the first three natural frequencies of S-
S SWCNT (L/d = 50, 23nm , 30KTm = = ). 
 

Method k 1ŵ  2ŵ  3ŵ  

10 10.5517 - - 

12 10.7477 - - 

14 10.7280 - - 

16 10.7293 37.3927 - 

18 10.7292 40.0444 - 

20 10.7292 39.4259 - 

22 10.7292 39.4904 - 

24 10.7292 39.4841 - 

26 10.7292 39.4846 84.2696 

28 10.7292 39.4846 85.2870 

30 10.7292 39.4846 85.1365 

32 10.7292 39.4846 85.1528 

34 10.7292 39.4846 85.1512 

36 10.7292 39.4846 85.1513 

38 10.7292 39.4846 85.1513 

40 10.7292 39.4846 85.1513 

42 10.7292 39.4846 85.1513 

DTM 

44 10.7292 39.4846 85.1513 

Analytical  10.7288 39.4725 85.0864 

 
 

Table 3. Comparison of non-dimensional fundamental frequencies of 
S-S SWCNT (L/d =10). 
 

2
0( )e am =  Analytical [12] Present DTM 

0 9.7454 9.7360 

1 9.2974 9.2885 

2 8.9060 8.8974 

3 8.5602 8.5520 

4 8.2517 8.2438 
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the nonlocal effect. In addition, the fundamental frequency 
increases by increasing temperature changes, and temperature 
change has a significant effect on the fundamental frequency 
of the S-S SWCNT.  

Finally, Fig. 4 displays the variations of the first dimen-
sionless natural frequency of the S-S SWCNT with respect to 

Winkler spring modulus for different values of nonlocal pa-
rameters at a constantly low temperature (T = 40 K) and as-
pect ratio (L/d = 10). The figure shows that the fundamental 
frequency of SWCNT increases with the increase of Winkler 
spring modulus. In addition, the small-scale parameter has a 
softening effect on SWCNT. 

Table 4. Effects of nonlocality parameters and aspect ratios on the first three dimensionless frequencies of S-S SWCNT ( 30K).T =  
 

Present  
DTM 

Present  
Analytical 

Present  
DTM 

Present  
Analytical 

Present  
DTM 

Present  
Analytical L/d 2

0( )e am =  

1ŵ  2ŵ  3ŵ  

0 9.8147 9.7932 38.0899 37.7910 82.0930 80.9035 

1 9.3670 9.3466 32.2645 32.0120 59.7655 58.9018 

2 8.9761 8.9566 28.4951 28.2729 49.3061 48.5961 

3 8.6309 8.6121 25.8018 25.6012 42.9333 42.3175 

10 

4 8.3231 8.3050 23.7542 23.5701 38.5332 37.9827 

0 10.7822 10.7818 40.3648 40.3522 89.4739 89.4050 

1 10.7644 10.7640 40.0644 40.0520 87.9585 87.8910 

2 10.7468 10.7464 39.7711 39.7589 86.5197 86.4535 

3 10.7292 10.7288 39.4846 39.4725 85.1513 85.0864 

50 

4 10.7118 10.7114 39.2046 39.1926 83.8478 83.7840 

 
Table 5. Effect of different boundary conditions on the first three dimensionless frequencies of SWCNT ( 50K).T =  
 

Boundary conditions 

C-C C-S C-F L/d 2
0( )e am =  

1ŵ  2ŵ  3ŵ  1ŵ  2ŵ  3ŵ  1ŵ  2ŵ  3ŵ  

0 22.1465 59.1398 110.8100 15.2966 48.0657 95.9430 3.5033 21.7941 59.1722 

1 20.8464 48.4212 77.1223 14.4800 40.0684 68.3604 3.5202 20.4085 48.5095 

2 19.7498 41.9787 62.7322 13.7814 35.0894 56.0132 3.5376 19.2244 42.1439 

3 18.8092 37.5709 54.2844 13.1751 31.6129 48.6279 3.5553 18.1958 37.8274 

10 

4 17.9913 34.3152 48.5681 12.6428 29.0103 43.5794 3.5734 17.2902 34.6722 

0 23.2232 62.7430 121.7400 16.5587 51.2340 105.2980 3.1556 22.9575 62.7638 

1 23.1801 62.2102 119.4670 16.5300 50.8304 103.4330 3.1584 22.9112 62.2324 

2 23.1373 61.6917 117.3210 16.5016 50.4371 101.6680 3.1613 22.8653 61.7153 

3 23.0948 61.1868 115.2910 16.4733 50.0537 99.9940 3.1642 22.8197 61.2119 

50 

4 23.0527 60.6950 113.3670 16.4452 49.6798 98.4040 3.1670 22.7744 60.7217 

 
 

 
 
Fig. 2. Variation of the first dimensionless frequency of S-S SWCNT 
versus aspect ratio (L/d) for different low temperatures ( m = 2). 

 

 
 
Fig. 3. Variation of first dimensionless frequency of S-S SWCNT ver-
sus temperature change for different nonlocal parameters (L/d = 20). 
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6. Conclusions 

The vibrational behavior of embedded SWCNTs subjected 
to thermal loading with various boundary conditions is inves-
tigated based on the Reddy beam theory in conjunction with 
DTM. Eringen’s theory of nonlocal elasticity together with 
higher order beam theory is used to model the CNT by the 
implementation of Hamilton’s principle. The accuracy of the 
results is examined using available data in the literature. Fi-
nally, through some parametric studies and numerical exam-
ples, various factors such as nonlocal parameter, temperature 
change, boundary conditions, and Winkler spring modulus are 
found to play important roles in the dynamic behavior of 
SWCNTs. The nanobeam model produces a smaller natural 
frequency than the classical (local) beam model. Therefore, 
the small-scale effects should be considered in the analysis of 
the mechanical behavior of nanostructures. The dimensionless 
frequency decreases with the increase in temperature. More-
over, under an increase in temperature, an increase in the 
Winkler spring modulus results in an increase in frequency. 
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Fig. 4. Variation of the first dimensionless frequency of S-S SWCNT 
versus Winkler spring modulus for different nonlocal parameters (L/d 
= 10, T = 40 K). 

 


