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Abstract 
 
This paper studies the two dimensional problem of thermoelastic rotating material with voids under the effect of the gravity and the 

temperature dependent properties employing the two-temperature generalized thermoelasticity in the context of Green-Naghdi (G-N) 
theory of types II and III. The normal mode method is used to obtain the exact expressions for the physical quantities which have been 
shown graphically. The comparisons have been made in the presence and the absence of the rotation, the gravity, the temperature de-
pendent properties and the two-temperature effect.  
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1. Introduction 

Thermoelasticity is the change in the size and the shape of a 
solid object as the temperature of that object fluctuates, it used 
to design materials and objects that can withstand fluctuations 
in temperature without breaking. Materials that are more elas-
tic will expand and contract more than those materials that are 
more inelastic. The generalized theory of thermo-elasticity is 
one of the modified versions of classical uncoupled and cou-
pled theory of thermoelasticity that has been developed in 
order to remove the paradox of physical impossible phenom-
ena of infinite velocity of thermal signals in the classical cou-
pled thermoelasticity theory stated by Biot [1]. Lord and 
Shulman [2] formulated a generalized theory of thermoelasticity 
with one thermal relaxation time, who obtained a wave-type 
equation by postulating a new law of heat conduction instead 
of classical Fourier’s law. Green and Lindsay [3] developed a 
theory of thermoelasticity that includes two thermal relaxation 
times and does not violate the classical Fourier’s law of heat 
conduction. Green and Naghdi [4-6] proposed three models, 
which are subsequently referred to as (G-N) -I, II and III types. 
The linearized version of type-I corresponds to the classical 
thermoelastic Fourier’s law for the heat conduction equation. 
In type II the internal rate of production of the entropy is taken 
to be identically zero implying no dissipation of thermal en-

ergy and known as thermoelasticity without energy dissipation. 
Type-III includes the previous two models as special cases 
and admits dissipation of energy. In Refs. [7, 8] Othman et al. 
used (G-N) theory of type III to study some models in ther-
moelasticity with energy dissipation. The classical theory of 
elasticity developed from the consideration that a solid is a 
continuum, appears to be inadequate for the study of the re-
sponse of a solid to applied load when porous materials con-
taining voids (such as geological materials like rock and soils 
and manufactured materials like ceramics and pressed pow-
der) are considered. Cowin and Nunziato [9] developed gen-
eral model to predict the mechanical behavior of the solid 
materials with voids, This liberalized theory of the elastic 
materials with voids is a generalization of the classical theory 
of elasticity and reduces to it when the voids are suppressed. 
Some basic investigation related to studying the thermoelastic 
materials with voids were discussed by Cowin [10]. Othman 
et al. [11, 12] used (G-N) theory to study two models of ther-
moelastic medium with voids. Recently Abbas and Kumar 
[13] studied the response of the initially stressed generalized 
thermoelastic solid with voids to thermal source. Keeping in 
view that the propagation of plane waves in a rotating media is 
important in many realistic problems, e.g., rotation of heav-
enly bodies and the moon. Schoenberg and Censor [14] estab-
lished the propagation of the waves in a rotating, homogenous, 
isotropic, linear elastic medium for any orientation of the rota-
tion axis with respect to free space taking into consideration 
the Coriolis and the Centripetal acceleration. Abo-Dahab et al. 
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[15] discussed the problem of rotating elastic media. The grav-
ity effect was generally neglected in the classical theory of 
elasticity. Bromwich [16] established the effect of the gravity 
on the wave propagation of an elastic solid medium. Most of 
the studies were done under the assumption of the temperature 
independent material properties that is considered a limiting of 
the applicability of the obtained solutions certain ranges of the 
temperature. The thermal and mechanical properties of the 
materials vary with the temperature, so the temperature-
dependent on the material properties must be taken into con-
sideration in the thermal stress analysis of these elements. 
Othman [17] studied the generalized thermoelastic plane 
waves in a rotating media with thermal relaxation under the 
temperature dependent properties. Chen and Gurtin [18], Chen 
et al. [19] have formulated a theory of the heat conduction in 
deformable bodies, which depends upon two distinct tempera-
tures, the thermodynamic temperature ,T  and the conductive 
temperature .q  Warren and Chen [20] investigated the wave 
propagation in the two-temperature theory of thermoelasticity. 
Youssef [21] established the two-temperature generalized 
thermoelasticity theory together with a general uniqueness 
theorem. 

The aim of this work is to determine the distributions of the 
physical quantities for a homogenous, isotropic, thermoelastic 
material with voids analytically in the case of absence and 
presence of the rotation, the gravity, the temperature depend-
ent and the two temperature effect using (G-N) theory of types 
II and III in terms of the normal modes to obtain the exact 
expressions for the physical quantities which represented 
graphically. 

 
2. Formulation and solution of the problem  

Consider a linear homogeneous isotropic thermoelastic ma-
terial with voids and a half-space ( 0)y ³  the rectangular 
Cartesian coordinate system ( , , )x y z  having originated on 
the surface 0z = . For two dimensional problem assume the 
dynamic displacement vector as ( 0)= u, v,u . The material is 
rotated with a uniform angular velocity Ω such that 

= (0,0, ).WΩ  All quantities considered will be a function of 
the time variable t,  and of the coordinates x and y.  

The equations of motion, the field equation and the heat 

equation under the effect of the gravity field of rotating ther-
moelastic material with voids and the two-temperature theory 
in the case type III of the (G-N) theory (see Cowin and Nun-
ziato [9], Green and Naghdi [5] and [21] due to Youssef) in 
the absence of body forces, heat sources and extrinsic equili-
brated body force will be  
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Where, ,l m  are the Lame’s constants, 1 0, , , , ,b ma x w y  

are the material constants due to presence of voids, 
(3 2 ) ,tb l m a= +  while ta is the thermal expansion coeffi-

cient, r  is the density, eC  is the specific heat, k  is the 
thermal conductivity, *k  is the material constant characteris-
tic of the theory, 0T  is the reference temperature chosen such 
that 0 0( ) 1,T T T- << f  is the change in the volume frac-
tion field, ijs are the components of the stress tensor, ije  are 
the components of strain tensor, ijd  is the Kronecker delta, 
d  is the two temperature parameter so that 0,d >  T is the 
thermodynamic temperature and q  is the conductive tem-
perature and g  is the acceleration due to the gravity, when 

* 0,k ®  then Eq. (4) reduces to the heat conduction equation 
in the (G-N) theory (of type II). 

To investigate the effect of the temperature dependent prop-
erties on thermoelastic material with voids, therefore we as-
sume that 

 
0 ( ),f Tl l=   0 ( ),f Tm m=  0 ( ),f Tb b=  0 ( ),f Ta a=   

0 10 ( ),f Tw w=  1 10 ( ),f Tx x= 0 ( ),f Ty y= 0 ( ),m m f T=   

0 ( ),k k f T=   0 ( ).b b f T=  

 
Since 0 0 0 0 10 10 0 0 0 0, , , , , , , , ,m k bl m b a w x y  are constants, 
( )f T  is a given non-dimensional function of temperature, 

such that *
0( ) (1 ),f T Ta= -  and *a  is the empirical mate-

rial constant. The governing equation can be put into a more 
convenient form using the following non-dimensional vari-
ables 

 
 
Fig. 1. Geometry of the problem. 
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Assuming the potential functions 1( , , )x y ty  and 2 ( , , )x y ty  

in dimensionless form 
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In terms of non-dimensional quantities defined and the po-

tential functions the system reduced to (drop the prime for 
convenience) 
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The solution of the considered physical quantities can be 

decomposed in terms of the normal modes as the following 
form  

 
* * * * * *

1 2 1 2[ , , , , , ]( , , ) [ , , , , , ]( )ij ijT x y t T yy y f q s y y f q s=  
exp( ).t i a xw +  (13) 

 
Where, * * * * * *

1 2[ , , , , , ]( )ijT yy y f q s  are the amplitude of the 
physical quantities, w  is the angular frequency, i 1= -  and 
a  is the wave number in the x - direction. 

Using Eq. (13) then Eqs. (9)-(12) take the form 
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Eliminating *

1 ,y  *
2 ,y *f  and *q  between Eqs. (14)-(17), 

we obtain the differential equation. 
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Eq. (32) can be factored as 
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Where, 2 ( , , , )1 2 3 4nk n =  are the roots of the characteristic 

equation of the Eq. (19) and , , ,A B C E  can be obtained from 
elimination the functions between Eqs. (14)-(17). 

The general solution of the Eq. (19), which are bound at 
y ® ¥ , is given by 
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Since ( 1,2,3, )4nR n =  being some coefficients and 1nH to 
4nH  can be obtained from elimination the functions between 

Eqs. (14)-(17). 

 
3. Boundary conditions 

Consider the boundary conditions to determine the coeffi-
cients ( 1,2,3,4),nR n = and suppress the positive exponentials 
to avoid the unbounded solutions at infinity. Then the non-
dimensional boundary conditions at the surface of the material 
are given at 0y =  as follows: 

(1) The mechanical boundary conditions are 
(i) The normal stress condition (mechanically stressed by 

constant force), so that 
 

exp( ),yy 1p t i a xs w= - +  (28) 
 
Where 1p is the magnitude of the applied force in the half-

space. 
(ii) The tangential stress condition (stress free), then 
 

0,xys =  (29) 
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(2) The condition of the voids (the volume fraction field is 
constant in y-direction). This implies that 

 

0.
y
f¶

=
¶

 (30) 

 
(3) The thermal condition (the half-space subjected to ther-

mal shock applied to the boundary). This leads to 
 

2 exp( ).T p t i a xw= +   (31) 
 

2p is applied constant temperature to the boundary.  
Substituting the expressions of the considered quantities in 

the above boundary conditions, to obtain the parameters. After 
applying the inverse of matrix method, one can get the values 
of the four constants ( 1,2,3,4).nR n =  
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Hence obtain the expressions for the physical quantities of 

the plate surface. 

 
4. Numerical results and discussion 

In order to illustrate the obtained theoretical results in the 
preceding section, following Dhaliwal and Singh in Ref. [22] 
the Magnesium crystal-like thermoelastic material with voids 
was chosen for purposes of numerical evaluations. All the 
units of parameters used in the calculation are given in SI units. 
The constants of the problem were taken as  

 
10 22.17 10 / ,N ml = ´  10 23.278 10 / ,N mm = ´   

21.7 10 / ,k W m K= ´ ×  3 31.74 10 / ,kg mr = ´  0 298 ,T K=   
6 22.68 10 / ,N m Kb = ´ ×  31.04 10 / ,eC J kg K= ´ ×   

* 11
1 3.58 10 / ,sw = ´  5 21.78 10 / ,t N ma -= ´   

15 21.753 10 ,my -= ´  53.688 10 ,Na -= ´   
10 2

1 1.475 10 / ,N mx = ´  10 21.13849 10 / ,b N m= ´   
6 22 10 / ,m N m K= ´ ×  3 2

0 0.0787 10 / ,N m sw -= ´   
2

1 1 / ,p N m=  2 0.5 ,p K=  * 85 / ,k W m K= ×   
0.001 ,a m=  1i ,w h h= +  0.5 / ,rad sh = -   

1 0.1 / ,rad sh =  0.5 ,x m=  0.2t s=  and 0 10 .y m£ £  
 
These numerical values used to obtain the distribution of  

the real part of the displacement u  the temperature T , the 
stress xxs  and the change in the volume fraction field f  
with the distance y  for (G-N) theory of types II and III.    
In each graph the solid and dashed lines represent the solu     
tion in the context of the (G-N) theory of type II and the solid 

with dots and dashed with dots represent the solution using    
(G-N) theory of type III. Figs. 2-5 represent the change in     
the behavior of the physical quantities against distance y    
in 2D in the context of both types II and III of (G-N)     
theory during 2 *9.8 / , 0.00051 /g m s Ka= = and -15= 10d  
for 0.1 / , 0.rad sW =  Figs. 6-9 show the behavior of the 
physical quantities against distance y in 2D in the context of 
both types II and III of (G-N) theory during 0.1 / ,rad sW =  

* 0.00051 / Ka = and -15= 10d  for 29.8 / , 0.g m s=  Figs. 
10-13 depict the distribution of the physical quantities  
against distance y in 2D in the context of both types of (G-N) 
theory during 20.1 / , 9.8 /rad s g m sW = =  and -15= 10d  
for * 0.00051 / , 0.Ka =  While Figs. 14 and 15 explain the dis-
tribution of the physical quantities against distance y in 2D in 
the context of both types of (G-N) theory at  0.1 / ,rad sW =  

29.8 /g m s= and * 0.00051 / Ka = for 1510 , 0.d -=   
Fig. 2 shows the distribution of the displacement compo-

nent ;u  it noticed that in the case of (G-N) of type II the 
distribution of u  decreased in the intervals 0 1.8,y£ £  
3.4 8y£ £  and 12 15,y£ £  but increased in 1.8 3.5,y£ £  
8 12y£ £  and 15 20,y£ £  while u  distribution in the 
case of type III of (G-N) decreased in the intervals 0 8y£ £  
and 12 15y£ £  while it increased in 8 12y£ £  and 
15 20y£ £  with the increase of the rotation value. 

Fig. 3 explains that the distribution of the temperature in-
creasing with the increase of the rotation for in both types of 
(G-N) theory as increasing the rotation for 0.y >   

Fig. 4 depicts that the distribution of the stress xxs increas-
ing for both types II and III of (G-N) theory with the increas-
ing of the rotation for 0.y >   

Fig. 5 expresses that the distribution of f  increasing for 
both types II and III of (G-N) theory with the increase of the 
rotation for 0.y >  It explained that the rotation has an effec-

 
 
Fig. 2. The distribution of u against y while 0.1 / , 0.rad sW =  

 

 
 
Fig. 3. The distribution of T against y while 0.1 / , 0.rad sW =  
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tive role in the distribution of all physical quantities of the 
problem for the both types II and III of (G-N) theory since the 
distribution of these quantities varying (increasing or decreas-
ing) with the increase of the rotation value while other physi-
cal operators (the gravity, the temperature dependent and the 
two temperature effect) in the problem are present.  

Fig. 6 shows that the distribution of the displacement u  
increased in 0 2y£ £  then decreased in 2 7y£ £  then 
returns to increasing in 7 20y£ £  for the case of type II of 
(G-N) theory, but the distribution of u  in the case of type III 
decreased in 0 2y£ £  then increased in 2 7y£ £  then 
returns to decreasing in 7 20y£ £  with the increase of the 
gravity value.  

Fig. 7 determines that the distribution of T  decreasing for 
type II and increasing for type III of (G-N) theory for 0y >  
with the increase of the gravity value.  

Fig. 8 shows that the distribution of the stress xxs for type 
II of (G-N) theory is decreasing for 0.y >  While in the case 
of (G-N) of type III they increased in 0 2y£ £  then de-
creased in 2 10y£ £  with the increase of the gravity value.  

Fig. 9 explains that the distribution of the change in the 
volume fraction field f  decreases in the case of type II and 
increased in 0 2y£ £  then decreased in 2 10y£ £  for (G-
N) theory of type III with the increase of the gravity value. It 
observed that the gravity has a great effect on the distribution 
of all physical quantities in the case of both types II and III of 
(G-N) theory and the distribution of the physical quantities 
changing (increasing or decreasing) with the increase of the 
gravity value while other physical operators (the rotation, the 
temperature dependent and the two temperature effect) in the 
problem are available.  

Fig. 10 shows the distribution of the displacement compo-
nent ;u  it noticed that the distribution of u  decreased in  
the intervals 0 6y£ £  and 10 14,y£ £  but increased in 
6 10y£ £  and 14 20y£ £  for both types II and III of (G-
N) theory.  

Fig. 11 explains that the distribution of T  increasing with 
the increase of the rotation for in both types of (G-N) theory as 
increasing of *a  value for 0.y >   

Fig. 12 depicts that the distribution of the stress xxs in-

 
 
Fig. 4. Distribution of xxs against y while 0.1 / , 0.rad sW =  

 

 
 
Fig. 5. The distribution of f against y while 0.1 / , 0.rad sW =  

 

 
 
Fig. 6. The distribution of u against y while 29.8 / , 0.g m s=  

 

 
 
Fig. 7. The distribution of T against y while 29.8 / , 0.g m s=  

 

 
 
Fig. 8. The distribution of xxs against y while 29.8 / ,0.g m s=  

 

 
 
Fig. 9. The distribution of f against y while 29.8 / , 0.g m s=  
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creasing for both types II and III of (G-N) theory with the 
increasing of *a  value for 0.y >   

Fig. 13 expresses that the distribution of f  increasing for 
both types II and III of (G-N) theory with the increase of *a  
value for 0.y >  It explained that the temperature dependent 
properties have a significant role in the distribution of all 
physical quantities of the problem for the both types II and III 
of (G-N) theory; as the distribution of the physical quantities 

having an alteration (increasing or decreasing) with the in-
crease of the temperature dependent properties while other 
physical operators (the rotation, the gravity and the two tem-
perature effect) in the problem are attending.  

Fig. 14 shows that the distribution of u  increased in the 
ranges 0 4,y£ £  8 12y£ £  14 20,y£ £ while it decreased 
in 4 8y£ £ and 12 14y£ £ for the case of type II of (G-N) 
theory, but the distribution of u in the case of type III de-
creased in the ranges 0 2,y£ £  4 8y£ £  and 12 14,y£ £  
while it increased in intervals 2 4,y£ £ 8 12,y£ £ 14 20,y£ £  
with the increase of d .  

Fig. 15 explains that the distribution of the change in the 
volume fraction field f  increases in the case of types II and 
III of (G-N) theory with the increase of d . It observed that all 
the curves, continuous and converges to zero, and the two 
temperature effect has a great effect on the distribution of all 
physical quantities in the case of both types II and III of (G-N) 
theory; as the distribution of the physical quantities changing 
(increasing or decreasing) with the increase of two tempera-
ture effect while other physical operators(the rotation, the 

 
 
Fig. 10. The distribution of u  against y while * 0.00051/ , 0.Ka =  

 

 
 
Fig. 11. The distribution of T against y while * 0.00051/ , 0.Ka =  

 

 
 
Fig. 12. Distribution of xxs against y while * 0.00051/ ,0.Ka =  

 

 
 
Fig. 13. Distribution of f against y while * 0.00051/ , 0.Ka =  

 

 
 
Fig. 14. The distribution of u against y while 1510 , 0.d -=  

 

 
 
Fig. 15. The distribution of f against y while 1510 , 0.d -=  

 

 
 
Fig. 16. 3D Curve of xys versus the components of distance. 
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gravity and the temperature dependent properties) in the prob-
lem exists. 3D curve is representing the complete relation 
between xys  against both components of the distance as 
shown in Fig. 16 where 0.1 / ,rad sW =  * 0.00051 / Ka =  
at 0.2t s=  and 1510d -=  in the absence of the gravity ef-
fect; under (G-N) theory of type III. This figure is very impor-
tant to show that the functions are moving in wave propaga-
tion.  

 
5. Concluding remarks 

(1) The rotation, the gravity and the temperature dependent 
properties having great role in the distribution of the physical 
quantities, since these quantities varying with the increase of 
the physical operators. 

(2) The value of all physical quantities converges to zero 
with an increase in the distance y and all functions are con-
tinuous. 

(3) The deformation of a body depends on the nature of the 
applied forces as well as the type of boundary conditions. 

(4) The two temperature theory has an important effect on 
many problems in thermoelasticity and on the distribution of 
the considered physical quantities. 
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