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Abstract 
 
In consideration of the bearing stiffness, the contact deformation between the ball screw and the worktable, and the contact deforma-

tion between the worktable and the guide, lateral, axial and torsional vibrations of the pre-tension screw and the vibration of the workta-
ble were studied. A dynamic model of the ball screw drive system of machines was established by using the Lagrange equation. The 
model was analyzed by the mode superposition and Runge-Kutta method to calculate the transient response of the system. Effects of 
system’s parameters on the whirl speed of the screw, the axial vibration of the cutter’s work point, and also the stability of the system are 
discussed. The present work supplies a base for designing the drive system. 
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1. Introduction 

The drive system of the ball screw has wide application in 
machine tools. With increasing of the feeding velocity and 
machining precision, the precision of the machine tool work-
table movement and positioning become important problems, 
and the dynamic response of the drive system becomes more 
and more important.  

The ball screw drive system can be seen as a rotating beam 
with a moving mass. Sheu and Yang [1] analyzed the whirl 
speed and critical speed of the spinning Rayleigh beam. Gu 
and Cheng [2] simplified the system of the ball screw drive as 
a rotating beam subjected to a moving mass and studied lateral 
vibration of the system. Shiaua, Huanga, Wanga and Hsub [3] 
investigated the dynamic response of a rotating multi-span 
shaft with general boundary conditions subjected to an axially 
moving load. Eftekhar Azama, M. Mofidb and Afghani 
Khoraskanic [4] analyzed the dynamic responses of a Ti-
moshenko beam subjected to a moving mass and a moving 
sprung mass. The differential equations for beam vibration 
were derived by using Hamilton’s principle and solved by 
using the modal superposition method. Ariaei, Ziaei-Rad and 
M. Ghayour [5] presented the beam equations of motion 
which were obtained based on the Timoshenko beam theory 
by including the dynamic effect of a moving mass traveling 
along a vibrating path. 

In machine tools, the screw is often pre-tensioned to in-

crease its lateral stiffness. Gallina [6] studied the longitudinal 
and torsional vibrations of the screw. Huang and Yang [7] 
analyzed the rotating beam subjected to repeating axial and 
transverse forces. The governing equations of the rotating 
Rayleigh beam were derived by Hamilton’s principle. Stoja-
novìć´ and Kozić´[8] considered the forced vibration of a Ray-
leigh and Timoshenko double-beam system continuously 
joined by a Winkler elastic layer under compressive axial 
loading. They discussed vibrations of the system and formu-
lated conditions of resonance. 

When the machine runs at high speed, the stability of the 
system is very important. Ghayesh and Amabili [9] investi-
gated numerically the nonlinear forced vibration and stability 
of an axially moving Timoshenko beam with an intra-span 
spring-support, which taking into account the shear deforma-
tion and rotary inertia. Tang, Chen, Zhang and Yang [10] 
focused on the effect of longitudinally varying tensions due to 
the axial acceleration and analyzed stability of axially acceler-
ating viscoelastic Timoshenko beams. The governing equa-
tions and the accurate boundary conditions for coupled planar 
motion of the Timoshenko beam were established using the 
generalized Hamilton principle and the Kelvin viscoelastic 
constitutive relation. Yong, Shiau and Kuo [11] investigated 
the lateral vibration of a spinning disk-shaft system supported 
by a pair of ball bearings and subjected to a pair of random 
axial forces at both ends. An, Feng and Yu [12] used finite 
element method to analyze the ball screw feeding system’s 
characteristic. They pointed out that increasing the diameter of 
the screw could improve the system’s dynamic performance, 
but had a higher request for system stability due to inertia of 

*Corresponding author. Tel.: +86 3913987411, Fax.: +86 3913987411 
E-mail address: zhanghd@hpu.edu.cn  

† Recommended by Associate Editor Jun-Sik Kim 
© KSME & Springer 2015 



5206 H. Zhang / Journal of Mechanical Science and Technology 29 (12) (2015) 5205~5215 
 

 

the screw.  
All the above works neglected contact deformation of the 

system, such as deformation of the worktable contacting with 
the guide way, and did not analyze comprehensive effect of 
the system vibrations on the precisions. Considering the bear-
ing stiffness, the contact deformation between the screw and 
the nut, and also the contact deformation between the workta-
ble and the guide way, the present work establishes a dynamic 
model of the ball screw drive system by the Lagrange equa-
tion. The model is created by mode superposition, and Runge-
Kutta method is used to analyze the dynamic response of the 
system, including the vibration of the screw, the axial vibra-
tion amplitude of the cutter’s work point, and also the stability 
of the drive system. 

 
2. Dynamic model of the system  

To consider the contact deformations, the bearings at both 
ends of the screw and the contact between the screw and the 
nut are expressed by six stiffness and damping coefficients 
respectively. Fig. 1 is the bearing’s contact model, and the 
contact model between the screw and the nut is the same as 
Fig. 1, but the parameters are different. The contact model of 
the worktable and guide way is shown in Fig. 2. All parame-
ters are listed in the nomenclature. 

In the system, the screw rotates at a constant angular veloc-

ity Ω . The coordinate origin is at the left end of the screw. 
The coordinate system and the dynamic model of the system 
are shown in Fig. 3. The worktable translation ( )s t in x direc-
tion includes axial translation produced by the screw rotation, 
axial one mlj caused by torsional deformation of the screw, 
( ),du tlq  from axial deformation of the screw and xq from 

local vibration of the worktable, and is expressed as:  
 
( ) ( ),d m d xs t u t qlq lf lq= + + + .  (1) 

 
Kinetic energy of the system, including the kinetic energy 

of the screw sT and the kinetic energy of the worktable mT , is 
expressed as: 

 
s mT T T= + .  (2) 

 
The system potential energy, including the screw deforma-

tion energy Us and elastic contact energy between the system 
elements, such as the contact energy between the worktable 
and the screw Un, the contact energy of the bearings Ub and 
the contact energy between the worktable and the guide way 
Um, is expressed as: 

 
.s n b mU U U U U= + + +   (3) 

 
Energy dissipation of the system is caused by the contact 

damping between the system elements, such as the energy 
dissipation of the contact damping between the worktable and 
the screw Dn, the energy dissipation of the bearings Db and the 
energy dissipation of the contact damping between the work-
table and the guide way Dm, and is written as: 

 
n b mD D D D= + + .  (4) 

 
Expressions of the terms of Eqs. (2)-(4) are in the Appendix. 

External forces of the system include the machining force 
exerted on the worktable and the worktable gravity, so that the 
virtual work of the system is: 

 
δ δ gδm zW F s m q= - - .  (5) 
 
From Timoshenko beam theory, displacements of lateral 

vibration of the screw consist of the displacement produced by 
the screw bending and one from the shear deformation caused 
by the bending, which are expressed as: 

 
 
Fig. 1. The contact model of the bearing. 

 

 
 
Fig. 2. The contact model between the worktable and the guide way. 

 

 
 
Fig. 3. The dynamic model of the drive system. 
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Relations of the displacements of the screw rotation around 

z and y axes with the bending displacements of the screw are: 
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From the Ref. [13], the screw vibrations can be separated in 

time and space, which are: 
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  (8) 

 
First, Eqs. (1), (6)-(8) are substituted into Eqs. (2)-(4); then 

using Eq. (5) and the Lagrange equation yields the dynamic 
equation of the system: 

 
{ } { } { } { }M q C q K q F+ + =é ù é ù é ùë û ë û ë û&& & ,  (9) 

 
where { } { },u v w y z m m mq q q q q q q s q qj q y j q y= { }q&  
and { }q&&  denote the velocity and acceleration, respec-
tively. Mé ùë û , Cé ùë û  and Ké ùë û express the mass, damping and 
stiffness matrixes of the system, and{ }F is the force vector. 

 
3. The frequency equation and mode shape of the screw 

From Ref. [5], y direction vibrations of the axially pre-
tensioned screw are expressed as: 
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To let solutions of Eq. (10) be: ( ) i

0, px tv x t V e e w=  and 
( ) i

0, px tx t Ψ e e wy = . Substituting the solutions into Eq. (10) 
yields: 
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For the non-trivial solution, one has 
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From Eq. (12), one can get p a= ± and ip b= ± . 
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The mode shapes can be expressed as: 
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If a is a imaginary, sin ( )a and cos( )a replace the sinh ( )a  

and cosh ( ).a  Substituting the above expressions into Eq. 
(10) yields:  
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When the screw is supported elastically at both ends, 

boundary conditions of the lateral vibration are: 
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The above equations are expressed by the matrix form: 
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{ } 0A c =é ùë û ,  (14) 

 
where { } { }1 2 3 4

Tc C C C C= . For the non-trivial solu-
tion，the coefficient matrix must be singular, so that the fre-
quency equation is: 

 
0A = .  (15) 

 
Substituting Eq. (15) into Eq. (14) and setting 1 1C =  yields 

the vector{ }c  and the corresponding mode shapes of the lat-

eral vibration. For the orthonormality of the mode shapes, 

letting ( )2 2
0

1
L

v AV x dxc r =ò and ( )2 2
0

d 1
L

IΨ x xyc r =ò yields:  
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The orthogonal mode shapes of the lateral vibration can be 

expressed as: 
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Since the axial pre-tension force does not change the dy-

namic models of the longitudinal and torsional vibrations of 
the screw, the frequency equations and mode shapes do not 
change. From Ref. [13], the frequency equation of the longi-
tudinal vibration of the screw supported elastically at both 
ends is expressed as: 

 

( )22 2 2 2 sin 2 cosu u
u u ub u uub

u u
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The orthogonal mode shape is: 
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The frequency equation of the torsional vibration of the 

screw supported elastically at both ends is: 
 

( )22 2 2 2 sin 2 cosbbG J k a L k GJ a L
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The orthogonal mode shape is: 
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4. Calculation and analysis 

4.1 The whirl speed and critical speed of the screw 

The forward whirl mode is primary, so the forward whirl 
speed and critical speed of the screw are analyzed. Letting 

52.07 10E = ´ MPa, 48.3 10G = ´ Mpa, F = 0, 0Ω = , k = 0.9, 
37.85 10r = ´ kg·m-3, L = 1000 mm, d = 20 mm, bky  = 0, the 

lateral vibration frequency of the screw is calculated according 
to Eq. (15). The first two orders of frequency as a function of 
the bearing’s lateral stiffness are plotted in Fig. 4. When the 
bearing’s lateral stiffness approaches to infinity, the first two 
orders of frequency are closer and closer to the natural fre-
quencies of the beam under simple supported. This means the 

 
(a) 

 

 
(b) 

 

 
 
Fig. 4. The screw’s lateral vibration frequency as a function of the 
bearing’s lateral stiffness kvb: (a) The first order frequency; (b) the 
second order frequency. 
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work of this paper is correct. 
Letting vbk  = 200 N·μm-1, bky  = 200×106 N·rad-1, the whirl 

speed of the screw is calculated as a function of the pre-
tension force F, rotational speed Ω and the screw’s diameter d, 
which are plotted in Figs. 5-7. 

One can see that the whirl speed increases with an increas-
ing of the pre-tension force F due to the lateral stiffness, of 
rotational speed Ω  due to the gyroscopic effect, and of the 
screw’s diameter d due to the inertia.  

In Fig. 7, the screw’s working rotational speed Ω = 4000 
r·min-1. The screw will pass though the first-order resonance in 
start-up when d < dc (dc is defined as the critical diameter), and 
the screw will not pass though resonance in start-up when 
d > dc, but when d = dc, the screw’s rotational speed is the 
critical speed, so the screw cannot work normally. Fig. 7 indi-
cates that resonance can be avoided by adjusting the screw’s 
parameters in an appropriate range. 

The critical diameter of the screw’s resonance varies ac-
cording to different pre-tensional forces. Fig. 8 shows that the 
bigger the pre-tensional force is, due to increasing the lateral 
stiffness of the screw, the smaller dc becomes. 

Fig. 9 indicates that the whirl speed of the screw depends on 
the lateral supporting stiffness of the bearings. When with a 
low speed, the lateral supporting stiffness has little effect on dc, 
but the higher the speed is, due to the gyroscopic effect, the 
bigger the effect is. 

Fig. 10 shows that the whirl speed of the screw depends on 
the bearing rotational stiffness. When with a low speed, as the 
lateral stiffness, the bearing rotational stiffness has little effect 
on dc. 

 
(a) 

 

 
(b) 

 
Fig. 5. The screw’s whirl speed as a function of the pre-tension force F
when Ω = 4000 r·min-1; d = 20 mm: (a) The first order whirl speed; (b) 
The second order whirl speed. 

 

 
(a) 

 

 
(b) 

 
Fig. 6. The screw’s whirl speed as a function of the rotational speed
Ω when F = 2000 N; d= 20 mm: (a) The first order whirl speed; (b) 
the second order whirl speed. 

 

 
(a) 

 

 
(b) 

 
Fig. 7. The screw’s whirl speed as a function of the diameter d
when Ω = 4000r·min-1; F = 2000 N: (a) The first order whirl speed; (b) 
the second order whirl speed. 

 

 
 
Fig. 8. The effect of pre-tension force F on the critical diameter dc . 
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Fig. 11 is the screw’s whirl speed depends on the diameter d 
and rotational speed Ω . The screw will pass though different 
resonance speeds and orders if it’s working rotational speed 
adds up to 6×104 r·min-1. In Fig. 11(a) d = 10 mm, the screw 
passes through six orders resonance; but in Fig. 11(d) d = 80 
mm, the screw passes through three orders resonance. When 
the diameter of the screw increases, the natural vibration fre-
quency of the screw also increases. So the resonance orders 
decrease when it reaches the same speed. 

 
4.2 The axial vibration amplitude of the cutter’s work point 

The frequencies and corresponding mode shapes are substi-
tuted into Eq. (9). Then the equation is solved by the mode 
superposition and Runge-Kutta method to analyze axial vibra-
tion of the cutter work point. 

From Eq. (1), the worktable translation 1 ds lq= produced 
by the screw rotation is linear, but the translation 2s =  

( ),m d xu t qlf lq+ + caused by the system vibration is fluctu-
ant. If the distance from the cutter’s work point to the joint 
point between the screw and the nut are yR in y direction and 
the distance zR  in z direction, the worktable rotation around y 
and z axes can cause the work point to displace axially. There-
fore, the fluctuant part of axial translation of the work point 
can be expressed: 

 
( ),v m d x y m z ms u t q R Rlf lq y q= + + + - .  (21) 

 
The fluctuant part is the main factor affecting the precision 

of the machine tool worktable positioning. Letting vs is the 

vibration amplitude of vs , the following analysis focuses on vs . 
Letting Ω  = 4000 r·min-1, a = 300 mm, b = 200 mm, F = 

2000 N, yR  = 200 mm, zR  = 200 mm, Fm = 2000 N, ubk  = 
200 N/μm, vbk  = 200 N/μm, bky  = 300×106 N/rad, bkj  = 
50 N/rad, vk  = 200 N/μm, ky  = 300 N/μm， kj  = 
50N/rad, dik  = 100 N/μm， bik  = 100 N/μm，i = 1, 2, 3, 4, 
each damping coefficient is 20 N.s/m.  

The axial vibration amplitudes of the work point are pre-
dicted as shown in Figs. 12-15. Each of the figures shows that 
increasing the screw’s diameter can contribute to decrease the 
axial vibration amplitude of the work point because of increas-
ing the stiffness of the system. From Figs. 12-14, the axial 
vibration amplitude of the work point increases when the 
worktable mass increases due to the mass inertia increasing. In  

 
 
Fig. 9. The effect of the bearing’s lateral stiffness on critical diameter dc. 

 

 
 
Fig. 10. The effect of the bearing’s rotational stiffness on the critical 
diameter dc . 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
 
Fig. 11. The screw’s whirl speed as a function of the diameter d and 
rotational speed Ω : (a) d = 10 mm; (b) d = 20 mm; (c) d = 40 mm; (d)
d = 80 mm.  
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Figs. 12-14, the screw lead is different, and comparing the 
three figures one can reach the conclusion that when the screw 
lead increases, the moving speed of the worktable increases, 
so it leads to the axial vibration amplitude of the work point 
increasing. Fig. 15 shows that axial contact stiffness of the 
screw with the nut has evident effect on the axial vibration 
amplitude of the work point. The large axial contact stiffness 
ku of the screw with the nut can decrease the axial vibration 
amplitude of the work point. So the double nuts can decrease 
the axial fluctuate translation of the work point because of 
increasing the axial stiffness. 

From Eq. (21), the worktable rotation around y and z axes 
can cause the work point to displace axially. Therefore, the 
larger the distances from the work point to the joint point of 
the worktable and the screw are, which means that yR and 

zR are larger, the larger the axial vibration of the work point is. 
 

4.3 Analysis of the stability of the feed system 

According to the Lyapunov theory, the Lyapunov function 
is required to analyze the stability of the system. For the non-
linear system, the solution of the state transition matrix can 
help to judge the stability of the system. In this paper, the nu-
merical method is used. If the working time extends infinitely, 
and the system is still stable, the whole system follows up; if 
the vibration amplitude expands infinitely following the time, 
the whole system is in an unstable constitution. 

Through the above analysis of the screw and the worktable, 
the mass of the worktable and its moving speed along the 
screw (which is, the screw lead) have common influence on 
the dynamic response of the whole system. The mass ratio of 

the worktable to the screw is m
AL

e
r

= , and the ratio of the  

screw lead to its length is h
L

m = ; thus the system stability can  

be analyzed on the plane e and m  during the time of t = 3Tp. 
The effect of the screw rotational speed on the system stable 

border is shown in Fig. 16. The system stability weakens 
when the rotational speed increases for the increasing of the 
gyroscopic it brings. The contact stiffness of the worktable 
and the guide way bottom has an effect on the stable border, 
which is shown in Fig. 17. The effect of the axial support 
stiffness of the bearing is shown in Fig. 18. The effect of the 

 
 
Fig. 12. The effect of worktable mass on work point axial vibration 
amplitude when h = 10 mm, ku = 40 N·μm-1. 

 

 
 
Fig. 13. The effect of worktable mass on work point axial vibration 
amplitude when h = 20 mm, ku = 40 N·μm-1. 

 

 
 
Fig. 14. The effect of worktable mass on work point axial vibration 
amplitude when h = 40 mm, ku = 40 N·μm-1. 

 

 
 
Fig. 15. The effect of axial contact stiffness between screw and nut on
work point axial vibration amplitude when h = 10 mm, m = 100 kg. 

 

 
 
Fig. 16. The effect of the screw’s rotational speed on the stable border. 
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axial contact stiffness of the screw and the nut is shown in Fig. 
19. From Figs. 17-19 one can see that increasing the contact 
stiffness is beneficial to the system stability, of which the con-
tact stiffness of the worktable and the guide way bottom has 
its obvious effect. The effect of the screw diameter is shown in 
Fig. 20, and it shows that the bigger diameter of the screw 
also weakens the stability because of increasing the rotational 
inertia. 

5. Conclusions 

Considering the contact deformation of the system, a dy-
namic model of the ball screw drive system is established by 
the Lagrange equation. The model is solved by the mode su-
perposition and Runge-Kutta method. The paper discusses the 
whirl speed and critical speed of the screw, the axial vibration 
amplitude of the cutter’s work point, and also analyzes the 
stability of the drive system. Through above analysis, the fol-
lowing conclusions are obtained: 

The screw’s whirl speed is affected by the pre-tension force, 
the rotational speed, the diameter of the screw and the bear-
ing’s stiffness. Resonance can be avoided by designing the 
system’s parameters reasonably. 

The axial vibration amplitude of the work point is affected 
by the worktable’s mass, the lead of the screw, and axial con-
tact stiffness of the screw with the nut. The positioning accu-
racy of the work table can be improved by increasing axial 
contact stiffness of the screw with the nut and the screw’s 
diameter or decreasing screw’s lead. 

To increase the system stability, one can increase the con-
tact stiffness of the system, especially the contact stiffness of 
the worktable and the guide way bottom, and also can de-
crease the rotational speed or the diameter of the screw. 
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Nomenclature------------------------------------------------------------------------ 

t : Time  
s , yq , zq : Displacements of the worktable in x, y, and z direc-

tions, respectively  
mj , mq , my : Angular displacements of the worktable around x, y 

and z axes, respectively 
( ),u x t  : Axial displacement of the screw in x direction 
( ),v x t , ( ),w x t : Lateral displacements of the screw in y and z 

directions, respectively 
( ),x tj  : Torsional angle of the screw around x axis 
( ),x tq , ( ),x ty : Rotational angles of the screw around y and z 

 
 
Fig. 17. The effect of the contact stiffness between the worktable and 
the guide bottom on the stable border.  

 

 
 

 
Fig. 18. The effect of the axial stiffness of the bearings on the stable 
border. 

 

 
 
Fig. 19. The effect of the axial contact stiffness ku between the screw 
and the nut on the stable border. 

 

 
 
Fig. 20. The effect of the screw’s diameter on the stable border. 
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axes, respectively 
vs , vs  : Fluctuant displacement and it’s amplitude of the cutter 

work point in x direction, respectively 
ubk  : Axial stiffness coefficient of the screw bearings in x 

direction 
vbk  : Lateral stiffness coefficient of the screw bearings in y 

and z directions 
bkj  : Torsional stiffness coefficient of the screw bearings 

around x axis 
bky  : Rotational stiffness coefficient of the bearings around y 

and z axes 
ubc  : Axial damping coefficient of the bearings in x direction 
vbc  : Lateral damping coefficient of the bearings in y and z 

directions 
bcj  : Torsional damping coefficient of the bearings around 

x axis 
bcy  : Rotational damping coefficient of the bearings around y 

and z axes 
uk  : Contact stiffness coefficient between the screw and nut 

in x direction 
vk  : Contact stiffness coefficient between the screw and nut 

in y and z directions 
kj  : Contact stiffness coefficient between the screw and nut 

around x axis 
ky  : Contact stiffness coefficient between the screw and nut 

around y and z axes 
uc  : Contact damping coefficient between the screw and nut 

in x direction 
vc  : Contact damping coefficient between the screw and nut 

in y and z directions 
cj  : Contact damping coefficient between the screw and nut 

around x axis 
cy  : Contact damping coefficient between the screw and nut 

around y and z axes 
1dk , 2dk , 3dk , 4dk : Contact stiffness coefficients between the 

worktable bottom and the guide way 
1bk , 2bk , 3bk , 4bk : Contact stiffness coefficients between the 

worktable sides and the guide way 
1dc , 2dc , 3dc , 4dc : Contact damping coefficients between the 

worktable bottom and the guide way 
1bc , 2bc , 3bc , 4bc : Contact damping coefficients between the 

worktable sides and the guide way 
m  : Worktable mass 
h : Lead of the screw  
L  : Screw length 
E  : Young’s modulus of the screw material 
G  : Shear modulus of the screw material 
r  : Density of the screw material;  
k  : Cross-section shape factor of the screw  
d  : Diameter of the screw 

A  : Cross section area of the screw, 
2π

4
dA =   

I  : Second moment of inertia of the screw, 
4π

64
dI =  

J  : Polar moment of inertia of the screw, 
4π

32
dJ =  

Ω  : Rotational speed of the screw 
dq  : Rotational angle of the screw, d Ωtq =  
w  : Lateral vibration frequency of the screw 

uw  : The axial vibration frequency of the screw 
jw  : Torsional vibration frequency of the screw 

n : Whirl speed of the screw 
l  : Speed coefficient of the worktable moving along the 

screw, 
2π
hl =  

pT  : Period of the worktable moving along the screw,  

2π
p

LT
hΩ

=  

a:   Length of the worktable in x direction 
b : Length of the worktable in y direction 

xI , yI , zI : Moments of inertia of the worktable around x, y, z 
axes, respectively, 

2

12 2x
m bI æ ö= ç ÷
è ø

,
2

12 2y
m aI æ ö= ç ÷
è ø

,
2 2

12 2 2z
m a bI
é ùæ ö æ öê ú= +ç ÷ ç ÷
ê úè ø è øë û

 

yR  : Distance between the cutter work point and the joint 
point of the screw with the nut in y direction 

zR  : Distance between the cutter work point and the joint 
point of the screw with the nut in z direction 

mF  : Load exerted on the worktable  
F : Axial pre-tension force of the screw 
m  : Ratio of the screw’s lead to its length 
e  : Ratio of the worktable’s mass to the screw’s mass 
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The energy expressions in Eqs. (2)-(4) 
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