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Abstract 
 
Many signal processing methods have been developed to detect gear system faults. However, signal noise greatly influences the moni-

toring process. In addition, useful fatigue information can be misinterpreted by other useless oscillation components in vibration signal 
and noise. These conditions lead to unclear results that hinder researchers from effectively detecting faults. To overcome this problem, 
this study first adopts wavelet theory to remove noise and then utilizes the empirical mode decomposition characteristics of the Hilbert-
Huang transform to analyze useful Intrinsic mode functions (IMFs) on the basis of signal modulation and correlation theory. Sifted IMFs 
are then reconstructed as new signals called D-E signals. Finally, Hilbert energy spectrum and kurtosis value are used to complete fault 
diagnosis. This study compares the proposed method with the Discrete wavelet transform (DWT) method to verify the superiority of the 
proposed method. Experiment results from using different degrees of gear crack demonstrate that the proposed method is more sensitive 
in gear fault detection than the DWT method.  
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1. Introduction 

The gear system is an important component of a mechanical 
transmission system. The failure of the gear system damages 
machine equipment and causes economic losses. Therefore, 
detecting gear faults efficiently and correctly is significant. 
Gear diagnosis technology has been developed through many 
methods. As a main representative method, the signal process-
ing method is important in detecting machine faults. 

Gear systems are normally dominated by regular compo-
nents. Gear speed and load are almost constant. Gear stress 
and stiffness change during certain failures, such as pitting, 
wear, scoring, and broken teeth. These changes can result in 
fluctuating forces, which are not characteristic of healthy ma-
chine conditions.  

Analyzing vibration signals is one of the important steps in 
signal processing. Such analysis is appropriate when monitor-
ing gearboxes because any change in the vibration signature of 
a gearbox is most likely caused by an altered gearbox condi-
tion. This is because gear defects alter both the amplitude and 
phase modulations of gear vibrations. Transient components 
caused by short duration events, such as repeated impacts, 
occur when certain faults exist on gears. The faults produced 

alter amplitude and energy [1]. Fig. 1 shows a simple physical 
explanation for signal processing.  

Fourier transform has greatly contributed to the field of 
health monitoring. Fourier transform is known as a compre-
hensive signal analysis method, but it cannot reflect local time 
events and the distribution of these events. Nevertheless, in-
stantaneous parameters are important information that indi-
cates faults [2]. Such disadvantage can be overcome with 
time-frequency analysis, which facilitates the identification of 
frequency changes with time and the effective extraction of 
local information. As one of the representatives of various 
time-frequency methods, wavelet theory has been developed 
and used widely [3]. The wavelet analysis method provides 
excellent localization analysis from the time-frequency do-
main of non-stationary signals. This method can reflect local 
signal characteristics and extract instantaneous information 
from signals. Additionally, the wavelet method is a multi-
scale analysis that is performed through scaling and translation 
[4]. The present study uses these advantages to accomplish 
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Fig. 1. Diagram of the physical explanation behind signal processing. 
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denoising.  
Discrete wavelet transform (DWT) also draws significant 

attention in the condition monitoring field. However, DWT 
still has disadvantages, including interference terms, border 
distortion, and energy leakage, all of which generate certain 
undesired spikes across frequency scales and yield confusing 
results that are difficult to interpret [5].   

Not all oscillation components in vibration signals contain 
fatigue information. Useless parts can be mixed with useful 
parts, and such mix complicates results [6]. This study uses 
the Hilbert-Huang transform (HHT) proposed by Huang et al. 
(1998) to retain useful components and obtain clear results. 
The HHT consists of Empirical mode decomposition (EMD) 
and Hilbert transform [7]. As the main part of the HHT, EMD 
produces a series of oscillatory functions called Intrinsic mode 
functions (IMFs) and a residual component after a specific 
algorithm. Certain IMFs with low frequency and low energy 
usually lack useful information [8]. Moreover, a large amount 
of time is required to analyze all IMFs. The results are also 
unclear for researchers to analyze. Therefore, this research 
combines the characteristics of EMD and correlation theory to 
sift useful IMFs that are highly correlated with denoising sig-
nals. The sifted IMFs are then reconstructed as new signals 
called D-E signals. These D-E signals focus on gear fault de-
tection by analyzing the Hilbert energy spectrum. Finally, the 
kurtosis parameter shows that the proposed method is sensi-
tive in fault detection. 

The method used in this study is compared with DWT to 
verify the superiority of the proposed method. This compari-
son focuses on the vibration signal, Hilbert energy spectrum, 
and kurtosis value of both methods. A gearbox experiment is 
also performed using a healthy gear and gears with three crack 
degrees: small crack, big crack, and tooth cut. The final ex-
periment results show that the proposed method can identify 

useful IMFs more effectively and complete gear fault detec-
tion more efficiently and accurately than the DWT method. 

The rest of the paper is organized as follows. Sec. 2 dis-
cusses wavelet denoising theory and the steps involved in 
wavelet denoising. Sec. 3 briefly introduces DWT. The EMD 
algorithm and Hilbert spectral analysis are also introduced. 
Sec. 4 presents the cross-correlation coefficient assumption 
and equation. Sec. 5 illustrates kurtosis theory. Sec. 6 intro-
duces the experiment rigs and specifications. The experiment 
results are then analyzed. Finally, Sec. 7 presents the conclu-
sion. The flow chart of the analysis process is shown in Fig. 2. 

 
2. Wavelet denoising 

2.1 Wavelet denoising theory 

A common denoising problem model is as follows [9]:  
 

i i iy f zs= +    (1) 
 

where iy  is the signal with noise and if  is the clean signal 
without noise. iz  is the independent, identically distributed 
Gaussian white noise ( ~ (0,1))iid

iz N ; and s  is the noise 
level. This study utilizes the different characteristics between 
the clean signal and noise under wavelet transform to separate 
the signal and noise on the basis of wavelet decomposition 
coefficients. 

The wavelet decomposition on the signal with noise is as 
follows [10]. The number of decomposition levels is assumed 
to be 3. 

 
1 1 2 2 1 3 3 2 1x a d a d d a d d d= + = + + = + + +    (2) 

 
where ia  is the approximate part of the decomposition and 

id  is the detail part of the decomposition ( 1,2,3).i =  Ap-
proximates correspond to low frequency components while 
details contain high frequency components. The process dia-
gram is shown in Fig. 3. 

A wavelet threshold is then used to solve the wavelet coef-
ficient and to reconstruct the signal. Thresholding wavelet 
coefficients are applied to the detail coefficients instead of the 
approximation coefficients, given that the approximation part 

 
 
Fig. 2. Analysis process flow chart. 

 

 
 
Fig. 3. Wavelet decomposition process diagram. 
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usually contains important signal information.  
 

2.2 Wavelet denoising steps 

In this study, wavelet denoising is divided into three parts. 
(1) Wavelet decomposition on the acquisition data. The sig-

nal model is expressed as Eq. (1). 
(2) Thresholding of wavelet coefficients. This study uses 

the famous threshold form proposed by Donoho et al. The 
equation is expressed as follows [11]:  

 
2log .nt ns=    (3) 

 
When n approaches infinity, signal noise can almost be 

completely removed. Given the large data length used this 
study, Eq. (3) is adopted to obtain the threshold value. 

Next, threshold is assigned on the basis of the modified de-
tail coefficients. Soft thresholding provides smoother results 
compared with hard thresholding. Eq. (3) is also solved 
through soft thresholding, which can obtain excellent denois-
ing effects [12]. Soft thresholding is expressed as follows: 

 
,
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(3) Signal reconstruction after inverse transformation of 

processed wavelet coefficients. The formula combined with 
Eq. (1) is as follows [13]: 

 
1

0 0n sf w w dh-=    (5) 
 

where nf  is the new signal after denoising and 0w  is the 
wavelet coefficient.  

 
3. DWT and Hilbert-Huang transform 

3.1 A brief introduction to DWT 

Given the wide use of the DWT method, it is introduced 
briefly in this section. DWT is any wavelet transform for 
which wavelets are discretely sampled. DWT decomposes 
signals into different frequency bandwidths. DWT can be 
expressed as [14] 

 
/2 /2

, 0 0 0( ) ( )m m
m nT x t a a t nb dty- -= -ò   (6) 

 
where x(t) is the analyzed signal, y  is the mother wavelet 

0
ma , m∈Z is the dilation parameter discretization, and 0b  is 

the translated step. A vibration signal contains different com-
ponents, and the distribution of fault components after wavelet 
decomposition differs in each scale [15]. The DWT results are 
divided into the low-frequency approximate part and the high-
frequency detail part. 

3.2 EMD algorithm 

The EMD process is based on the assumption that a signal 
involves several IMFs and a residual. Each IMF should satisfy 
two conditions: (1) the number of extrema and the number of 
zero crossing in a dataset should either be equal or differ at 
most by one; (2) the mean value of the envelope is defined by 
the local maxima, and the envelope defined by the local min-
ima is zero at any point. Each IMF is independent and can be 
both amplitude and frequency modulated. The EMD method 
can decompose any time-series signal x(t) according to the 
assumptions. The details of the decomposition algorithm are 
as follows [16]: 

(1) All the local extreme point values in a signal are deter-
mined, and cubic spline interpolation function is used to fit the 
upper and lower signal envelopes. 

(2) The mean value of the upper and lower envelopes is des-
ignated as m1. The first component of the difference between 
data x(t) and m1 is expressed as h1, that is, 

 
1 1( ) .h x t m= -    (7) 

 
(3) Whether h1 is an IMF is determined. If h1 is not an IMF, 

then h1 is regarded as the original signal to repeat step 1. The 
mean value of the upper and lower envelopes of h1 is ex-
pressed as m11. Similar to Eq. (5), a new signal component is 
calculated as 

 
11 1 11 .h h m= -    (8) 

 
(4) The algorithm is repeated k times until h1k satisfies the 

two IMF conditions. The first IMF component is denoted as 
C1. 

(5) C1 is extracted from x(t), and the first residue r1 is ob-
tained. 

 
1 1( ) .r x t C= -  (9) 

 
(6) Residue r1 is regarded as the original signal to repeat the 

above sifting process. After n times of sifting, the algorithm 
can be stopped if residue rn is constant or a monotonic func-
tion. 

(7) Finally, the original signal x(t) can be expressed as 
 

1

( ) .
n

i n
i

x t C r
=

= +å    (10) 

 
The residue component does not actually require analysis 

because this component is a trend or a constant, which con-
tains minimal useful information. 

 
3.3 Hilbert spectral analysis 

The second part of the HHT is Hilbert transform. The Hil-
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bert transform yi(t) of one of the IMFs (Ci) in Eq. (9) can be 
defined as 

 
1 ( ')( ) '

'
i

i

C ty t P dt
t tp

¥

-¥
=

-ò  (11) 

 
where P is the Cauchy principal value of the singular integral. 
The analytic function can be obtained through Eq. (5) as fol-
lows: 

 
( )( ) ( ) ( ) ( ) ij t

i i i iz t C t jy t a t e q= + =    (12) 
 

where 2 2 ( )1, ( ) ( ) ( ) , ( ) arctan
( )

i
i i i i

i

y tj a t C t y t t
C t

q= - = + = .  

The instantaneous frequency can be expressed as follows on 
the basis of the instantaneous phase function ( )i tq : 

 
( )( ) i

i

d tt
dt
qw = .   (13) 

 
The Hilbert-Huang spectrum ( , )H tw  is the time-

frequency distribution with both amplitude and frequency as 
functions of time. From ( , )H tw , the marginal spectrum 

( )h w  is expressed as 
 

0
( ) ( , )

T
h H t dtw w= ò    (14) 

 
where T is the total data length. In addition to ( )h w , instanta-
neous energy IE(t) is expressed as [7] 

 
2

1

2( ) ( , ) .IE t H t d
w

w
w w= ò   (15) 

 
According to Eq. (14), IE is a function of time and is used 

to check energy fluctuations. 
 

4. Cross correlation 

The original signal x(t) is assumed to be at time t1, and any 
one of the IMFs is C(t) at time t2. Time delay t  is defined as 

2 1t tt = - . The cross-correlation coefficient is defined as [17] 
 

( )xc
xy

x c

C tr
s s

=    (16) 

 
where ( )xcC t  is the cross covariance of x(t) and C(t), xs  is 
the standard variance of x(t), and cs  is the standard variance 
of C(t). 

x(t) and C(t) are fully related when 1xcr = . If x(t) and 
C(t) are uncorrelated, then 0xcr = . The cross-correlation 
coefficient value is high and close to 1, and signals x(t) and 
C(t) are highly correlated. Therefore, an IMF component with 
high correlation preserves the most denoising signal informa-
tion. 

5. Kurtosis 

Kurtosis is the degree of peakedness of a distribution. Its 
coefficient is defined as 

 
4

4
4 4

[( ) ] ( )x x

x x

E Xkurt m m
s s
-

= =   (17) 

 
where 4( )xm  is the fourth moment of the mean of a signal 
and xs  is the standard deviation of a signal [18]. 

Kurtosis describes how peaked or flat a distribution is. Kur-
tosis is widely used as a measure in machinery condition 
monitoring; for example, early damage in the rolling elements 
of a machinery often results in vibrator signals, the kurtosis 
value of which significantly increases because of faults in 
such rotating system [17]. 

 
6. Experiment 

6.1 Experiment rigs 

The gears used in the experiment consist of a healthy gear 
and gears with three crack degrees: small crack, big crack, and 
tooth cut. The cracked gear conditions are shown in Fig. 4. 

The experiment rig consists of a 0.75 KW DC motor and a 
single-stage spur gear on two parallel shafts, as shown in Fig. 5. 

The crack is located on a driving gear with 24 teeth while 
the driving gear has 25 teeth. Table 1 presents the detailed 
experiment specifications. 

A speed controller connected to the input shaft controls the 
rotation speed. Torque load is provided to the gearbox from 
the eddy current magnetic brake. The device has a maximum 
torque capacity of 12 Nm. Vibration signals are acquired by 

    
       (a)            (b)            (c)            (d) 
 
Fig. 4. Gear conditions: (a) healthy; (b) small crack; (c) big crack; (d) 
tooth cut. 

 

 
 
Fig. 5. Experiment rig. 
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using a Bruel and Kjaer 4506 triaxial accelerometer on the 
input shaft bearing housing. Signal acquisitions are conducted 
using an LMS Mobile and are sampled at 8.2 KHz. 

 
6.2 Results analysis 

6.2.1 Sifting useful signal components 
For the DWT method, this study uses db10 wavelet and 

four decomposition steps. The results for the small crack gear 
are shown in Fig. 6, which presents the approximate part of 
the fourth decomposition a4. The other components are detail 
components from the first to fourth decompositions d1-d4. 
The cross correlation between the DWT results and original 
signal is used as evaluation criteria to determine the useful 
components. The correlation coefficients are presented in 
Table 3. In Table 3, d2 and d3 have a high correlation with the 
original signal, which means that these decompositions con-

tain a large amount of useful information. Then, d2 and d3 are 
reconstructed as reconstruction signals. 

The steps involved in the analysis of the healthy, big crack, 
and tooth cut gears are similar to those in the analysis of small 
crack gears. For the three gear types, the cross-correlation 
coefficient results are stated directly in Tables 3-5. The first 
two components with the highest correlation with the original 
signal in Tables 4-6 are chosen to be reconstructed as recon-
struction signals. 

The rotational speed of the pinion axis is 420 rpm. There-
fore, the duration of one cycle is 0.1429 s. The original vibra-
tion signal and wavelet denoising signal of the four gears are 
shown in Fig. 7. This study uses Root mean square error 
(RMSE) and signal-to-noise ratio (SNR) to verify the denois-
ing results for each wavelet denoising [16, 19]. RMSE and 
SNR are important indicators in verifying the effect of signal 
denoising. The RMSE and SNR values for the denoising re-
sults are presented in Table 6. Table 6 shows a small RMSE 
value and a large SNR value. The denoising process is thus 
credible. Similar to that in the DWT method, a small crack 

Table 1. Experiment specification. 
 

Parameters Pinion Gear 

Number of teeth 24 25 

Deport angle 0.00 0.00 

Pressure angle 20° 20° 

Height 6.53 6.53 

Module 3 3 

Face width 30 30 

Pitch diameter 72.72 75.75 

Diameter of base 68.34 71.18 

Diameter of head 78.78 81.81 

 
Table 2. Cross-correlation coefficient values between the original 
signal and DWT results for the small crack gear. 
 

Value a4 d4 d3 d2 d1 

Orig. 0.2484 0.3263 0.6166 0.6100 0.2800 

 

 
 
Fig. 6. DWT results for the small crack gear. 

 

Table 3. Cross-correlation coefficient values between the original 
signal and DWT results for the healthy gear. 
 

Value a4 d4 d3 d2 d1 

Orig. 0.1336 0.7489 0.5139 0.3762 0.1257 

 
Table 4. Cross-correlation coefficient values between the original 
signal and DWT results for the big crack gear. 
 

Value a4 d4 d3 d2 d1 

Orig. 0.1246 0.3049 0.6143 0.6313 0.3401 

 
Table 5. Cross-correlation coefficient values between the original 
signal and DWT results for the tooth cut gear. 
 

Value a4 d4 d3 d2 d1 

Orig. 0.2333 0.3079 0.6510 0.6008 0.2571 

 

 
 
Fig. 7. Original and denoising signals of the four types of gears. 
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gear is selected for the EMD process analysis. The other gear 
types are directly analyzed, and the results are presented in the 
paper. 

Fig. 8 displays the EMD results of the small crack gear vi-
bration signal. Many IMFs occur after EMD. Hence, analyz-
ing all IMFs and residues in research or in practical industry 
tasks would be time consuming. Not all IMFs actually contain 
useful gear damage signal information. Certain IMFs can even 
affect damage detection results by polluting impact informa-

tion. Cross-correlation coefficients can be calculated to deter-
mine the IMFs that preserve the most information of the origi-
nal signal and consequently eliminate useless IMFs. Table 7 
shows the cross-correlation coefficient between the denoising 
signal and the IMFs. Given that the components from C9 to 
the residue part do not contain useful information with low 
frequency and low energy, the cross-correlation analysis of 
these components is neglected [8].   

Similar to that in the DWT method, the cross-correlation 
coefficient results for the three gear types are shown directly 
in Tables 8-10.  

The results in the table show that the coefficient values of 
C1 and C2 are higher than those of the others. The next re-
search step focuses on C1 and C2. Fatigue crack actually af-
fects tooth stiffness and causes load fluctuation, which 
changes vibration amplitude. These vibration signal changes 
are called amplitude and phase modulations. Modulations 
generally have clearer effects on high carrier frequency signals 
than on low carrier frequency signals. Therefore, fault infor-
mation is very clear in high frequency signals [2, 20]. These 
clear effects also agree with the cross-correlation comparison 

Table 6. RMSE and SNR values for the denoising results. 
 

Types of gear RMSE SNR 

Healthy 2.97e-04 11.9292 

Small crack 3.33e-04 45.1204 

Big crack 6.85e-05 57.3285 

Tooth cut 8.71e-05 34.5764 

 
 

 
 

 
 
Fig. 8. EMD results of the small crack gear signal. 

 

Table 7. Cross-correlation coefficient values between the Denoising 
signal (D.S) and the IMFs for the small crack gear. 
 

Value C1 C2 C3 C4 

D.S 0.7391 0.3354 0.1442 0.0962 

Value C5 C6 C7 C8 

D.S 0.0521 0.0293 0.0092 2.4e-005 

 
Table 8. Cross-correlation coefficient values between the denoising 
signal and C1-8 for the healthy gear. 
 

Value C1 C2 C3 C4 

D.S 0.7930 0.5303 0.0763 0.0165 

Value C5 C6 C7 C8 

D.S 0.0057 3.5e-004 4.2e-004 7.5e-005 

 
Table 9. Cross-correlation coefficient values between the denoising 
signal and C1-8 for the big crack gear. 
 

Value C1 C2 C3 C4 

D.S 0.6633 0.2832 0.0498 0.0301 

Value C5 C6 C7 C8 

D.S 0.0179 0.0125 0.0042 1.1e-004 

 
Table 10. Cross-correlation coefficient values between the denoising 
signal and C1-8 for the tooth cut gear. 
 

Value C1 C2 C3 C4 

D.S 0.7063 0.3800 0.1122 0.2874 

Value C5 C6 C7 C8 

D.S 0.1939 0.0158 0.0022 1.7e-004 
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results. Therefore, C1 and C2 are combined to reconstruct a 
D-E signal. 

 
6.2.2 Gear diagnosis 

Gear diagnosis with different methods is compared accord-
ing to the useful components obtained after DWT and IMF 
sifting based on the correlation coefficient calculation. The 
healthy gear is regarded as the reference of normal condition. 
Fig. 9 presents the reconstruction signal of the two methods. 

The figure obviously shows clearer peaking impacts every 
0.14 s (7 Hz) with the proposed method than with the DWT 
method. These periodic impacts do not appear in the healthy 
gear but are evident in the cracked gear for each rotation. Thus, 
these impacts are called fault impacts. 

Fig. 10 also shows that the results of the proposed method 
are much clearer than those of the DWT method because 
EMD is an adaptive process unlike the DWT process, which 
depends on selected wavelets and man-made decompositions. 

Additionally, IMFs are almost orthogonal and monocompo-
nent. IMFs can capture instantaneous information more effi-
ciently than approximate and detail parts after DWT. Energy 
leakage occurs after DWT and thus affects results. In addition, 
wavelet transform cannot achieve a fine resolution in both 
time and frequency domains simultaneously because of the 
limitation of the Heisenberg-Gabor inequality [5]. 

Through wavelet denoising and retention of useful oscilla-
tion components, the proposed method can detect faults sensi-
tively. The results are shown clearly for researchers to com-
plete their health monitoring tasks. 

This study uses kurtosis parameters statistically to confirm 
the superiority of the proposed method. A damaged gear pro-
duces a vibration signal with sharp peaks, and then the distri-
bution function of this gear becomes noticeably sharp. There-
fore, the kurtosis value is higher for the cracked gears than for 
the healthy gear. Table 11 shows the kurtosis values of the 
reconstruction signal obtained with DWT and the D-E signal 
obtained with the proposed method for the four gear types. 
The kurtosis values are plotted in Fig. 11. 

According to Table 11 and Fig. 11, the kurtosis values of 
the proposed method are bigger than those of the DWT 
method. The kurtosis values also enlarge as the crack degree 
increases. The kurtosis values of the proposed method are 
bigger than those of the DWT method because the reconstruc-
tion signal after DWT contains noise. Moreover, detail parts 
cannot express instantaneous features better than IMFs. Inter-
ference terms and leakage affect oscillation distributions. Im-

 
 
Fig. 9. Zoomed in image of the reconstruction signals via the two 
methods. 

 
 

 
 
Fig. 10. Zoomed in image of the Hilbert energy spectrum via the two 
methods. 

Table 11. Kurtosis values of the reconstruction signal obtained with 
DWT and the D-E signal obtained with the proposed method. 
 

Types of gear DWT method Proposed method 

Healthy 3.0099 3.9011 

Small crack 3.6825 9.5374 

Big crack 3.8666 12.6717 

Tooth cut 5.3233 15.7020 

 
 

 
 
Fig. 11. Comparison of the kurtosis values of the original and D-E signals. 
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pact oscillations caused by a crack can be hidden in these 
noises, and small undesired spikes generate small kurtosis 
values. However, the proposed method eliminates the influ-
ence of noise and useless components and then enables the 
kurtosis value to reflect the actual impact distribution. 

 
7. Conclusions 

This study proposed a sensitive gear fault detection 
method. Wavelet theory was first utilized to complete de-
noising with low RMSE and high SNR. The EMD algo-
rithm was calculated after removing the influence of noise. 
Many IMFs and a residue were produced after EMD. Not 
all the oscillations actually contained important information. 
This study used signal modulation and correlation theory to 
sift useful IMFs. These sifted IMFs were highly correlated 
with the original signal and were modulated in a clearer 
way compared with the other components. The sifted IMFs 
were then reconstructed into D-E signals. The D-E signals 
focused on gear fault detection. In the comparison of the 
proposed method with the DWT method, the results from 
the time domain vibration signal and the Hilbert energy 
spectrum showed that the proposed method was highly sen-
sitive in selecting the impact information caused by a 
cracked gear. The kurtosis values also demonstrated the 
superiority of the D-E signal in damage detection. There-
fore, the proposed method was regarded as sensitive and 
capable of effectively detecting gear fatigue. The experi-
ment verified that the fault information of the D-E signals 
was clearer than that of the original signal after DWT. A 
method for extracting additional information from other 
IMFs will be explored in future works to detect gearbox 
faults comprehensively. 
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