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Abstract 
 
Defective rolling bearing response is often characterized by the presence of periodic impulses. However, the in-situ sampled vibration 

signal is ordinarily mixed with ambient noises and easy to be interfered even submerged. The hybrid approach combining the second 
generation wavelet denoising with morphological filter is presented. The raw signal is purified using the second generation wavelet. The 
difference between the closing and opening operator is employed as the morphology filter to extract the periodicity impulsive features 
from the purified signal and the defect information is easily to be extracted from the corresponding frequency spectrum. The proposed 
approach is evaluated by simulations and vibration signals from defective bearings with inner race fault, outer race fault, rolling element 
fault and compound faults, respectively. Results show that the ambient noises can be fully restrained and the defect information of the 
above defective bearings is well extracted, which demonstrates that the approach is feasible and effective for the fault detection of rolling 
bearing.  
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1. Introduction 

The rotating machinery has been widely used in almost all 
of the industry sections. Therefore, it is extremely significant 
to detect the fault of rotating machinery [1-3]. For as the roll-
ing bearing being the most widely used standardized parts in 
rotating machinery, the mechanical fault diagnosis are always 
carried out regarding it [4-6]. When a fault exists in one sur-
face of a bearing, the vibration signal is characterized by the 
presence of periodic impulses. How to extract the interesting 
information which represents the bearing fault feature from 
the periodicity impacts is the crux for condition monitoring 
and fault diagnosis. However, the vibration signals are ordi-
narily non-stationary and represent non-linear processes [7], 
their frequency components will change with time [8]. There-
fore, the adaptive analysis methods such as the wavelet trans-
form (WT) [9], ensemble empirical mode decomposition 
(EEMD) [10] and local mean decomposition (LMD) [11, 12], 
etc., have been the good choices to deal with the non-
stationary signals. However, those methods also still suffer 
from the following disadvantages, e.g., the WT method has 
been widely applied for its upstanding time-frequency local-

ization peculiarity, but the appropriate choices of the wavelet 
base function or the certain frequency bands with fault infor-
mation need to be solved. The EEMD method, which devel-
oped from the empirical mode decomposition (EMD) method 
[13-16], improves the major drawback of mode mixing of 
EMD method via defining the true intrinsic mode functions 
(IMFs) as the mean of an ensemble of trials, each consisting of 
the signal corrupted by additive white noise of finite variance. 
However, in order to offset the remaining noise sufficiently, 
an ensemble number of a few hundred might be required, that 
is obvious inefficient when dealing with large volumes of data. 
The LMD method, developed by Smith [17], ca decompose 
any complicated signals into a set of product functions (PFs) 
which have been proved to be having more reasonable and 
meaningful interpretations than the IMFs [18]. However, the 
decomposition results of LMD method are easy to be inter-
fered by noises, and the deficiency of low computational effi-
ciency still exists as that case of EEMD. 

In recent years, a novel morphological signal processing 
method has been applied to detect faults in rotating machinery 
for its adaptive performance in extracting the shape informa-
tion in addition to its simple and rapid calculation [19, 20]. In 
2003, Nikolaou and Antoniadis firstly introduced the method 
to detect faults of rolling bearing and the results showed this 
method was more efficient for low noise signals than for high 
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noise signals [21]. Due to the in-situ sampled vibration signal 
is ordinarily mixed with ambient noises, it is necessary to 
carry on denoising pretreatment to the raw signal before ap-
plying the morphological method. Unlike the traditional WT, 
the second generation wavelet (SGW) [22] is a flexible wave-
let construction method which is independent of the Fourier 
transform. Applying SGW to the denoising pretreatment will 
provide a faster and a more effective algorithm than the tradi-
tional WT [23-27]. 

For the above reasons, we propose a hybrid approach based 
on SGW denoising and morphological filter to purify the raw 
signal and to extract the defect information, respectively. The 
outline of this paper is as follows. The fundamental theories of 
second generation wavelet denoising and morphological filter 
are briefly summarized in Sec. 2. In Sec. 3, the hybrid ap-
proach is presented and further validated by simulation analy-
sis. Sec. 4 demonstrates the experimental results using the 
proposed approach to extract the fault features from vibration 
signals of the defective bearings with inner race fault, outer 
race fault, rolling element fault and compound faults, respec-
tively. Finally, conclusion remarks are drawn in Sec. 5. 

 
2. Methods 

2.1 Denoising algorithm based on SGW 

SGW is a new wavelet construction method using lifting 
scheme in the time domain [22]. The main feature of the SGW 
is that it provides an entirely spatial domain interpretation of 
the transform to replace the traditional frequency domain 
based constructions. The decomposition stage of SGW can be 
summarized as follows. 

Consider a signal { }, , 1,2, ,kX x k Z k L= Î = L .The ap-
proximation signal ( ){ }1js k+ of X on level 1j + is split into 
even indexed samples ( ){ }2js k and odd indexed sam-
ples ( ){ }2 1js k + on level j . Predicting an odd indexed sample 
with N neighbors of the even indexed samples on level j , the 
detail signal ( )jd k  is obtained as: 

 

( ) ( ) ( ) ( )1 1
1
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j j j
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d k s k p m s m k N+ +
=

= + - + -å    (1) 

 
where ( )p m is a prediction coefficient, 1, 2, , .m N= L  

( ) ( )1 , ,
T

P p p Né ù= ë ûL represents a predictor for detail signal  

calculation. 
Then M number of detail signals ( )jd k  obtained from Eq. 

(1) are adopted to update the even indexed samples ( ){ }2js k , 
the approximation signal ( )js k  is 
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where ( )u m  is an update coefficient, 1,2, ,m M= L . 

( ) ( )1 , ,
T

U u u Mé ù= ë ûL  represents an updater for approxima-

tion signal calculation. 
The reconstruction stage of SGW is a reverse procedure of 

the decomposition stage. The operators P and U are built by 
means of Interpolating subdivision method (ISM) [28]. In the 
process of data collection, the length of data is set to the inte-
ger power of two, and being different from the orthogonal 
wavelet transform, the SGW is the biorthogonal wavelet trans-
form, therefore, the value of N or M is ordinarily being the 
even during the decomposition stage of SGW, and choosing 
different N and M, scaling function and wavelet function with 
different vanishing moment number can be available [29]. 
Perform multi-scale decompositions for the raw signal, and 
then process the detail signal at each level using threshold 
processing, the purified signal is obtained by reconstructing 
the approximation signal and the denoised detail signals. Ac-
cording to Ref. [30], by imposing 4N = , 4M =  and three 
levels decompositions are proper for vibration signal denois-
ing of rolling bearing. 

In the threshold processing, the most popular denoising 
methods include the soft-threshold method and the hard-
threshold method. Donoho [31] gave the thresh-
old 2log Nt s= . Where s is the standard deviation of 
detail signal’s noise estimation at each level, N is the length of 
signal. We can see that Donoho’s threshold is varying with N, 
and when N is too large, the threshold may over smooth the 
signal. To solve this problem, Pan proposed a more intuitive 
threshold scheme, l ct s= · , where c is a constant [32]. Ac-
cording to his research [33], by imposing c between 3 and 4 
and the hard-threshold method will achieve better denoising 
effect. 

 
2.2 Morphological filter 

Morphological method was initially introduced in image 
processing by Serra [34], and later on, it was used in other 
areas such as signal processing [35]. The basic concept of 
morphological signal processing is to modify the shape of a 
signal, by transforming it through its intersection with another 
object called the structuring elements (SEs). There are four 
basic morphological operations, namely dilation, erosion, 
closing and opening, which form the foundation of morpho-
logical method. 

Let ( )f n  be the original one dimensional (1D) discrete 
signal, which is the function over a domain ( )0,1, , 1F N= -L , 
and ( )g m  be the SEs, which is the discrete function over a 
domain ( )( )0,1, , 1G M M N= - £L . The above four basic 
operations can be defined as follows: 

 
Dilation: 
( )( ) ( ) ( ){ }maxf g n f n m g mÅ = - +  

{ }1 ;1 .n N m M£ £ £ £                             (3) 

Erosion:  
( )( ) ( ) ( ){ }minf g n f n m g mQ = + - { }1 ;1n N m M£ £ £ £   
 (4) 
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Closing : ( )( ) ( )( )f g n f g g n· = Å Q        (5) 

Opening: ( )( ) ( )( )f g n f g g n= Q Åo            (6) 

 
whereÅ ,Q , · and o denote the operators for dilation, erosion, 
closing and opening operations, respectively. The properties 
of the operations to impulsive features are shown in Table 1, 
the closing and opening operator can be applied to detect posi-
tive and negative impulses, respectively. 

In Nikolaou’s study [21], closing operator was adopted to 
extract impulsive components from the raw signal and only 
positive impulses were detected. However, there are sharp 
peaks with both positive and negative amplitude in vibration 
response of defective rolling element bearing, although clos-
ing operation indeed extracts some useful information from 
the signal, but loses the geometric characteristics of the signal 
which may help to fault diagnosis. In order to detect bi-
directional impulsive components, according to the properties 
of the operators, the difference (DIF) filter is used in this paper 
as follows: 

 
( )( ) ( )( ) ( )( )DIF f n f g n f g n= · - o  

                ( )( ) ( ) ( ) ( )( ).f g n f n f n f g n= · - + - o  (7) 

 
In Eq. (7), ( )( ) ( )f g n f n· - and ( ) ( )( )f n f g n+ o are 

two types of the morphological Top-hat transform [36], 
( )( ) ( )f g n f n· - is called the black Top-Hat transform, 
which is used to extract negative impulsive fea-
tures. ( ) ( )( )f n f g n+ o  is called the white Top-Hat trans-
form, which is used to extract positive impulsive features. 
Therefore, the DIF filter can be used to extract the positive 
and negative impulsive features simultaneously. 

SEs is another sticking point except the morphological op-
erators, the attributes of the SEs are controlled by its shape, 
height (Amplitude), and length (Domain). There are various 
kinds of SEs, such as flat SEs, triangular SEs and semicircular 
SEs, etc. In the present, the flat SEs is employed because it 
appears to be quite appropriate for detecting impulses [37-39]. 
In order to retain the shape characters of the signal entirely, all 
the height of the flat SE is defined as zeros [39, 41]. All the 
studies show that the length of SEs is important for the mor-
phological method [39-41], and the scholar developed various 
rules or guidelines for choosing the length of SEs. In theory, 
the shorter length of SEs, the more impulse features will be 
extracted when using the DIF filter. In order to obtain more 

impulse features of the vibration signal, the length of SEs is 
selected as several sampling points in the present investigation. 

 
3. The proposed fault diagnosis approach and its 

simulation analysis  

Due to the SGW and morphological filter are all completely 
performed in time domain, and the two methods all have a fast 
computing algorithm, the combination of both can be applied 
to the real time monitor and signal processing, especially 
when dealing with large amounts of on-line vibration data. 
Based on these, the fault diagnosis approach based on SGW 
denoising and morphological filter is presented and described 
as follows. 

(1) Collecting vibration signal of the defective bearings. 
(2) Carrying on denoising pretreatment using the SGW de-

noising method. The length of the predictor and updater are all 
four and the purified signal will be decomposed into three 
levels in the present. 

(3) Extracting the periodicity impulsive features using the 
morphological filter. The difference between the closing and 
opening operator is employed to extract the impulsive features. 

(4) Applying the spectrum analysis on the impulsive com-
ponents to extract the defect information. 

 
To verify the effectiveness of the proposed approach, a syn-

thesized signal is built to extract the impulsive features, sup-
press the harmonic features and the white noise feature. The 
simulation signal is defined as: 

 
( ) ( ) ( ) ( )1 2 3x t x t x t x t= + +                       (8) 

 
where ( ) ( )1 sin 20x t tp= × × s a harmonic signal, ( )2x t is the 
Gaussian noise (the ratio of the standard deviation of the 
Gaussian noise and that of ( )1x t is 0.5), and ( )3x t are a series 
of alternating positive and negative impulses (The repetition 
period and amplitude are 0.1465 s and 5, respectively). Sup-
pose the sampling frequency is 1024 Hz and the length of 
sampling points is 1024, the time domain waveform of the 
simulation signal ( )tx is shown in Fig. 1. The harmonic wave 
and impulsive components are mixed with the Gaussian noise. 

Applying the SGW denoising method to the simulation sig-
nal ( )tx , the constant c of threshold scheme is 3.2. The puri-
fied signal is shown in Fig. 2. Compared with Fig. 1, the 
Gaussian noise is effectively removed; meanwhile, the impul-
sive features are well reserved. 

Table 1. Properties of the morphological operators to impulsive fea-
tures. 
 

Morphological operators Positive impulse Negative impulse 

Dilation Smoothing Reducing 

Erosion Reducing Smoothing 

Closing Preserving Reducing 

Opening Reducing Preserving 
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Fig. 1. The time domain waveform of the simulation signal ( )x t . 
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After the denoising pretreatment, the DIF morphological fil-
ter is used to extract the impulsive features. Because the width 
of the added alternating positive or negative impulses is 
known in advance, therefore, the shorter SEs, a flat vector of 
null elements with length three, is employed to extract the 
impulsive features. The time domain waveform of the ex-
tracted impulsive components and their FFT spectrums are 
shown in Figs. 3(a) and (b), respectively. From Fig. 3(a), the 
alternating impulses are reserved; however, the harmonic sig-
nal ( )1x t  is ignored. It should be noted that the negative im-
pulses are all changed into positive, but the phase information 
remains the same, and it has no influence on the results of 
fault diagnosis. The modulated frequency of the repetition 
periodic, 1 / 0.1465 7f Hz= » , with its harmonics, e.g., 14 and 
21 Hz,etc., are all clearly detected in Fig. 3(b). 

By contrast, if applying the DIF morphological filter to the 
raw signal ( )x t  directly without the SGW denoising pre-
treatment, the time domain waveform of the results and their 
FFT spectrums are shown in Figs. 4(a) and (b), respectively.  

From Fig. 4(a), the impulse components are heavy mixed 
with the Gaussian noise. By comparing Fig. 4(b) with Fig. 
3(b), the feature frequencies are confused by the noise and not 
as clear as that in Fig. 3(b). Overall, we can conclude that 
carrying on the denoising pretreatment before applying the 
DIF morphological filter is necessary, and the fault diagnosis 
approach based on SGW denoising and morphological filter is 
feasible and effective. 

4. Experimental investigations 

In this section, the proposed approach is evaluated by defec-
tive bearings vibration signals. The vibration signals measured 
with the sample frequency of 25.6 kHz  are performed on the 
MFS-MG experimental platform, as shown in Fig. 5. 

During the experimental investigations, the defective bear-
ing of the type ER-12K is installed on the left side of the shaft 
and the normal bearing is on the right side. The specifications 
of the bearing are listed as follows: the pitch diameter of the 
bearing is 33.4772 mm; the number of rolling element is 8; the 
rolling element diameter is 7.9375 mm; and the contact angle 
is 0º. A computer online monitoring system is available for 
data acquisition, and the vibration signals of bearings with 
four fault types (including inner race fault, outer race fault, 
rolling element fault and compound faults) were collected. 
Based on large numbers of experiments, the constant c of 
SGW denoising threshold scheme is 3.2, and in order to ex-
tract more impulse features, the flat SEs with length five is 
employed during the implementation process of the proposed 
approach. 

 
4.1 Analysis of the defective bearing with an inner race fault 

The defective bearing with an inner race fault is as shown in 
Fig. 6, and its typical vibration signal of at the rotating speed 

 
(a) 

 

 
(b) 

 
Fig. 4. The time domain waveform of the results and their frequency 
spectrums: (a) time domain waveform; (b) FFT spectrum. 

 

 
 
Fig. 5. The MFS-MG experimental platform. 
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Fig. 2. The time domain waveform of the purified signal. 
 
 

 
(a) 
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Fig. 3. The time domain waveform of the impulsive components and
their frequency spectrums: (a) time domain waveform; (b) FFT spectrum. 
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of 1792 rpm is shown in Fig. 7.  
From Fig. 7, it can be seen that due to the defect present in 

the rolling bearing, the vibration signal presents the periodicity 
impacts features, but there exist very serious ambient noises. 
Applying the SGW denoising method to the vibration signal, 
the purified signal is shown in Fig. 8. By comparing Fig. 8 
with Fig. 7, we get to know that the ambient noises are effec-
tively suppressed. Meanwhile, the periodicity impacts features 
are well reserved. 

In general, the fault characteristic frequency components of 
rolling bearing always appear on low frequency band [42]. 
The FFT spectrum on low frequency band of the purified sig-
nal is shown in Fig. 9. Theoretically, the corresponding ball 
pass frequency in inner race (BPFI) is calculated as 147.85 Hz 
according to the specifications of the bearing. However, as 
shown in Fig. 9, the BPFI is not prominent and the existence 
of an inner race fault in the bearing is not confirmed. 

Applying the DIF morphological filter to the purified signal, 
the time domain waveform of the resulting signal and its FFT 
spectrum are shown in Figs. 10(a) and (b), respectively. From 
Fig. 10(a), the impulsive features are effectively extracted. In 
the FFT spectrum, the inner defect frequency 147.85 Hz to-
gether with its second and third harmonics, 295.7 and 
443.55 Hz , and side frequencies (147.85 ± 29.87 Hz , 
295.7 ± 29.87 Hz , 443.55 ± 29.87 Hz ) are prominent. The 
modulation frequency is 29.87 Hz  (The frequency of rotor 
rotating, Rf ). It reveals that the proposed approach is effective 
for the fault detection of rolling bearing.  

 
4.2 Analysis of the defective bearing with an outer race fault 

The defective bearing with an outer race fault is as shown in 
Fig. 11. Being the rotor of rotating speed of 1782 rpm , the 
raw signal of defective bearing with an outer race fault and the 
purified signal using the SGW denoising method are shown in 
Figs. 12(a) and (b), respectively. By comparison, it can be 
seen that the ambient noises are effectively suppressed. 

The corresponding ball pass frequency in outer race (BPFO) 

 
 
Fig. 6. The defective bearing with an inner race fault. 
 

 
(a) 

 

 
(b) 

 
Fig. 7. The time domain waveform of bearing with an inner race fault 
and its frequency spectrum: (a) the time domain waveform; (b) the 
FFT spectrum. 

 

 
(a) 

 

 
(b) 

 
Fig. 8. The time domain waveform of the purified signal and its frequency 
spectrum: (a) the time domain waveform; (b) the FFT spectrum. 
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Fig. 9. The FFT spectrum on low frequency band of the purified signal.
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Fig. 10. The time domain waveform of resulting signal and its FFT 
spectrum: (a) the time domain waveform; (b) the FFT spectrum. 
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is 90.5 Hz . The frequency of rotor rotating Rf is 29.7 Hz . 
Applying the DIF morphological filter to the purified signal, 
the resulting signal is shown in Fig. 13, which shows that the 
BPFO together with its harmonics and the rotor rotating fre-
quency Rf are all clearly detected. Therefore, we can conclude 
that there exists an outer race fault in the bearing. 

 
4.3 Analysis of the defective bearing with a rolling element fault 

The defective bearing with a rolling element fault is as 
shown in Fig. 14. Being the rotor of rotating speed of 1780, 

the ball spin frequency (BSF) is 59.1 Hz , and the fundamental 
train frequency (FTF) is 11.21 Hz . The raw signal of defec-
tive bearing with a rolling element fault and the purified signal 
using the SGW denoising method are shown in Figs. 15(a) 
and (b), respectively. The comparison shows the effectiveness 
of the SGW denoising method.  

Applying the DIF morphological filter to the purified signal, 
the time domain waveform of the resulting signal and its FFT 
spectrum are shown in Figs. 16(a) and (b), respectively. In the 
FFT spectrum, the BSF together with its harmonics, and the 
side frequencies modulated by the FTF are prominent. There 
is a good match between the expected spectrum features and 
the actual situation associated with the bearing with a rolling 
element fault. 

 
4.4 Analysis of the defective bearing with the compound faults 

When there exist the compound faults (including inner race 
fault, outer race fault and rolling element fault) in the bearing, 
the extraction of fault features gets even more complicated. A 
typical vibration signal of defective bearing with the com-
pound faults at the rotor of rotating speed of 2389 rpm is 
shown in Fig. 17(a). Theoretically, the BPFI, BPFO and BSF 
are 197.1 ,Hz  121.37 Hz  and 79.32 ,Hz  respectively. The 
purified signal using the SGW denoising method is shown in 
Fig. 17(b) and the denoising effect is also obviously. 

After applying the DIF morphological filter to the purified 
signal, the time domain waveform of the resulting signal and 

 
 
Fig. 11. The defective bearing with an outer race fault. 
 

 
(a) 

 

 
(b) 

 
Fig. 12. The time domain waveform of the raw signal and the purified
signal: (a) the original signal; (b) the purified signal. 
 

 
(a) 

 

 
(b) 

 
Fig. 13. The time domain waveform of resulting signal and its FFT 
spectrum: (a) the time domain waveform; (b) the FFT spectrum. 

 

 
 
Fig. 14. The defective bearing with a rolling element fault. 
 

 
(a) 

 

 
(b) 

 
Fig. 15. The time domain waveform of the raw signal and the purified
signal: (a) the original signal; (b) the purified signal. 
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its FFT spectrum are shown in Figs. 18(a) and (b), respec-
tively. The fault characteristic frequency components includ-
ing BPFI, BPFO and BSF are all prominent and found to be 
good matching with the corresponding feature frequencies. 

It should be point that the performances of rolling element 
fault diagnosis and compound faults diagnosis are not excel-
lent as that of inner race fault diagnosis or outer race fault 
diagnosis. Because when the rolling bearing operating at high 
speeds, the rolling elements are not only moving around the 
raceway, but also rotating on their own centre, then the defect 
point processed on the rolling element surface may not contact 
with the raceway. Therefore, for the case of rolling element 
fault diagnosis or compound faults diagnosis, the impulsive 
features present aperiodicity, even to be submerged, and diffi-
cult to be extracted. Because of this, the simple and effective 
fault diagnosis methods are urgently needed. 

Through the above experimental investigations, it demon-
strates that the proposed approach can effectively extract the 
fault features of defective bearings and obtains satisfactory 
results. 

5. Conclusions 

Aiming at the characterized response of the defective rolling 
bearing, the approach containing two parts, the denoising pre-
treatment and the fault feature extraction, is proposed in this 
paper. The SGW denoising is used to purify the raw signal, 
and the morphological filter is applied to extract the defect 
information. Its efficiency has been evaluated in simulation 
analysis and the experimental signals measured on the bearing 
with four kinds of fault. The results show that the present ap-
proach is feasible and effective to detect faults in rolling bear-
ing. In addition, both of the two methods in the present ap-
proach have the advantages of simple formulation, rapid algo-
rithm, and good performance, especially when dealing with 
large volumes of data. Therefore, it might be applied to real-
time condition monitoring and fault diagnosis of rotary ma-
chinery. 
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