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Abstract 
 
The response of a linear time-invariant (LTI) system to harmonic input generates a harmonic output with constant frequency but vary-

ing magnitude and phase. Many structural dynamic systems have been modeled as linear time-varying periodic (LTP) systems. Previous 
studies have reported that the response of an LTP system to an exponential input establishes an infinite number of frequencies. These 
studies have presented a new, exponentially modulated periodic signal space and a corresponding harmonic transfer function as useful 
tools in the operational modal analysis of LTP systems. In consideration of this new approach, this study mainly identifies the frequencies 
of a typical LTP system, such as a beam that is subject to the intermittent passage of moving masses. Upon obtaining the harmonic trans-
fer function for the beam-moving mass system, conventional frequency domain methods for LTI systems are used to derive the fre-
quency characteristics of the LTP system from the system response. These methods include the peak-picking method. As expected in an 
LTP system, an infinite number of pseudo-natural frequencies resonate in the beam-moving mass system. 
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1. Introduction 

According to Ewins [1], a primary assumption for the appli-
cability of experimental modal analysis is that the structure 
must remain time invariant, that is, the parameters to be de-
termined should be constant. Identification techniques for 
linear time-invariant (LTI) systems have been developed by 
many researchers, including Andersen and Brincker [2], Fu 
and Hua [3], Brincker et al. [4], and Peeters and Ventura [5]. 
However, identification and modeling techniques for systems 
with time-varying parameters remain under investigation and 
development. The time-varying characteristics of an in-
operation system correspond to valuable information for ma-
chine monitoring and diagnosis. Thus, Mathelin and Lozanob 
[6] and Bonato et al. [7] explored the benefits of determining 
the time-varying behavior of in-operation systems. These re-
searchers established an effective modeling technique to ex-
tract the exact specifications of these systems. 

Solving problems under ambient excitations is inherently 
difficult when traditional modal analysis methods are used; 
however, these methods can be regarded as a base for generat-
ing techniques to identify the traits of systems with time-

varying characteristics. Numerous techniques have been pro-
posed for the identification of linear time-varying (LTV) sys-
tems in either time or time-frequency domain, including those 
developed by Liu [8], Bellizzi et al. [9], Xu et al. [10], and 
Zhang et al. [11]. Liu and Kujath [12] adopted a new method 
that considers the time history of a linear time varying-
periodic (LTP) system in time domain to determine some of 
the modal parameters of systems. These researchers employed 
a subspace-based algorithm that uses a multitude of force re-
sponses to identify the successive discrete transition matrices 
of LTP systems. This method is among of the few developed 
for LTP systems in time domain. Allen [13] presented a fre-
quency-domain approach for intuitively characterizing an LTP 
system according to the methodology, as well as algorithms 
based on LTI systems. In fact, this method develops pre- and 
post-processing techniques to modify measured data and to 
extract pseudo frequency using conventional LTI methods. 
Han et al. [14] theoretically analyzed the natural frequencies 
of a spur—gear—pair system as a time-variant system on the 
basis of Floquet theory. The influences of the periodically 
time-varying parameters of mesh stiffness, including sideband 
frequency and contact ratio, on natural system frequencies in 
the stable and unstable regions were illustrated in detail. In 
2010, Allen et al. [15] applied Wereley’s [16] signal space 
definition to determine the modal parameters of a wind turbine 
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blade. This work utilized the concept of harmonic transfer 
function to develop a system identification method for LTP 
systems that relies only on output. The proposed method can 
be considered an extension of the operational modal analysis 
(OMA) approach to LTP systems. 

Antonacci et al. [17] investigated vibration-based paramet-
ric identification techniques in the field of structural control 
and health monitoring for a three-dimensional structure in a 
beam-moving mass system. These researchers compared sev-
eral LTI identification methods. Bellino et al. [18] conducted 
an experimental dynamic analysis of nonlinear beams under 
moving loads and applied the results to an actual problem. In 
addition, Dyniewicz et al. [19], Ariaei et al. [20], and Bilello et 
al. [21] studied realistic problems related to beam—moving 
mass systems. Different approaches have been established 
based on the availability of a mathematical model to investi-
gate this system. 

Beam-moving mass systems are time-varying systems that 
can be modeled as LTP systems on the basis of certain as-
sumptions. To the best of the authors’ knowledge, no specific 
research on identifying the modal parameters of beam-moving 
mass systems, or LTV/LTP systems, can be extracted from the 
few reports on modal analysis and on the derivation of modal 
parameters of time-varying systems  

In the current paper, a modal analysis of the LTP systems 
presented in Refs. [15, 16] is presented in Sec. 2. The pseudo-
natural frequencies of a beam with intermittent moving mass 
passage are then identified using the aforementioned approach, 
as described in Sec. 3. Owing to the time-varying nature of 
beam-moving mass systems, mode shapes cannot be defined 
in LTP systems unlike in LTI systems. Therefore, a method is 
established for the OMA of a beam-moving mass system to 
obtain pseudo-natural frequencies. The development of this 
method is the main objective and contribution of the present 
study. Finally, the paper is concluded in Sec. 4. 

 
2. Modal analysis of a linear time-periodic system 

In this section, the basic features that characterize LTP sys-
tems are first explained. Then, the reason why traditional mo-
dal analysis methods cannot be used in the modal analysis of a 
LTP system is rationalized. Next, a suitable method for identi-
fying the pseudo-natural frequencies of LTP systems is intro-
duced. As explained in the following section, the method is 
implemented on a beam-moving mass system as an example 
of the capability of LTP systems to evaluate the performance 
of the proposed algorithm. 

 
2.1 Response of linear time-periodic systems to harmonic 

inputs 

Dynamic equations for a LTP system in the state space 
model are normally given by 
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where all of the coefficient matrices are periodic, that is, 
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2 /p Tw p= denotes the system frequency.  

 
In the absence of ( )D t , the response of the system to a 

general input ( ),u t  is given by 
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The first part is considered the homogeneous response, 

whereas the second is regarded as force response. The transi-
tion matrix is denoted by ( , )t tF  in Eq. (3). 

Given a single harmonic input 00( ) ,j tu t u e w=  ( )x t can be 
written as [16]: 
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where mB and ( )P t are derived from the Fourier expansion of 

( )B t ; 0m ps jmw w= + ; and Q  is a constant matrix defined 
in Ref. [16]. The first term in total response vanishes at 
t ®¥  if the system is strictly stable. The steady-state re-
sponse is then given by 
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Although the test signal considered is a single harmonic 

signal, a steady-state response generally generates an infinite 
number of harmonics. These harmonics differ from one an-
other in multiples of the fundamental frequency ωn (pumping 
frequency) [14]. The steady-state output response is given by 
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Note that in general, ( ) ( )y t T y t+ ¹ . 
A direct method is difficult to determine on the basis of this 

equation. The traditional definition of transfer function cannot 
simply be extended to LTP systems. Therefore, a different test 
input signal, namely, the exponentially modulated periodic 
(EMP) signal, has been defined to render an LTP system 
analogous to an LTI system in terms of frequency response. 

Definition: An EMP signal is expressed as a complex Fou-
rier series of an LTP system with main frequency pw  modu-
lated by the exponential signal 0j te w : 
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This signal structure is used to define the compatible trans-

fer function for LTP systems. 
 

2.2 Linear time-periodic system transfer function 

In this section, a modal transition function is introduced 
through Eqs. (6) and (7). This function can be converted to a 
modal form.  

Once Eq. (6) has been expressed as its Fourier series expan-
sion and some algebraic operations have been performed, the 
output in the frequency domain can be expressed as follows 
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Definitions and details of the variables are given in Ref. [15]. 

Eq. (8) takes exactly the same mathematical form as the ex-
pression for the frequency response function (FRF) matrix of 
an LTI system. Thus, the same traditional algorithms can be 
applied to identify the frequency parameters of an LTP system. 

 
2.3 Operational modal analysis of an ltp system 

In practice, input is unknown in the industry and engineers 
should determine the modal parameters of a system from the 
output signal alone. Furthermore, OMA methods based on the 
power spectral density (PSD) of signals are used. 

Given a system with transfer function ( )G w , the PSD of 
the output signal is defined as follows: 
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This variable can also be calculated from the PSD of the in-

put signal with 
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where ( )H denotes the Hermitian or complex conjugate 
transpose.  

When ( )G w  in Eq. (10) is replaced with its modal repre-
sentation in Eq. (8), the following formula is obtained  
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This finding shows that the auto spectrum of the output can 
be approximated by the sum of modal contributions if 

, , ,( )r n l kW w is reasonably flat. For LTI systems, input spectrum 
( )uuS w should be flat. This flatness is also required in LTP 

systems, and the condition may be more stringent in this case.  
Terms with minimal denominators dominate the summation 

Eq. (14). If the sidebands of mode r  do not overlap with 
those of mode l , then this minimum is attained when 

andr l n k= = . Consequently ( )yyS w is expressed as 
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Thus, the auto spectrum can be approximated in the vicinity 

of dominant mode shapes by considering one contribution at a 
time, as in LTI cases. 

The FRF matrix for LTI systems takes a well-known form 
that consists of peaks near the natural frequencies of each 
mode. A similar relationship can be derived for LTP systems. 
Therefore, the proposed output-only system identification 
method can be summarized briefly as follows: 

(1) Response ( )y t  of an LTP system is recorded to a 
broadband input.  

(2) Output vector ( )y w  is generated by applying the 
transform ( )= [ ( )]. y FFT y tw   

(3) The auto spectrum of ( )y w  is computed by averag-
ing multiple blocks of time history, as expressed in Eq. (9).  

(4) LTI output-only identification method is employed to 
identify the frequency characteristics from the auto spec-
trum. A simple, applicable identification method for this 
purpose is the peak-picking method.  

 
To reiterate, a relevant mode shape concept does not ex-

ist in LTP systems owing to the time-varying nature of 
these systems. Therefore, pseudo-natural and sideband 
frequencies can be identified through the procedure de-
scribed above. 

 
3. Pseudo-natural frequency identification of a beam-

moving mass system  

Preventive maintenance may be implemented and the 
structural safety of bridges guaranteed using health-
monitoring techniques. Such techniques can generate valu-
able information for the detailed inspection, repair, and 
rehabilitation of bridges. Current structural identification 
methods based on ambient vibration data are essential solu-
tions for the online monitoring of such structures. In many 
cases, a bridge can be represented by a beam-moving mass. 
Thus, the process of identifying the pseudo-natural frequen-
cies of an LTV system given periodic passages of mass is 
explained in this section. 

A simple model for the system is shown in Fig. 1. 
The equation for beam motion was developed by Ghorbani 
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and Keshmiri [21] in consideration of all of the inertia effects 
of moving mass and the discretization of the transverse motion 
of the beam with beam eigenfunctions. 
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( )i xf  is the normalized i -th mode shape of the beam, and 

0
.

L

i j ijdxff d=ò  
Assuming the existence of a periodic passage for the mov-

ing mass, the system becomes an LTP system; thus,  
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where /T L v= . 

The following values are applied as system parameters for 
simulation purposes. 

The system is numerically simulated, and system response 
( )X t  is applied in the analysis.  

 
3.1 Single-DOF system 

First, the beam is simulated as a single degree of freedom 
(DOF) system. Fig. 2 shows the PSD plot of the beam dis-
placement response obtained using Eq. (9) in the absence of 
any moving mass. The beam is excited by a white signal, and 
beam response is measured. The first natural frequency of the 
beam is approximately 3 Hz.  

Fig. 3 depicts the PSD plot for the displacement of the same 
system (1-DOF system) in the presence of a periodic moving 
mass with period /L v . The mass motion introduces a new 
natural frequency called pseudo-natural frequency at roughly 
2.6 Hz. This frequency is in fact the deviated value of the first 
natural frequency of the beam (3.0 Hz) and introduces side-

band frequencies into the PSD plot of beam response. These 
sideband frequencies distinguish the concepts of modal analy-
sis for LTI and LTP systems.  

Two sets of pseudo-natural frequencies can be identified us-
ing the peak-picking method displayed in Fig. 3. The first set 
is recognized to fit the relation  

 
1 , 0,1,....n ps n nw w= ± = , (16) 

 
where 1 2.6Hzw =  is the modified first natural frequency and 

2 /p v Lw p= . The second set is the frequency of the forcing 
function ( )f t%  and its integer multiples, that is,  

 
, 1,2,....n ps n nw= =%  (17) 

 
The first group is in fact the contribution of the unforced vi-

bration of the system, whereas the second group corresponds 
to the harmonically forced vibration of the LTP system. The 
amplitudes of the second group of frequencies drop signifi-
cantly over time, as illustrated in Fig. 3. The peaks at 1.6, 2.1, 
2.6, 3.1, 3.6, and 4.1 Hz belong to the first group, whereas that 
at 0.5 Hz belongs to the second group. The other frequencies 
of the groups are not clearly visible in the figure because of 
their low energy or amplitude. 

Table 1. Numerical values for simulation of system. 
 

V (m/s) EI (N*m2) M (kg) L (m) m (kg/m) 

5 60 × 106 250 30 20 
 

 
 
Fig. 1. Schematic of a beam with moving mass. 

 
 

 
Fig. 2. PSD plot of a simply supported beam modeled by its first eigen-
function. 

 

 
 
Fig. 3. PSD density of the 1-DOF beam-moving mass system.  
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3.2 Two-DOF system 

Fig. 4 shows a similar PSD plot for the displacement re-
sponse of the beam-moving mass LTP system simulated by 
two eigenfunctions. Once the second DOF of the beam re-
sponse has been measured and the peak-picking method ap-
plied, the peaks at 2.6 and 10.7 Hz are recognized as the first 
and second natural frequencies of the beam that were modi-
fied by time-varying effect. The other peaks presented in the 
figure are the pumping (Sideband) frequencies, and the values 
are listed in Table 2.  

 
3.3 Five-DOF system 

Fig. 5 shows the beam displacement response with five 
DOFs along with the peaks and sideband frequencies. When 
peak-picking method is used, 23.6, 41.6, and 68.0 Hz are iden-
tified as the third, fourth, and fifth pseudo-natural frequencies. 
The visible sideband frequencies of these main frequencies are 
near the main frequencies.  

Nonetheless, the differentiation of main frequencies from 
sideband frequencies in the PSD plot is also a concern for the 
authors, as is determining the original (unmodified) natural 
frequencies of the beam in the above analysis. These issues are 
currently being investigated and are expected to be highlighted 

in future works.  
 

4. Conclusions 

Pseudo-natural frequencies were identified in a beam-
moving mass system constructed as an LTP system in this 
study. Following a literature review and an introduction of 
previous works, the mathematical foundation for LTP systems 
and their response to a simple harmonic input was described 
briefly. Unlike the response of an LTI system, the response of 
an LTP system to a simple harmonic input generates an infi-
nite number of frequencies. Thus, the traditional transfer func-
tion cannot be employed in an LTP system. Nonetheless, the 
transfer function can be modified for such systems according 
to the EMP signal space defined by Werely and Allen. Given 
this signal space, harmonic transfer function, and the nature of 
system responses, the pseudo-natural frequencies of a beam-
moving mass system were identified for the first time using an 
OMA procedure that considers the PSD of beam motion. The 
beam-moving mass system was modeled by single-, two-, and 
five-DOF systems. In conclusion, natural beam frequencies 
decrease due to moving mass motion. Furthermore, moving 
mass introduces a set of band frequencies for each modified or 
reduced natural frequency. Aside from the reduced natural 
frequencies and their respective sideband frequencies, another 
peak was observed in the PSD of the system response. This 
new peak was related to forcing frequency. In future works, 
original natural frequencies should be distinguished from 
modified ones. 

 
Nomenclature------------------------------------------------------------------------ 

pw  : Pumping frequency 
( , )t tF  : Transition matrix 

0w  : Input frequency 
ms  : Band frequencies 
( )G w  : Transfer function 
( )yyS w  : Power spectral density 

( )i xf  : Normalized mode shape 
T  : Moving mass passage period 

1w  : Time-affected natural frequency 
ns%  : Forcing frequency and its integer multiples 

Table 2. Modified and sideband frequencies. 
 

Number of frequency Modified main  
frequency (Hz) 

Sideband frequency 
(Hz) 

4.1 

3.6 

3.1 

2.1 

First frequency 2.6 

1.6 

12.7 

12.2 

11.7 

11.2 

10.2 

9.7 

Second frequency 10.7 

9.2 

 

 
 
Fig. 4. PSD of the two-DOF beam-moving mass system.  

 

 
 
Fig. 5. PSD of the five-DOF beam-moving mass LTP system. 
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