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Abstract 
 
In the present work, based on strain gradient theory, the free vibration analysis of tapered viscoelastic micro-rod resting on visco-

Pasternak foundation is investigated. The material properties of micro-rod are assumed the visco-elastic and modeled as the Kelvin-Voigt. 
Using Hamilton's principle and energy method, the governing equation of motion of viscoelastic micro-rods is derived, then this obtained 
equation using the differential quadrature method (DQM) for different boundary conditions is solved. In this study, the effects of various 
parameters such as the structural damping coefficient, Winkler and Pasternak foundation modulli, damping coefficient of the elastic me-
dium and material length scale parameters on the non-dimensional natural frequencies of viscoelastic micro-rod are investigated. The 
results show that with an increase in the Winkler and Pasternak coefficients, the natural frequency increases as well as the obtained non-
dimensional natural frequencies by MCST and SGT decrease by increasing the material length to radius ratio. It can be seen that the non-
dimensional frequency for SGT is higher than that of the other theories. It is shown that the non-dimensional frequencies increase by 
increasing the damping coefficient for all theories. Moreover, at the specified value of damping coefficient of the elastic medium, the 
variation of non-dimensional natural frequency is approximately smooth.  
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1. Introduction 

Recently, extensive researches using many various theories 
on the mechanical behavior of materials at the micro and nano 
scale are studied. In most of these analyzes, the material prop-
erties are considered as isotropic, composite, or functionally 
graded (FG) but visco-elastic materials are used in a number 
of various applications such as a buffer under heavy loads to 
prevent or reduce the damage that can be caused by machine 
vibration and by reducing shock damages that are generated 
by working machinery parts. Lei et al. [1] investigated the 
dynamic behavior of nonlocal viscoelastic damped nanobeams. 
They employed the Kelvin-Voigt viscoelastic model and Ti-
moshenko beam theory to establish the governing equations of 
motion, also using transfer function methods (TFM), the natu-
ral frequencies and frequency response functions (FRF) are 
calculated for nanobeams with various boundary conditions. 
They showed that the real part of the natural frequencies de-
creases generally with an increase in the values of the nonlocal 
parameter. Pouresmaeeli et al. [2] studied the vibration charac-
teristics of a viscoelastic nanoplate using the nonlocal plate 

theory by including the effect of viscoelastic foundation. They 
solved this equation using Navier's type solution for simply 
supported nanoplate. Their results can be seen that the fre-
quency decreases significantly with increasing the structural 
damping coefficient as well as the damping coefficient of 
foundation. Akgöz and Civalek [3] presented the longitudinal 
free vibration analysis of axially FG microbars based on strain 
gradient elasticity theory. In their study, Rayleigh-Ritz method 
is utilized to obtain an approximate solution to this problem 
for clamped-clamped (C-C) and clamped-free (C-F) boundary 
conditions. They obtained that the natural frequencies evalu-
ated by the newly developed non-classical model are always 
greater than those obtained by the classical model in all cases. 
Kahrobaiyan et al. [4] illustrated the longitudinal behavior of 
microbar using strain gradient theory. They used the Hamil-
ton’s principle in order to derive the governing equation of 
equilibrium. Their result showed that a good agreement be-
tween the strain gradient finite element and analytical results 
is observed. Simsek and Reddy [5] investigated the static, 
bending, and free vibration of FG microbeams based on the 
modified couple stress theory (MCST) and various higher 
order beam theories. They showed the efficacy of the material 
length scale parameter, different material compositions, and 
shear deformation on the bending and free vibration behavior 
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of FG micro beams. They established that in the FG mi-
crobeams model, the size-dependence effect is more 
signicant. Reddy [6] reformulated bending, buckling, and 
vibration analysis of nanobeam based on various beam theo-
ries. He showed that the inclusion of the nonlocal effect in-
creases the value of deflection and decreases the critical buck-
ling load and natural frequencies. In the other work, he [7] 
studied the microstructure-dependent couple stress theories of 
FG beams. Murmu and Pradhan [8] carried out the buckling 
analysis of a single-walled carbon nanotube (SWCNT) em-
bedded in an elastic medium based on nonlocal elasticity and 
Timoshenko beam theories using differential quadrature 
method (DQM). They showed that the critical buckling loads 
of SWCNT are strongly dependent on the nonlocal small-
scale coefficients and on the stiffness of the surrounding me-
dium. They showed that the influence of small-scale coeffi-
cients diminishes with higher aspect ratios for both Winkler- 
and Pasternak-type models. Lim et al. [9] studied the free tor-
sional vibration of nanotubes based on nonlocal stress theory. 
Their results indicate that natural frequency of nanotubes in-
creases with increasing of the nonlocal parameter. Further-
more, they derived the critical speed of axially moving nano-
rods/nanotubes and it is concluded that this critical speed is 
significantly influenced by the nonlocal parameter. Firouz-
Abadi et al. [10] carried out free vibration analysis of nano-
cones using a nonlocal continuum model. They used a novel 
approach for derivation of the governing equations of motion 
and the Galerkin technique is used to obtain the natural fre-
quencies of vibrations. Their results showed that the funda-
mental natural frequencies decrease with the increase in the 
apex angle. Also, it is observed from their results that for 
lower values of the small-scale parameter, the dependency of 
the natural frequencies to the small-scale parameter decreases. 
Using nonlocal elasticity theory, Murmu and Adhikari [11] 
investigated the longitudinal vibration analysis of double-
nanorod systems. Their obtained results can be useful to study 
the axially vibrating complex multiple-nanobeam system in 
nano-opto-mechanical system. Danesh et al. [12] illustrated 
the axial vibration analysis of a tapered nanorod based on 
nonlocal elasticity theory using DQM. They showed that the 
nonlocal effect plays an important role in the axial vibration of 
nanorods. Also, the nonlocal frequencies are always smaller 
than their local counterparts. Aydogdu [13] presented the axial 
vibration analysis of nanorods (Carbon nanotubes) embedded 
in an elastic medium using nonlocal elasticity theory. Their 
results showed that the axial vibration frequencies of embed-
ded nanorods are highly over estimated by the classical con-
tinuum rod model which ignores the effect of small length 
scale. Huang [14] studied the nonlocal effects of longitudinal 
vibration nanorod with internal long-range interactions. Their 
results showed that the nanorod becomes stiffer due to the 
internal long-range interactions. Heireche et al. [15] presented 
the nonlocal elasticity effect on vibration characteristics of 
protein microtubules. They offered a simple and effective new 
approach to study vibration characteristics of microtubules. 

Zhang and Fu [16] presented pull-in analysis of electrically 
actuated viscoelastic microbeams based on a MCST. They 
employed the Galerkin method to solve the equation. Their 
results showed that the instantaneous pull in voltage, durable 
pull-in voltage and pull-in delay time predicted by this newly 
developed model is larger than that predicted by the classical 
beam model. Akgöz and Civalek [17] investigated the free 
vibration analysis of axially FG tapered Euler-Bernoulli mi-
crobeams based on the MCST. They employed the Rayleigh-
Ritz solution method to obtain an approximate solution for the 
free transverse vibration problem and also observed that di-
mensionless natural frequencies predicted by classical theory 
(CT) are always smaller than those obtained by MCST. 
Ghorbanpour Arani et al. [18] studied the nonlocal vibration 
analysis of coupled system of double-layered graphene sheets 
(CS-DLGS) embedded on visco-Pasternak foundation for 
various boundary conditions using DQM. Their results indi-
cated that the frequency ratio of the CS-DLGSs is more than 
the single-layered graphene sheet (SLGS). Mohammadimehr 
and Rahmati [19] investigated the Small scale effect on elec-
tro-thermo-mechanical vibration analysis of single-walled 
boron nitride nanorods (SWBNNRs) under electric excitation. 
They taken into account the effects of the small scale, aspect 
ratio, and C-C and C-F boundary conditions on the natural 
frequency. Their results indicated that the axial displacement 
of SWBNNRs increases with an increase in the temperature 
change and also, for the piezoelectric coefficient, it is the same. 
Mohammadimehr et al. [20] carried out torsional buckling of 
double-walled carbon nanotubes (DWCNT) on Winkler and 
Pasternak foundations using nonlocal elasticity theory. It is 
shown from their results that the nonlocal critical buckling 
load is lower than the local critical buckling load. Rahmati and 
Mohammadimehr [21] presented vibration analysis of non-
uniform and non-homogeneous boron nitride nanorods em-
bedded in an elastic medium under combined loadings using 
DQM. Kahrobaiyan et al. [22] investigated the strain gradient 
beam element using the finite element method (FEM). They 
indicated that there is a good agreement between the experi-
mental and the strain gradient based on FEM results while the 
difference between the experimental and the classical FEM 
results is significant. Kong et al. [23] carried out static and 
dynamic analysis of micro beams based on strain gradient 
theory (SGT) and also found that the beam deflections de-
crease and natural frequencies increase remarkably when the 
thickness of the beam becomes comparable to the material 
length scale parameter. K. A. Lazopoulos and A. K. Lazopou-
los [24] studied the bending and buckling analysis of thin 
strain gradient elastic beams. Mohammadimehr et al. [25] 
considered the buckling analysis of DWCNT embedded in an 
elastic medium under axial compression using non-local Ti-
moshenko beam theory. Their results showed that the critical 
buckling load can be overestimated by the local beam model if 
the small-scale effect is overlooked for long nanotubes are 
compared their results with those obtained using molecular 
mechanics. Ghorbanpour Arani et al. [26] illustrated the 
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Pasternak effect on the buckling of embedded SWCNT using 
non-local cylindrical shell theory. They indicated that the 
Winkler-type spring and Pasternak-type shear constants in-
crease the non-local critical buckling load under general loads. 
Simsek [27] studied the dynamic analysis of an embedded 
microbeam carrying a moving microparticle based on MCST. 
He used the Hamilton's principle to derive the governing 
equations of motion. His results showed that the material 
length scale parameter, Poisson's ratio, velocity of the mi-
croparticle and elastic medium constant play an important role 
on the dynamic behavior of the microbeam. Filiz and Ay-
dogdu [28] examined the axial vibration of carbon nanotube 
(CNT) heterojunctions using the nonlocal elasticity theory. 
They used the constitutive equations based on the nonlocal 
elasticity theory and found that the axial vibration frequencies 
of CNT heterojunctions are highly over estimated by the clas-
sical rod model because of ignoring the effect of small length 
scale. Narendar and Gopalakrishnan [29] presented the axial 
wave propagation in coupled nanorod system with considering 
the nonlocal effects. Their analysis showed that the wave 
characteristics are highly over estimated by the classical rod 
model; also the nonlocal parameter introduces certain band 
gap region in axial wave mode, where no wave propagation 
occurs. Simsek [30] investigated the nonlocal effects on the 
free longitudinal vibration of axially functionally graded ta-
pered nanorods. He utilized Eringen’s nonlocal elasticity the-
ory and Galerkin method to obtain the natural frequencies. He 
observed that the effect of the nonlocal parameter on the free 
vibration frequencies rises as the mode number increases. 
Narendar and Gopalakrishnan [31] carried out the nonlocal 
effects on ultrasonic wave characteristics of nanorods. They 
developed the nonlocal Euler-Bernoulli model for nanorods 
and explicit expressions derived for wave numbers and wave 
speeds of nanorods. In the other work, they [32] illustrated 
ultrasonic wave dispersion characteristics of a nanorod. They 
used strain gradient models to analyze the ultrasonic wave 
behavior in nanorod. They showed that the fourth order strain 
gradient model gives the approximate results over the second 
order strain gradient model for dynamic analysis. Lee [33] 
studied the free vibration analysis of beams with non-ideal 
clamped boundary conditions. In his study, it can be seen that 
the free vibration analysis of the Euler-Bernoulli beam is car-
ried out analytically, and the pseudo spectral method is em-
ployed to accommodate the non-ideal boundary conditions in 
the free vibration analysis of Timoshenko beam. Ghorbanpour 
Arani et al. [34] presented the nonlinear thermo free vibration 
and instability of viscose fluid-conveying double-walled car-
bon nanocones. They simulated the nanocone as a clamped-
clamped Euler-Bernoulli's beam embedded in an elastic foun-
dation of the Winkler and Pasternak type. Their results 
showed that the nonlocal effect on flow field is remarkable on 
frequency and critical fluid velocity of double-walled carbon 
nanocones. Also, the nonlinear frequency and critical flow 
velocity decrease with increasing the nonlocal parameter and 
cone semi-vertex angle. 

In the present work, free vibration analysis of viscoelastic 
tapered microrod is discussed by using DQM. The tapered 
microrod is rested on the visco-pasternak foundation. The 
strain gradient theory is used to derive the equations of motion. 
Finally the effects of various parameters such as, material 
length scale, viscoelastic structural damping coefficient, inter-
nal damping coefficient, Winkler and Pasternak foundation 
modulus, are investigated on the natural frequencies of tapered 
microrod. 

 
2. Strain gradient theory 

The mechanical analysis of structures in micro and nano 
scales is more significant; because of the size effects play a 
role important in these scales. According to the strain gradient 
theory proposed by Lam et al. [35], the strain energy U in a 
linear elastic isotropic material is expressed as follows: 

 
1
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where ije , ig , ijkh , ijc , iq  and ijd  define the strain tensor, 
dilatation gradient vector, deviatoric stretch gradient tensor, 
symmetric rotation gradient tensor, rotation vector and the 
kronecker delta. The strain gradient theory, higher-order 
stresses tensor can be defined as follows [25]:  

 
2ij ij mm ijGs ld e e= +   (7) 

2
02i iP Gl g=   (8) 

2
12ijk ijkGlt h=   (9) 
2
22ij ijm Gl c=   (10) 

 
where 0 1 2, ,l l l  are three material length scale parameters and 

/ 2(1 )G E n= + , / (1 )(1 2 )El n n n= + -  denote lame con-
stants. Based on Kelvin-voigt model in viscoelastic structures, 
elastic and shear modulli defined as 0 (1 / )E E g t= + ¶ ¶ , 

0 (1 / )G G g t= + ¶ ¶  that g  is viscoelastic structural damping 
coefficient. 

 
3. Vibration of viscoelastic tapered microrod 

The displacement fields can be expressed for micro-rod as 
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follows: 
 

(x, t) 0 0.u U wn= = =   (11) 
 
The kinematic equations are written as follows: 
 

(x, t) 0.xx yy zz xy xz yz
u U
x x
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= = = = = = =

¶ ¶
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Substituting Eq. (12) into Eq. (3) yields: 
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By using Eq. (12) into Eq. (4), the nonzero component of 

the kinematic equations are written as follows: 
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With considering the displacement fields and Eqs. (5) and 

(6), all components of the rotation vector and symmetric rota-
tion gradient tensor are zero. 
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By substituting Eqs. (12)-(15) into Eqs. (7)-(10), the higher-

order stresses tensor can be rewritten as: 
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0.ijm =   (19) 

 
Substituting Eqs. (12)-(19) into Eq. (1), the strain energy of 

the tapered micro-rod can be found as: 
 

22 2
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And the kinetic energy is given by [28]: 
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The work done by the visco-elastic medium force is consid-

ered as [36]: 
 

0
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where wk , pk and c are the Winkler, Pasternak and damping 
modulli. The Hamilton’s principle can be expressed as: 

 

0
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Using Eqs. (20), (23) and (24), and the governing equations 

of motion for viscoelastic tapered micro-rod based on strain 
gradient theory are obtained as follows: 
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4. DQM technique 

In this research, the governing equation of motion for vis-
coelastic tapered micro-rod is obtained by using DQM. Ac-
cording to this method, the derivatives of a function at the 
point (xi) can be expressed in terms of the value of function in 
throughout domain as [37-39]: 
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where A(m) and N denote the weighting coefficients associated 
with the mth order derivative and the number of grid points in 
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the x-direction. These coefficients for the first-order deriva-
tives are given by: 
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Also, the weighting coefficients of higher-order derivatives 

can be considered as follows: 
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A well-accepted set of the grid points is given by the Gauss-

Lobatto-Chebyshev points for interval [0, L]: 
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The governing equation of motion for viscoelastic tapered 

micro-rod based on strain gradient theory resting on visco-
pasternak foundation using DQM can be obtained as: 
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Eq. (34) can be converted to eigenvalue problem by consid-
ering the following form: 
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The first four derivatives in respect to x can be written as 

follows: 
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Substituting Eqs. (35) and (36) into Eq. (34) yields: 
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The matrix form of viscoelastic tapered micro-rod can be 

obtained as: 
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where [M], [C] and [K] are the mass, damping, and stiffness 
matrices, respectively that are expressed as: 
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The various boundary conditions using DQM are given by: 
Simply supported: 
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5. The numerical results and discussion 

In this article, the free vibration analysis of viscoelastic ta-
pered micro-rod based on strain gradient theory resting on 
visco-pasternak foundation using DQM is investigated. The 
mechanical and geometric properties of micro-rod are defined 
in Table 1. 

The results of this research are compared with the obtained 
results by Simsek [30] and Kiani [40] for the first five non-
dimensional natural frequencies of a tapered micro-rod with-
out damping coefficients and three material length scale pa-
rameters with considering C-C and C-F boundary conditions 
in Table 2 that are good agreements between them. 

Table 3 shows the influence of aspect ratios on the non-
dimensional first three frequencies based on various theories. 
It can be seen from this Table that the non-dimensional fre-
quencies decrease with an increase in the aspect ratio for a 
specified m. Moreover, the obtained results illustrate that an 
increase in the value of the aspect ratio gives rise to an de-
crease in the dimensionless natural frequency for all modes. It 
is seen that the difference between dimensionless natural fre-

quency obtained by CT, MSCT, and SGT becomes more 
prominent for higher modes. Applying the size-dependant 
theory, the stiffness of micro-rod increases, and then the di-
mensionless natural frequencies evaluated by SGT is higher 
than the other theories. 

Fig. 1 shows an schematic view of viscoelastic tapered mi-
cro-rod.  

Fig. 2 illustrates the effect of internal damping coefficient 
(C0) on the non-dimensional frequencies for CT, MSCT, and 
SGT. It is obvious that the non-dimensional frequencies in-
crease by increasing the damping coefficient for all theories. 
Furthermore, at the specified value of (C0), the variation of 
non-dimensional natural frequency is approximately smooth. 
Also, it is shown from this figure that the non-dimensional 
frequency for SGT is higher than that of the other theories. 

In Fig. 3, the variation of non-dimensional natural fre-
quency with structural damping coefficient of visco-elastic 
micro-rod for classical and non-classical theories is depicted. 
It can be seen that the obtained dimensionless frequency by 
non-classical theories tend to have a greater reduction than 
with respect to the classical theory for structural damping 

Table 1. The mechanical and geometrical properties of tapered micro-rod. 
 

Density (Kg/m^3) 7300 

Poisson’s ratio 0.3 

Elastic module (Pa) 5.76E+07 

Maximum radius to length (R/L) 0.125 

Winkler coefficient (N/m3) 1.00E+06 

Pasternak Coefficient (N/m) 1.00E+07 

Damping coefficient of the elastic 
medium (Kg/m^2/s) 1.49E+04 

Structural damping coefficient (1/s) 0.0061 

CT L1/L = 0  L0/L = 0 

MCST L1/L = 0  L0/L = 0.5 

SGT L1/L = 0.5  L0/L = 0.5 

 
Table 2. The first five non-dimensional natural frequencies of a tapered 
micro-rod without damping coefficients and three material length scale 
parameters for C-C and C-F boundary conditions. 
 

Boundary 
conditions Mode Present 

work 
Simsek 

[30] Exact [40] PT [40] 

1 3.1416 3.1416 3.1416 3.1416 

2 6.2832 6.2832 6.2832 6.2832 

3 9.4248 9.4248 9.4248 9.4248 

4 12.5654 12.5663 12.5664 12.5664 

C-C 

5 15.7354 15.7080 15.7080 15.7080 

1 1.5708 1.5708 1.5708 1.5708 

2 4.7124 4.7123 4.7124 4.7124 

3 7.8540 7.8539 7.8540 7.8540 

4 10.9955 10.9955 10.9956 10.9956 

C-F 

5 14.0560 14.1371 14.1372 14.1372 

 
 

 

Table 3. The influence of aspect ratios on the non-dimensional first 
three frequencies based on various theories. 
 

L/R m CT MCST SGT 

1 5.739602533 10.52520902 12.60207498 

2 14.55293989 101.0917714 136.8329423 2 

3 28.24294621 478.1647609 659.752744 

1 3.085807326 5.538589555 6.586412952 

2 7.285328988 50.54709996 68.41734495 4 

3 14.18665796 239.1604319 329.9544915 

1 2.208297581 3.881351619 4.585170488 

2 4.863514986 33.69888821 45.61215221 6 

3 9.50369879 159.4924807 220.0218553 

1 1.773666015 3.056041089 3.587224069 

2 3.653248891 25.27479158 34.20956069 8 

3 7.16418906 119.6586243 165.0556235 

1 1.515227347 2.563198997 2.990372553 

2 2.927699784 20.22034117 27.36800971 10 

3 5.762156566 95.75840621 132.0759535 

1 1 1.590851079 1.807872892 

2 1.483965239 10.11150015 13.68493848 20 

3 2.972432643 47.95869365 66.11713518 

 

  
Fig. 1. An schematic of viscoelastic tapered micro-rod. 
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coefficient. 
The variation of dimensionless natural frequency versus 

Pasternak and Winkler foundation modulli for different theo-
ries is shown in Figs. 4 and 5, respectively. The results illus-
trate that by increasing Pasternak modulus, the non-
dimensionless frequency increases. This fact is due to stiffer 
of micro-rod structure. 

Fig. 6 indicates the effect of the length to radius on non-
dimensional natural frequencies of vicso-elastic micro rods for 
different modes corresponding to MCST and SGT. It is ob-
served that the obtained non-dimensional natural frequencies 
by MCST and SGT decrease by increasing in material length 

to radius ratio. Additionally, it can be found that for higher 
modes, the difference between non-dimensional natural fre-
quencies corresponds to MCST and SGT is more significant 
than lower modes. 

 
6. Conclusions 

In this work, the vibration analysis of visco-elastic tapered 
micro-rod resting on visco-pasternak foundation is studied 
based on strain gradient theory. The effects of visco-Pasternak 
medium such as Winkler, Pasternak and damping coefficients 
are taken into account. C-C boundary condition is considered 
and DQM is utilized to obtain an approximate solution to the 
vibration problem of strain gradient visco elastic tapered mi-
cro rod. The results of this research show that the frequency is 
significantly affected by the Winkler, Pasternak, structural and 

 
 
Fig. 2. The non-dimensional natural frequency versus the different 
damping coefficient on the vibration of the micro-rod for different 
theories. 
 

 
 
Fig. 3. The non-dimensional natural frequency versus the different 
structural damping coefficient for different theory. 
 

 
 
Fig. 4. The non-dimensional natural frequency versus the different 
Pasternak modulus for different size-dependent effects. 
 

 

 
 
Fig. 5. The non-dimensional natural frequency versus the different 
Winkler modulus for different size-dependent effects. 
 

 
 

 
 
Fig. 6. The non-dimensional natural frequency versus aspect ratios 
based on various size-dependent effects. 
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internal damping coefficients of viscoelastic micro-rod. It is 
illustrated that by increasing Pasternak foundation modulus, 
the dimensionless frequency increases, also the obtained non-
dimensional natural frequencies by MCST and SGT decrease 
by increasing the material length to radius ratio. It can be seen 
that the obtained dimensionless frequency by non-classical 
theories tend to have a greater reduction than with respect to 
the classical theory for structural damping coefficient. Also, it 
is shown that the non-dimensional frequency for SGT is high-
er than that of the other theories. It is obvious that the non-
dimensional frequencies increase by increasing the damping 
coefficient for all theories. Furthermore, at the specified value 
of (C0), the variation of non-dimensional natural frequency is 
approximately smooth. 
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