

Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online)
DOI 10.1007/s12206-015-0508-0

Optimization of operating and assembling mass properties of solid elements

on heterogeneous platforms using OpenCL framework†
Ji-Hyun Jung and Dae-Sung Bae*

Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggi-do, 425-791, Korea

(Manuscript Received December 4, 2014; Revised March 18, 2015; Accepted April 28, 2015)

--

Abstract

Model sizes have increased significantly in the fields of engineering and scientific computation. Some additional computing devices

such as GPU, accelerators and co-processors have been applied to improve the computation performance. This paper presents several
strategies to optimize the computation performance. The first strategy is to combine a computation unit with multiple of 4-tetrahedrons to
support AVX vectorization. The second strategy is to utilize a GPU device. Several techniques are proposed to reduce the time for data
exchange between host and GPU memory spaces. The proposed techniques are implemented by using OpenCL framework. The mass
property of many solid finite elements is calculated and its computation performances on various computation platforms are compared.
Numerical experiments showed that computation performance has improved 26.47 times on CPU and 6.95 on GPU, compared to the
version without using the proposed techniques.

Keywords: GPU; Heterogeneous platform; Mass properties of solid elements; OpenCL framework
--

1. Introduction

As modern large-scale science and engineering problems
increase exponentially, it is getting harder to conduct a large-
scale computation, depending on the existing CPU device due
to power consumption and heat generation problem. As an
example, the fastest super computer registered on the TOP
500 in November 2013 is Tianhe-2 from China with 16000
computer nodes, each comprising two CPU processors and
three accelerator ships, counting a total of 3120000 cores,
theoretical peak performance of 54.9 petaflops [1]. If the sys-
tem constructs the same performance supercomputer using
only CPU, it will roughly need 8 times more CPU and 3.5
times more power consumption. For this reason, in terms of
large-scale science and engineering computing, it is essential
to choose additional computing devices like GPU, Accelerator,
or Co-processor along with CPU. Some of researchers noticed
that GPUs are an ideal solution for a data-parallel computation
and they are attempted to utilize the device to analyze a com-
bination of a multi-body system and particles [2, 3].

It is necessary to calculate the exact mass properties (Mass,
mass center, mass moment of inertia) when modeling of flexi-

ble body in MBD (Multi-body dynamics) CAE software [4].
When the mass properties are implemented on CPU naively, it
takes a few minutes to calculate for several million elements.
One way to reduce the computing time is to utilize various
computing devices.

In this study, we apply OpenCL (Open computing lan-
guage) framework to support only CPU as well as other com-
puting devices [5-8]. Sec. 2 presents a naive OpenCL version
which is able to execute on various devices. Any optimization
has not been applied. Sec. 3 presents several general optimiza-
tions that have an effect on both CPU and GPU devices. Secs.
4 and 5 present special optimizations for each device. Sec. 6
explains the numerical performance results. Sec. 7 concludes
the paper and presents a future work.

2. Mass properties

The mass, mass center and moment of inertia which is
called mass properties must be calculated for the finite ele-
ment calculation process. A body is modeled by many finite
solid elements. The size of elements must be small enough to
calculate accurate mass properties of a complex geometry
body. As the size of elements is smaller, the number of ele-
ments becomes larger, which requires more computation time.

In this study, the research investigated six kinds of solid
elements such as SOLID4, SOLID6, SOLID8, SOLID10,
SOLID15, and SOLID20. Fig. 1 illustrates the relations of a

*Corresponding author. Tel.: +82 2 2135 7097, Fax.: +82 2 2135 7099
E-mail address: dsbae@hanyang.ac.kr

† This paper was presented at the Joint Conference of the 3rd IMSD and the 7th
ACMD, Busan, Korea, June, 2014. Recommended by Guest Editor Sung-Soo Kim
and Jin Hwan Choi

© KSME & Springer 2015

2632 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637

complex geometry body and well-known six elements.

2.1 Mass properties of tetrahedron

All types of elements can be decomposed into tetrahedrons,
e.g. 6 tetrahedrons composes a SOLID8 element. Therefore, if
exact mass properties of tetrahedrons can be calculated, the
mass properties of all elements can be obtained. The mass and
mass center of an element can be calculated as follows.

2 1 3 1 4 1
1 {() ()} ()
6em m= - ´ - × - ×p p p p p p (1)

1 2 3 4
1 ()
4e = + + +p p p p p (2)

where, 1p , 2p , 3p and 4p are positions of tetrahedron
points, ep is a center of the 4 points and m is its density.

Especially, the mass moment of inertia tensor of the 3-D tet-
rahedron is introduced with the explicit formula [9]. The mass
moment of inertia eJ of the tetrahedron in a domain of D
with respect to the reference frame of x , y and z cen-
tered at Q is defined as following equations.

xx xy xz

e yx yy yz

zx zy zz

J J J

J J J

J J J

é ù- -
ê ú

= - -ê ú
ê ú- -ê úë û

J (3)

where,

2 2

2 2

2 2

()

()

() .

xx xy

D D

yy yz

D D

zz zx

D D

J y z dD J xy dD

J x z dD J yz dD

J x y dD J zx dD

m m

m m

m m

= + =

= + =

= + =

ò ò

ò ò

ò ò

As shown in Fig. 2, the coordinate transformation of g is
used to calculate the above integrals more easily.

Transformation of 1-g is used to transform the tetrahedron
in the domain of D into a normalized tetrahedron in the do-
main of 'D . Generic function of (, ,)f x y z can be written as:

'

(, ,)

(, ,), (, ,), (, ,) () .

e
D

D

f x y z dD

f x y z DET J dDx h z x h z x h z

=

= é ùë û

ò
ò

J
 (4)

Since 'D is normal with respect to the (,)x h -plane and

the projection of 'D on plane (,)x h is normal with respect
to the x -axis, one has:

1 1 1

0 0 0
() , , .e DET J d d f x y z d

x x h
x h z

- - -
= × é ùë ûò ò òJ (5)

For example, xxJ can be obtained by Eq. (6).

1 1 1
2 2

0 0 0
() .xxJ DET J d d y z d

x x h
m x h z

- - -
é ù= × × +ë ûò ò ò (6)

2.2 Assembling mass properties

After getting the mass properties of tetrahedrons, they are
assembled to obtain the mass properties of the element and
body through two steps. The mass properties of all tetrahe-
drons which belong to the element are assembled to get the
mass properties of element. The mass properties of all ele-
ments are then assembled to get those of body. The assembly
of mass properties is written as following equations and this
process is shown in Fig. 3 briefly.

1

n

k
k

M m
=

=å (7)

1

/
n

k k
k

m M
=

æ ö
ç ÷= ×
ç ÷
è ø
åP p (8)

, , ,
1

()
n

T
ij k ij k k k ij k i k j

k

J m d=
=

é ù+ × -ë ûå J d d d d (9)

where, ijd is a kronecker delta.

Fig. 1. Flexible body and various solid elements constituting it.

Fig. 2. Axes transformation.

 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637 2633

As shown in Fig. 4, the data dependencies among mass
properties are during the assembly process. This will make a
problem in the reduction process and this paper proposes how
to avoid the problem.

2.3 Basic implementation

As shown in Fig. 5, the mass properties are implemented by
using naive version of OpenCL.

3. General optimization

We replaced power function and division operation with a
multiply operation to reduce computation time without chang-
ing algorithms. It is desirable to replace power functions with
explicit multiplications for integer powers of real number to
improve performance. The divide operation invokes a hazard
since it does not support pipelining. To minimize this hazard,
repeated divide operation proceeds only once and saves the
inverted value. Then, the divide operations change the multi-
ply operations using the value. An applying general optimiza-
tion is depicted in Fig. 6.

4. Optimization for multi-core CPU device

In this section, we will describe the implementation and op-
timization process for modern multi-core CPU device. Only
10 years ago, computing powers improvement of CPUs had
depended on the clock speed but it caused power consumption
and heat generation to increase explosively. To solve this

////////////// BEGIN OpenCL HOST PART //////////////
// Set kernel input arguments
clSetKernelArg(kernel_calc_solid, 0, sizeof(int), (void*)

&count_assem);
clSetKernelArg(kernel_calc_solid, 1, sizeof(cl_mem), (void*)

&memobj_prop.memobj_conn_tetra);
clSetKernelArg(kernel_calc_solid, 2, sizeof(cl_mem), (void*)

&memobj_prop.memobj_density);
clSetKernelArg(kernel_calc_solid, 3, sizeof(cl_mem), (void*)

&memobj_prop.memobj_pos_solid);

// Set kernel output arguments
clSetKernelArg(kernel_calc_solid, 4, sizeof(cl_mem), (void*)

&memobj_prop.memobj_mass);
clSetKernelArg(kernel_calc_solid, 5, sizeof(cl_mem), (void*)

&memobj_prop.memobj_center);
clSetKernelArg(kernel_calc_solid, 6, sizeof(cl_mem), (void*)

&memobj_prop.memobj_inertia);

// Execute kernel
clEnqueueNDRangeKernel(cmd_queue, kernel_calc_solid, 1, NULL,

&global_size, &local_size, ...);

// Read mass properties of elements
clEnqueueReadBuffer(cmd_queue, memobj_mass, CL_TRUE, NULL,

size_mass, pmass, ...);
clEnqueueReadBuffer(cmd_queue, memobj_center, CL_TRUE,

NULL, size_center, pcenter, ...);
clEnqueueReadBuffer(cmd_queue, memobj_inertia, CL_TRUE,

NULL, size_inertia, pinertia, ...);

// Assemble mass properties of all elements
assemble_mass_props_host(count_solid, pmass_e, pcenter_e,

pinertia_e, pmass, pcenter, pinertia);
////////////// END OpenCL HOST PART //////////////

////////////// BEGIN OpenCL DEVICE PART //////////////
// Get thread variables
size_t global_id = get_global_id(0);
density = pdensity[global_id];

// Get mass properties of tetrahedron
for (i=0; i<COUNT_TETRA_SOLIDX; i++) {

conn_tetra = pconn_tetra[i];
get_tetra_mass_props(&density,

&pos_ele[conn_tetra.x], &pos_ele[conn_tetra.y],
&pos_ele[conn_tetra.z], &pos_ele[conn_tetra.w],
&mass_t [i], ¢er_t[i], &inertia_t[i]);

}

// Assemble mass properties of tetrahedrons
assemble_mass_props_device(COUNT_TETRA_SOLIDX,

mass_t, center_t, inertia_t, &mass, ¢er, &inertia);
////////////// END OpenCL DEVICE PART //////////////

Fig. 5. Basic implementation of mass properties.

Fig. 3. Decomposing and assembling mass properties of SOLID8 ele-
ments.

Fig. 4. Data dependencies while assembling mass properties.

2634 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637

problem, CPU manufacturers typically have integrated the
cores onto a single integrated circuit die. However, due to
synchronizing data among the CPU cores, the number of it is
not able to increase continuously. Recently, a way of improv-
ing computing powers by increasing in SIMD register size has
been in the spotlight.

4.1 Avoiding needless data copy

OpenCL Framework requires the data copy between host
memory and device memory in order to support various het-
erogeneous platforms. However, CPU Device is host device
and the source and the destination of the data to copy is the
same. Therefore, the explicit data copy process can be skipped.

4.2 Vectorization for CPU device

The CPU device used in this study supports a 256-bit intrin-
sic set extension called Intel AVX (Advanced vector exten-
sions) [10]. It is able to process 4-double precision elements
simultaneously. In order to fully utilize the register size, data
process unit of the program should be modified properly. Each
solid element consists of different numbers of tetrahedrons
and most of them are not a multiple of 4.

There are two methods to consider an AVX Intrinsic, one is
to set a process unit to 4-elements and the other is to rearrange
4-tetrahedrons with several adjacent elements. Our experi-
ments have shown that the former method the increase on
register pressure often deteriorates performance [11]. Hence,
we choose the latter method, it binds some adjacent elements
to implement efficient vectorization and we named it "group-
ing". For example, a SOLID6 element consists of 3 tetrahe-
drons. If an AVX vectorization is implemented without group-
ing, it losses 25% computing powers because only three dou-
ble precisions of register size are filled. If we set adjacent 4
SOLID6 elements and compute 4-tetrahedral units belonging
to the elements, there is no loss of a computing power. Fig. 7
illustrates an example how to grouping on SOLID6 elements

for AVX vectorization and the number of tetrahedrons con-
sists of each element, computing power loss when applying
AVX vectorization without grouping and grouping count to
overcome the loss are shown in Table 1.

4.3 Reduction process

A reduction process is to reduce a quantity of mass proper-
ties to a particular unit for each element. Although it is de-
signed for a GPU device to minimize transmission data from
Device to Host memory space, there is also a performance
improvement in a CPU device.

This effect comes from cache reuse during recursive reduc-
tion operation; hence it minimizes a cache miss and a request
data from physical memory. More information on the reduc-
tion process will be explained in the next section.

5. Optimization for many-core GPU device

In this section, we will explain the implementation and op-
timization for modern many-core GPU device. Originally, the
GPU's advanced capabilities were primarily used for 3D game

// Before replacing pow functions and a division operation with
multiple operation
pinertia_tetra_iter[0] += pow(A1.p[1], 2.0);
...
pinertia_tetra_iter[0] /= 60.0;

// After replacing pow functions and a division operation with
multiple operation
#define INV_60
0.0166
...
pinertia_tetra_iter[0] += A1.p[1] * A1.p[1];
...
pinertia_tetra_iter[0] *= INV_60;

Fig. 6. Part of applying an optimal code.

Table 1. Grouping properties in accordance with element types.

 No. of tetra. AVX loss ratio No. of grouping

SOLID4 1 75% 4

SOLID6 3 25% 4

SOLID8 6 25% 2

SOLID10 8 0% 1

SOLID15 15 6.25% 4

SOLID20 22 8.33% 2

Fig. 7. Grouping of SOLID6 elements for AVX vectorization.

 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637 2635

rendering. But now those capabilities are being utilized more
broadly to accelerate computational workloads. Structurally, a
CPU is composed of an only few cores with lots of cache
memory that can handle a few software threads at a time. In
contrast, a GPU is composed of hundreds of cores that can
handle thousands of threads simultaneously. Therefore, a GPU
device is suitable for a data parallelism.

Computation using GPU device requires 4 steps. (1) After
copying data from host memory to GPU memory, (2) CPU
instructs the process to GPU and (3) GPU executes parallel in
each core. (4) Copying the result from GPU memory to CPU
memory is the last step. This process is illustrated in Fig. 8. In
this whole process, the part with the biggest bottleneck is a
data transfer process between host and GPU memory. Thus,
minimizing the time consumption on this process is a core of
GPU computation.

5.1 Pinned memory

The role of CPU device is to manage the whole process of
host program and the role of GPU device is to assist a part of
host program. Since CPU and GPU do not share memory
space, it is necessary to exchange data for them to perform.
CPU device is responsible for the data transmission. Generally,
Host operation system needs a large virtual address space in
order to guarantee a bigger space than physical memory. This
is available when the disk replaces physical memory.

When the Host needs the saved data in this space, it reads the
data on the disk and transfers it into physical memory. This is
called non-locked memory. The non-locked memory needs to
access every single page of the non-locked memory, copy it
into pinned buffer and pass it to the direct memory access
(DMA). However, with today's memories, the use of virtual

memory is no longer necessary for many applications which
will fit within the host memory space. In those cases, it is more
convenient to use page-locked (Pinned) memory which enables
a DMA on the GPU to request transfers to and from the host
memory without the involvement of the CPU. In other words,
locked memory is stored in the Host physical memory, so the
GPU can fetch it without the help of the host [12].

5.2 Asynchronous multi-streams

The previous optimization item is able to raise data transfer
speed, but the time itself cannot be hidden. However, comput-
ing and data transfer time can be overlapped if a partitioned
data is transferred and computed asynchronously. This is simi-
lar to CUDA stream [13], and inspired by it we realized the
function so that it can be suitable for OpenCL. For example,
let's assume input data is quartered and transferring and com-
puting commands are issued in each command queue. The
first transfer time cannot be hidden but the others can. It will
be the most effective when the transfer time is almost the
same as the computing. The effect of asynchronous multi-
streams is depicted in Fig. 10.

5.3 Reduction of the result data

If the second optimization is to hide the transfer time, this
time, we tried to reduce a quantity of transferring data itself.

Although it is impossible to reduce an input data, it is possi-
ble to minimize the transferring output data significantly if we
use the feature that is able to assemble 2 or more mass proper-
ties. This is called reduction process.

A general reduction operation overwrites original values,
but with mass properties, original values should be taken into
account. Mass properties should be reduces recursively by
assigning data space additionally. The process is described in
Fig. 11.

6. Results

A Table 2 shows hardware and software specification to
perform benchmark in this study.

Based on above hardware and software specifications, we
conducted a test regarding all cases. The application goes

Fig. 8. Overall computing process using GPU device.

Fig. 9. Effects of pinned memory.

Fig. 10. Time swapping using asynchronous multi-streams.

2636 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637

through the following time steps during its run: (1) Initializing
OpenCL objects (Platform, device, context, program, kernel)
(2) Reading the input data (Positions and connectivity of
nodes, densities of elements) (3) Allocating memory object of
compute device (4) Copying the input data from host to device
memory space (5) Running the kernel on the device (6) Copy-
ing data back from device to host (7) Assembling the retuned
data using CPUs (8) De-allocating all OpenCL objects and
output the results. We are interested in only substantive com-
puting time. Therefore, only four steps from (4) to (7) are used
to measure the time and the other steps are excluded. We
avoided the power function on all performance tests except for
a pure Naive version since its effect is too obvious.

The test condition is to measure time of about 40 million
(40000000) solid elements with the same position but differ-
ent densities for each element. The result is arranged in Tables
3 and 4. According to the result, the more complicated solid
type is, the better speed up ratio can be obtained. At the naive
version, GPU device is much faster than CPU device. How-
ever, this trend is reversed after applying all optimizations.
Effective optimization items are different for each device.

On CPU device, no copy and AVX items contribute to a
performance improvement. This represents that it needs a
vectorization with a proper vector data type and its hint attrib-
ute like "_attribute__ ((vec_type_hint(double4)))" to disable
implicit kernel vectorization of OpenCL compiler [12].

On GPU device, pinned memory, stream and reduction op-

timizations are more effective. It recalls that minimizing the
time consumption to exchange data between Host and GPU
memory is an important factor of GPU computation. The time
decrease of second order elements by Stream is more obvious
than linear order elements, which comes from overlapping the
time between computing and transferring an input data. On the
other hand, the effect of reduction is nearly similar regardless
of element types. The reason is that the number of all elements
for the test is equal.

7. Conclusions and future work

The purpose of this study is to optimize the computing time

Table 2. System description used for this study.

CPU Intel Core i7-3770K / 3.5GHz / 4-Cores / HT, TB OFF

RAM Samsung DDR3 PC3-12800 8GB x 4 (32GB)

GPU NVIDIA GeForce GTX 460 / 1GB / PCI Express 2.0

OS Windows 8.1 Enterprise K x64

Compiler Intel C++ Compiler XE 14.0

Intel OpenCL CPU only Runtime Package 2013

Nvidia OpenCL NVIDIA Graphic Drive 334.89

Fig. 11. Reduction of the mass properties to minimize the output data.

Table 3. Optimization effect on multi-core CPU device.

SOLID4 SOLID6 SOLID8 Time (sec)
SOLID10 SOLID15 SOLID20

9.504 28.960 60.115 Naïve
65.202 130.192 209.335
4.619 6.704 10.449 No pow + naive
13.378 19.807 25.851
4.727 6.384 10.273 No pow + no division
11.983 19.312 22.565
2.259 2.944 5.580 No pow + no copy
7.228 11.001 16.252
3.573 5.200 8.910 No pow + reduction
11.144 18.498 24.039
3.210 5.818 7.957 No pow + AVX
11.279 17.709 20.267
0.373 1.085 2.085 All optimizations
2.791 5.058 7.431
25.48x 26.69x 28.83x Speedup over naive
23.36x 25.74x 28.71x

Table 4. Optimization effect on many-core GPU device.

SOLID4 SOLID6 SOLID8
Time (sec)

SOLID10 SOLID15 SOLID20

6.789 14.374 25.035
Naïve

32.435 57.640 81.728

3.962 5.477 7.800
No pow + naive

9.151 14.200 18.258

3.918 5.442 7.613
No pow + no division

8.649 13.220 16.891

2.259 4.994 6.789
No pow + pinned

8.105 12.382 16.807

3.181 3.972 4.982
No pow + stream

5.519 8.056 10.352

2.694 5.200 6.549
No pow + reduction

7.592 12.398 17.068

1.946 3.104 4.503
All optimizations

4.058 5.967 7.887

3.49x 4.63x 5.56x
Speedup over naive

7.99x 9.66x 10.36x

 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637 2637

of mass properties with various heterogeneous devices. We
were able to achieve a significant effect using these optimiza-
tion strategies.

(1) Five optimization strategies are attempted for CPU and
GPU. No power function, no divide operation, no copy, reduc-
tion process and AVX vectorization are attempted for the
CPU device. And no power function, no divide operation,
pinned memory, multi-streams and reduction data are tried for
the GPU device.

(2) The most effective strategies are to adjust a computation
unit to fit a SIMD register size and to avoid unnecessary copy
of data on latest CPUs.

(3) To minimize and hide a time of data transfer between
host and device memory space is the most effective strategies
on GPUs.

(4) We obtained speed up factors of over 26.47 on CPU and
6.95 on GPU as an average of the latest results for six element
types against the naive version for each computing device.

(5) When data complexity is higher, the computing time of
the GPU device is similar with that of the CPU. It shows that
GPUs could be alternative computing device on CPUs.

Based on this successful optimization, we are planning to

proceed to compute a work not only among the same devices
but also among different devices simultaneously. The total
computing time depends on the slowest device. It will be re-
solved by considering the characteristics of each device and
load-balancing.

Acknowledgment

This work was supported by VirtualMotion, Inc, Korea.

References

[1] TOP500 : http://www.top500.org/.
[2] H. Y. Jung, C. W. Jun and J. H. Sohn. GPU-based collision

analysis between a multi-body system and numerous parti-
cles, Journal of Mechanical Science and Technology, 27 (4)
(2013) 973-980.

[3] C. W. Jun and J. H. Sohn, Numerical efficiency of CUDA
based parallel programming for dynamic analysis of multi-
body systems with multi-joints and multi-force elements,

Journal of Mechanical Science and Technology, 27 (12)
(2013) 3565-3570.

[4] DAFUL 4.2 User's Manual, Virtual Motion, Inc. (2013).
[5] OpenCL : http://www.khronos.org/opencl/.
[6] A. Munshi, B. Gaster, T. G. Mattson and D. Ginsburg,

OpenCL programming guide, Pearson Education (2011).
[7] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry and D. Schaa,

Heterogeneous Computing with OpenCL, Newnes (2011).
[8] OpenCL : http://www.khronos.org/opencl/.
[9] F. Tonon, Explicit exact formulas for the 3-D tetrahedron

inertia tensor in terms of its vertex coordinates, Journal of
Mathematics and Statistics, 1 (1) (2005) 8-11.

[10] Intel OpenCL SDK v1.1, Intel (2013).
[11] R. Karrenberg and S. Hack, Improving Perfor-mance of

OpenCL on CPUs, CC'12 Proceedings of the 21st interna-
tional conference on Compiler Construction, Springer Berlin
Heidelberg (2012) 1-20.

[12] http://en.wikipedia.org/wiki/CUDA_Pinned_memory, Wiki-
pedia.

[13] CUDA Programming Guide, NVIDIA (2011).
[14] J. Shen, J. Fang, H. Sips and A. L. Varbanescu, Perform-

ance gaps between OpenMP and OpenCL for multi-core
CPUs, Parallel Processing Workshops (ICPPW), 2012 41st
International Conference, IEEE (2012) 116-125.

Ji-Hyun Jung received the B.S. and
M.S. in Mechanical Engineering from
Hanyang University in 2007 and 2010,
respectively. He is now enrolled in the
Doctorial course in Mechanical Engi-
neering at Hanyang University. His cur-
rent research interests are heterogeneous
computing with GPU and co-processor

and improvement of mechanical software.

Dae-Sung Bae received the M.S. and
Ph.D. from the university of Iowa in
1983 and 1986, respectively. His currect
research interests are meshfree method
and parallel processing in the field of
mechanical and structural dynamics.

