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Abstract 
 
Model sizes have increased significantly in the fields of engineering and scientific computation. Some additional computing devices 

such as GPU, accelerators and co-processors have been applied to improve the computation performance. This paper presents several 
strategies to optimize the computation performance. The first strategy is to combine a computation unit with multiple of 4-tetrahedrons to 
support AVX vectorization. The second strategy is to utilize a GPU device. Several techniques are proposed to reduce the time for data 
exchange between host and GPU memory spaces. The proposed techniques are implemented by using OpenCL framework. The mass 
property of many solid finite elements is calculated and its computation performances on various computation platforms are compared. 
Numerical experiments showed that computation performance has improved 26.47 times on CPU and 6.95 on GPU, compared to the 
version without using the proposed techniques.  
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1. Introduction 

As modern large-scale science and engineering problems 
increase exponentially, it is getting harder to conduct a large-
scale computation, depending on the existing CPU device due 
to power consumption and heat generation problem. As an 
example, the fastest super computer registered on the TOP 
500 in November 2013 is Tianhe-2 from China with 16000 
computer nodes, each comprising two CPU processors and 
three accelerator ships, counting a total of 3120000 cores, 
theoretical peak performance of 54.9 petaflops [1]. If the sys-
tem constructs the same performance supercomputer using 
only CPU, it will roughly need 8 times more CPU and 3.5 
times more power consumption. For this reason, in terms of 
large-scale science and engineering computing, it is essential 
to choose additional computing devices like GPU, Accelerator, 
or Co-processor along with CPU. Some of researchers noticed 
that GPUs are an ideal solution for a data-parallel computation 
and they are attempted to utilize the device to analyze a com-
bination of a multi-body system and particles [2, 3]. 

It is necessary to calculate the exact mass properties (Mass, 
mass center, mass moment of inertia) when modeling of flexi-

ble body in MBD (Multi-body dynamics) CAE software [4]. 
When the mass properties are implemented on CPU naively, it 
takes a few minutes to calculate for several million elements. 
One way to reduce the computing time is to utilize various 
computing devices. 

In this study, we apply OpenCL (Open computing lan-
guage) framework to support only CPU as well as other com-
puting devices [5-8]. Sec. 2 presents a naive OpenCL version 
which is able to execute on various devices. Any optimization 
has not been applied. Sec. 3 presents several general optimiza-
tions that have an effect on both CPU and GPU devices. Secs. 
4 and 5 present special optimizations for each device. Sec. 6 
explains the numerical performance results. Sec. 7 concludes 
the paper and presents a future work. 

 
2. Mass properties 

The mass, mass center and moment of inertia which is 
called mass properties must be calculated for the finite ele-
ment calculation process. A body is modeled by many finite 
solid elements. The size of elements must be small enough to 
calculate accurate mass properties of a complex geometry 
body. As the size of elements is smaller, the number of ele-
ments becomes larger, which requires more computation time. 

In this study, the research investigated six kinds of solid 
elements such as SOLID4, SOLID6, SOLID8, SOLID10, 
SOLID15, and SOLID20. Fig. 1 illustrates the relations of a 
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complex geometry body and well-known six elements. 
 

2.1 Mass properties of tetrahedron 

All types of elements can be decomposed into tetrahedrons, 
e.g. 6 tetrahedrons composes a SOLID8 element. Therefore, if 
exact mass properties of tetrahedrons can be calculated, the 
mass properties of all elements can be obtained. The mass and 
mass center of an element can be calculated as follows. 
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where, 1p , 2p , 3p  and 4p  are positions of tetrahedron 
points, ep  is a center of the 4 points and m  is its density. 

Especially, the mass moment of inertia tensor of the 3-D tet-
rahedron is introduced with the explicit formula [9]. The mass 
moment of inertia eJ  of the tetrahedron in a domain of D  
with respect to the reference frame of x , y  and z  cen-
tered at Q  is defined as following equations. 
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As shown in Fig. 2, the coordinate transformation of g  is 
used to calculate the above integrals more easily. 

Transformation of 1-g  is used to transform the tetrahedron 
in the domain of D  into a normalized tetrahedron in the do-
main of 'D . Generic function of ( , , )f x y z  can be written as: 
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Since 'D  is normal with respect to the ( , )x h -plane and 

the projection of 'D  on plane ( , )x h  is normal with respect 
to the x -axis, one has: 
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For example, xxJ  can be obtained by Eq. (6). 
 

1 1 1
2 2

0 0 0
( ) .xxJ DET J d d y z d

x x h
m x h z

- - -
é ù= × × +ë ûò ò ò   (6) 

 
2.2 Assembling mass properties 

After getting the mass properties of tetrahedrons, they are 
assembled to obtain the mass properties of the element and 
body through two steps. The mass properties of all tetrahe-
drons which belong to the element are assembled to get the 
mass properties of element. The mass properties of all ele-
ments are then assembled to get those of body. The assembly 
of mass properties is written as following equations and this 
process is shown in Fig. 3 briefly. 
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where, ijd  is a kronecker delta. 

 
 
Fig. 1. Flexible body and various solid elements constituting it. 

 

 
 
Fig. 2. Axes transformation. 
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As shown in Fig. 4, the data dependencies among mass 
properties are during the assembly process. This will make a 
problem in the reduction process and this paper proposes how 
to avoid the problem. 

 
2.3 Basic implementation 

As shown in Fig. 5, the mass properties are implemented by 
using naive version of OpenCL. 
 
3. General optimization 

We replaced power function and division operation with a 
multiply operation to reduce computation time without chang-
ing algorithms. It is desirable to replace power functions with 
explicit multiplications for integer powers of real number to 
improve performance. The divide operation invokes a hazard 
since it does not support pipelining. To minimize this hazard, 
repeated divide operation proceeds only once and saves the 
inverted value. Then, the divide operations change the multi-
ply operations using the value. An applying general optimiza-
tion is depicted in Fig. 6. 

 
4. Optimization for multi-core CPU device 

In this section, we will describe the implementation and op-
timization process for modern multi-core CPU device. Only 
10 years ago, computing powers improvement of CPUs had 
depended on the clock speed but it caused power consumption 
and heat generation to increase explosively. To solve this 

////////////// BEGIN OpenCL HOST PART ////////////// 
// Set kernel input arguments 
clSetKernelArg(kernel_calc_solid, 0, sizeof(int), (void*) 

&count_assem); 
clSetKernelArg(kernel_calc_solid, 1, sizeof(cl_mem), (void*) 

&memobj_prop.memobj_conn_tetra); 
clSetKernelArg(kernel_calc_solid, 2, sizeof(cl_mem), (void*) 

&memobj_prop.memobj_density); 
clSetKernelArg(kernel_calc_solid, 3, sizeof(cl_mem), (void*) 

&memobj_prop.memobj_pos_solid); 
 
// Set kernel output arguments 
clSetKernelArg(kernel_calc_solid, 4, sizeof(cl_mem), (void*) 

&memobj_prop.memobj_mass); 
clSetKernelArg(kernel_calc_solid, 5, sizeof(cl_mem), (void*) 

&memobj_prop.memobj_center); 
clSetKernelArg(kernel_calc_solid, 6, sizeof(cl_mem), (void*) 

&memobj_prop.memobj_inertia); 
 
// Execute kernel  
clEnqueueNDRangeKernel(cmd_queue, kernel_calc_solid, 1, NULL, 

&global_size, &local_size, ...); 
 
// Read mass properties of elements 
clEnqueueReadBuffer(cmd_queue, memobj_mass, CL_TRUE, NULL, 

size_mass, pmass, ...); 
clEnqueueReadBuffer(cmd_queue, memobj_center, CL_TRUE, 

NULL, size_center, pcenter, ...); 
clEnqueueReadBuffer(cmd_queue, memobj_inertia, CL_TRUE, 

NULL, size_inertia, pinertia, ...); 
 
// Assemble mass properties of all elements 
assemble_mass_props_host(count_solid, pmass_e, pcenter_e, 

pinertia_e, pmass, pcenter, pinertia); 
////////////// END OpenCL HOST PART ////////////// 
 
////////////// BEGIN OpenCL DEVICE PART ////////////// 
// Get thread variables 
size_t global_id = get_global_id(0); 
density = pdensity[global_id]; 
 
// Get mass properties of tetrahedron 
for (i=0; i<COUNT_TETRA_SOLIDX; i++) { 

conn_tetra = pconn_tetra[i]; 
get_tetra_mass_props(&density,  

&pos_ele[ conn_tetra.x ], &pos_ele[ conn_tetra.y ],  
&pos_ele[ conn_tetra.z ], &pos_ele[ conn_tetra.w ],  
&mass_t [i], &center_t[i], &inertia_t[i]); 

} 
 
// Assemble mass properties of tetrahedrons 
assemble_mass_props_device(COUNT_TETRA_SOLIDX,  

mass_t, center_t, inertia_t, &mass, &center, &inertia); 
////////////// END OpenCL DEVICE PART ////////////// 
 
Fig. 5. Basic implementation of mass properties. 

 
 
Fig. 3. Decomposing and assembling mass properties of SOLID8 ele-
ments. 

 

 
 
Fig. 4. Data dependencies while assembling mass properties. 

 



2634 J.-H. Jung and D.-S. Bae / Journal of Mechanical Science and Technology 29 (7) (2015) 2631~2637 
 

 

problem, CPU manufacturers typically have integrated the 
cores onto a single integrated circuit die. However, due to 
synchronizing data among the CPU cores, the number of it is 
not able to increase continuously. Recently, a way of improv-
ing computing powers by increasing in SIMD register size has 
been in the spotlight. 

 
4.1 Avoiding needless data copy 

OpenCL Framework requires the data copy between host 
memory and device memory in order to support various het-
erogeneous platforms. However, CPU Device is host device 
and the source and the destination of the data to copy is the 
same. Therefore, the explicit data copy process can be skipped. 

 
4.2 Vectorization for CPU device 

The CPU device used in this study supports a 256-bit intrin-
sic set extension called Intel AVX (Advanced vector exten-
sions) [10]. It is able to process 4-double precision elements 
simultaneously. In order to fully utilize the register size, data 
process unit of the program should be modified properly. Each 
solid element consists of different numbers of tetrahedrons 
and most of them are not a multiple of 4. 

There are two methods to consider an AVX Intrinsic, one is 
to set a process unit to 4-elements and the other is to rearrange 
4-tetrahedrons with several adjacent elements. Our experi-
ments have shown that the former method the increase on 
register pressure often deteriorates performance [11]. Hence, 
we choose the latter method, it binds some adjacent elements 
to implement efficient vectorization and we named it "group-
ing". For example, a SOLID6 element consists of 3 tetrahe-
drons. If an AVX vectorization is implemented without group-
ing, it losses 25% computing powers because only three dou-
ble precisions of register size are filled. If we set adjacent 4 
SOLID6 elements and compute 4-tetrahedral units belonging 
to the elements, there is no loss of a computing power. Fig. 7 
illustrates an example how to grouping on SOLID6 elements 

for AVX vectorization and the number of tetrahedrons con-
sists of each element, computing power loss when applying 
AVX vectorization without grouping and grouping count to 
overcome the loss are shown in Table 1. 

 
4.3 Reduction process 

A reduction process is to reduce a quantity of mass proper-
ties to a particular unit for each element. Although it is de-
signed for a GPU device to minimize transmission data from 
Device to Host memory space, there is also a performance 
improvement in a CPU device. 

This effect comes from cache reuse during recursive reduc-
tion operation; hence it minimizes a cache miss and a request 
data from physical memory. More information on the reduc-
tion process will be explained in the next section. 

 
5. Optimization for many-core GPU device 

In this section, we will explain the implementation and op-
timization for modern many-core GPU device. Originally, the 
GPU's advanced capabilities were primarily used for 3D game 

// Before replacing pow functions and a division operation with 
multiple operation 
pinertia_tetra_iter[0] += pow(A1.p[1], 2.0); 
... 
pinertia_tetra_iter[0] /= 60.0; 
 
// After replacing pow functions and a division operation with 
multiple operation 
#define INV_60 
0.016666666666666666666666666666666666666666 
... 
pinertia_tetra_iter[0] += A1.p[1] * A1.p[1]; 
... 
pinertia_tetra_iter[0] *= INV_60; 
 
Fig. 6. Part of applying an optimal code. 

Table 1. Grouping properties in accordance with element types. 
 

 No. of tetra. AVX loss ratio No. of grouping 

SOLID4 1 75% 4 

SOLID6 3 25% 4 

SOLID8 6 25% 2 

SOLID10 8 0% 1 

SOLID15 15 6.25% 4 

SOLID20 22 8.33% 2 

 

 
 
Fig. 7. Grouping of SOLID6 elements for AVX vectorization. 
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rendering. But now those capabilities are being utilized more 
broadly to accelerate computational workloads. Structurally, a 
CPU is composed of an only few cores with lots of cache 
memory that can handle a few software threads at a time. In 
contrast, a GPU is composed of hundreds of cores that can 
handle thousands of threads simultaneously. Therefore, a GPU 
device is suitable for a data parallelism. 

Computation using GPU device requires 4 steps. (1) After 
copying data from host memory to GPU memory, (2) CPU 
instructs the process to GPU and (3) GPU executes parallel in 
each core. (4) Copying the result from GPU memory to CPU 
memory is the last step. This process is illustrated in Fig. 8. In 
this whole process, the part with the biggest bottleneck is a 
data transfer process between host and GPU memory. Thus, 
minimizing the time consumption on this process is a core of 
GPU computation. 

 
5.1 Pinned memory 

The role of CPU device is to manage the whole process of 
host program and the role of GPU device is to assist a part of 
host program. Since CPU and GPU do not share memory 
space, it is necessary to exchange data for them to perform. 
CPU device is responsible for the data transmission. Generally, 
Host operation system needs a large virtual address space in 
order to guarantee a bigger space than physical memory. This 
is available when the disk replaces physical memory. 

When the Host needs the saved data in this space, it reads the 
data on the disk and transfers it into physical memory. This is 
called non-locked memory. The non-locked memory needs to 
access every single page of the non-locked memory, copy it 
into pinned buffer and pass it to the direct memory access 
(DMA). However, with today's memories, the use of virtual 

memory is no longer necessary for many applications which 
will fit within the host memory space. In those cases, it is more 
convenient to use page-locked (Pinned) memory which enables 
a DMA on the GPU to request transfers to and from the host 
memory without the involvement of the CPU. In other words, 
locked memory is stored in the Host physical memory, so the 
GPU can fetch it without the help of the host [12]. 

 
5.2 Asynchronous multi-streams 

The previous optimization item is able to raise data transfer 
speed, but the time itself cannot be hidden. However, comput-
ing and data transfer time can be overlapped if a partitioned 
data is transferred and computed asynchronously. This is simi-
lar to CUDA stream [13], and inspired by it we realized the 
function so that it can be suitable for OpenCL. For example, 
let's assume input data is quartered and transferring and com-
puting commands are issued in each command queue. The 
first transfer time cannot be hidden but the others can. It will 
be the most effective when the transfer time is almost the 
same as the computing. The effect of asynchronous multi-
streams is depicted in Fig. 10. 

 
5.3 Reduction of the result data 

If the second optimization is to hide the transfer time, this 
time, we tried to reduce a quantity of transferring data itself. 

Although it is impossible to reduce an input data, it is possi-
ble to minimize the transferring output data significantly if we 
use the feature that is able to assemble 2 or more mass proper-
ties. This is called reduction process. 

A general reduction operation overwrites original values, 
but with mass properties, original values should be taken into 
account. Mass properties should be reduces recursively by 
assigning data space additionally. The process is described in 
Fig. 11. 

 
6. Results 

A Table 2 shows hardware and software specification to 
perform benchmark in this study. 

Based on above hardware and software specifications, we 
conducted a test regarding all cases. The application goes 

 
 
Fig. 8. Overall computing process using GPU device. 

 

 
 
Fig. 9. Effects of pinned memory. 

 

 
 
Fig. 10. Time swapping using asynchronous multi-streams. 
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through the following time steps during its run: (1) Initializing 
OpenCL objects (Platform, device, context, program, kernel) 
(2) Reading the input data (Positions and connectivity of 
nodes, densities of elements) (3) Allocating memory object of 
compute device (4) Copying the input data from host to device 
memory space (5) Running the kernel on the device (6) Copy-
ing data back from device to host (7) Assembling the retuned 
data using CPUs (8) De-allocating all OpenCL objects and 
output the results. We are interested in only substantive com-
puting time. Therefore, only four steps from (4) to (7) are used 
to measure the time and the other steps are excluded. We 
avoided the power function on all performance tests except for 
a pure Naive version since its effect is too obvious. 

The test condition is to measure time of about 40 million 
(40000000) solid elements with the same position but differ-
ent densities for each element. The result is arranged in Tables 
3 and 4. According to the result, the more complicated solid 
type is, the better speed up ratio can be obtained. At the naive 
version, GPU device is much faster than CPU device. How-
ever, this trend is reversed after applying all optimizations. 
Effective optimization items are different for each device. 

On CPU device, no copy and AVX items contribute to a 
performance improvement. This represents that it needs a 
vectorization with a proper vector data type and its hint attrib-
ute like "_attribute__ ((vec_type_hint(double4)))" to disable 
implicit kernel vectorization of OpenCL compiler [12]. 

On GPU device, pinned memory, stream and reduction op-

timizations are more effective. It recalls that minimizing the 
time consumption to exchange data between Host and GPU 
memory is an important factor of GPU computation. The time 
decrease of second order elements by Stream is more obvious 
than linear order elements, which comes from overlapping the 
time between computing and transferring an input data. On the 
other hand, the effect of reduction is nearly similar regardless 
of element types. The reason is that the number of all elements 
for the test is equal. 

 
7. Conclusions and future work 

The purpose of this study is to optimize the computing time 

Table 2. System description used for this study. 
 

CPU Intel Core i7-3770K / 3.5GHz / 4-Cores / HT, TB OFF 

RAM Samsung DDR3 PC3-12800 8GB x 4 (32GB) 

GPU NVIDIA GeForce GTX 460 / 1GB / PCI Express 2.0 

OS Windows 8.1 Enterprise K x64 

Compiler Intel C++ Compiler XE 14.0 

Intel OpenCL CPU only Runtime Package 2013 

Nvidia OpenCL NVIDIA Graphic Drive 334.89 

 

 
 
Fig. 11. Reduction of the mass properties to minimize the output data. 

 
 

Table 3. Optimization effect on multi-core CPU device. 
 

SOLID4 SOLID6 SOLID8 Time (sec) 
SOLID10 SOLID15 SOLID20 

9.504 28.960 60.115 Naïve 
65.202 130.192 209.335 
4.619 6.704 10.449 No pow + naive 
13.378 19.807 25.851 
4.727 6.384 10.273 No pow + no division 
11.983 19.312 22.565 
2.259 2.944 5.580 No pow + no copy 
7.228 11.001 16.252 
3.573 5.200 8.910 No pow + reduction 
11.144 18.498 24.039 
3.210 5.818 7.957 No pow + AVX 
11.279 17.709 20.267 
0.373 1.085 2.085 All optimizations 
2.791 5.058 7.431 
25.48x 26.69x 28.83x Speedup over naive 
23.36x 25.74x 28.71x 

 
Table 4. Optimization effect on many-core GPU device. 
 

SOLID4 SOLID6 SOLID8 
Time (sec) 

SOLID10 SOLID15 SOLID20 

6.789 14.374 25.035 
Naïve 

32.435 57.640 81.728 

3.962 5.477 7.800 
No pow + naive 

9.151 14.200 18.258 

3.918 5.442 7.613 
No pow + no division 

8.649 13.220 16.891 

2.259 4.994 6.789 
No pow + pinned 

8.105 12.382 16.807 

3.181 3.972 4.982 
No pow + stream 

5.519 8.056 10.352 

2.694 5.200 6.549 
No pow + reduction 

7.592 12.398 17.068 

1.946 3.104 4.503 
All optimizations 

4.058 5.967 7.887 

3.49x 4.63x 5.56x 
Speedup over naive 

7.99x 9.66x 10.36x 
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of mass properties with various heterogeneous devices. We 
were able to achieve a significant effect using these optimiza-
tion strategies. 

(1) Five optimization strategies are attempted for CPU and 
GPU. No power function, no divide operation, no copy, reduc-
tion process and AVX vectorization are attempted for the 
CPU device. And no power function, no divide operation, 
pinned memory, multi-streams and reduction data are tried for 
the GPU device. 

(2) The most effective strategies are to adjust a computation 
unit to fit a SIMD register size and to avoid unnecessary copy 
of data on latest CPUs. 

(3) To minimize and hide a time of data transfer between 
host and device memory space is the most effective strategies 
on GPUs. 

(4) We obtained speed up factors of over 26.47 on CPU and 
6.95 on GPU as an average of the latest results for six element 
types against the naive version for each computing device. 

(5) When data complexity is higher, the computing time of 
the GPU device is similar with that of the CPU. It shows that 
GPUs could be alternative computing device on CPUs. 

 
Based on this successful optimization, we are planning to 

proceed to compute a work not only among the same devices 
but also among different devices simultaneously. The total 
computing time depends on the slowest device. It will be re-
solved by considering the characteristics of each device and 
load-balancing. 
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