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Abstract

Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called
hidden constraints at the level of velocity coordinates that may formally be obtained from time derivatives of the original holonomic
constraints. A numerical solution that satisfies hidden constraints as well as the original constraint equations may be obtained considering
both types of constraints simultaneously in each time step (Stabilized index-2 formulation) or using projection techniques. Both ap-
proaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-o Lie
group time integration method for the stabilized index-2 formulation that achieves second order convergence for all solution components.
In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in
large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that consid-
ers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to

prove second order convergence for the application of generalized-o. methods to constrained systems.

Keywords: Generalized-o. method; Lie group time integration; Velocity projection

1. Introduction

Backward differentiation formulae (BDF) and Newmark
type methods are the most popular classes of time integration
methods in industrial multibody system simulation [1, 2].
They do not share the favourable nonlinear stability properties
of variational integrators and structure-preserving integrators
in the long-term integration of conservative systems but prove
to be very efficient in the application to multibody system
models with dissipative terms resulting, e.g., from friction
forces or control structures. BDF gain much efficiency from a
variable step size, variable order implementation that allows to
adapt time step size and order to the solution behaviour [3]. In
the application to flexible multibody systems with nonlinear
flexible components, the large amount of algorithmic damping
may be considered as a potential drawback of BDF methods
since all higher frequency solution components are strongly
damped in the step size range of practical interest.

For this problem class, Newmark type methods like the
generalized-o method of Chung and Hulbert [4] offer more
flexibility since the damping properties for high frequency
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modes in linear systems may be controlled by appropriate
algorithmic parameters. For these methods, the order of con-
vergence is limited to two but in a method of lines framework
this order barrier does typically not result in strong limitations
of the time step size since the error of space discretization has
to be considered anyway. For constrained systems, the direct
application of Newmark type methods to the constrained
equations of motion proves to be quite popular because of its
straightforward implementation in existing large scale simula-
tion tools [2, 5, 6], see also Ref. [7]. Index reduction tech-
niques [3, 8, 9] that are a quasi-standard for BDF solvers in
industrial multibody system simulation [1] have been pro-
posed as well for Newmark type methods [10, 11], see also
Ref. [12], but implementations without index reduction still
dominate in industrial simulation tools [2, 6].

An extension of generalized-o. methods to mechanical sys-
tems that have a configuration space with Lie group structure
has been proposed in Ref. [13]. It relies again on the direct
time discretization of the constrained equations of motion. On
the Lie group, these constrained systems form a differential-
algebraic equation (DAE) that may be studied analytically by
an extension of classical DAE theory [3, 14]. Holonomic con-
straints result in a Lie group DAE of index three. As in classi-
cal DAE theory, they imply (hidden) constraints at the level of
velocity coordinates that are obtained by differentiation w.r.t.
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time ¢, see Refs. [3, 8].

Inspired by numerically observed large transient errors and
spurious oscillations of the constraint forces in the Lie group
time integration of a heavy top benchmark problem [15], we
have studied the error propagation in generalized-o. methods
for index-3 DAEs on Lie groups in great detail [12, 16, 17]. A
one-step error recursion for the algebraic solution components
shows that starting values being consistent with the hidden
constraints at velocity level may result in order reduction and
in a large oscillating first order error term that is damped out
rapidly after a short transient phase. These numerical prob-
lems could be avoided by perturbed starting values or by the
simultaneous consideration of original and hidden constraints
in the stabilized index-2 formulation of the equations of mo-
tion [12].

In the present paper, we recall basic aspects of the general-
ized-a Lie group method (Sec. 2) and use recently obtained
convergence results to study the influence of velocity projec-
tions on the accuracy of the numerical solution (Sec. 3). In
contrast to known error estimates for projection techniques in
DAE time integration [14, 18], we observe an order reduction
if the direct time discretization of the index-3 DAE is com-
bined with separate projection steps to get a numerical solu-
tion that satisfies the hidden constraints at velocity level.

2. The generalized-a Lie group time integration method

In the Lie group setting, the configuration space G of a
multibody system forms a k-dimensional manifold with Lie
group structure. For a constrained system with mass matrix
M and force vector g, the generalized coordinates g e G
are solutions of the Lie group DAE

G=DL,(e)v, (1a)
M(q)\'fz—g(q,v,t)—BT(q))\., (1b)
®(q)=0 (Ic)

with the velocity vector ve R and an invertible linear
mapping () ‘RF > T,G,v— v Here, ecG is the identity
clement and 7, G denotes the tangent space of G at point
q € G, see Refs. [13, 17] for a more detailed discussion. The
tangent space 7,G =g 1is also known as the Lie algebra cor-
responding to Lie group G. It is mapped bijectively to 7, G
by the directional derivative DL, (e) of the left translation
map L,:G—>G,y—qgoy evaluated at e. Here, symbol
“o ” stands for the group operationin G .

The m holonomic constraints (1c) are coupled to the dy-
namical Eq. (1b) by Lagrange multipliers A(¢)eR™ and by
the matrix B(q)e R™ ¥ that represents the constraint gradi-
ents in the sense that

D®(q)- (DL, (e)- w)=B(q)w, (weR") )

with D®(q)-(DL,(e)-w) denoting the directional derivative

of ®: G—R"™ evaluated at geG in the direction
DL,(e)-weT,G . It is assumed that B(g) has full rank
m <k and that the mass matrix M(g) is symmetric, posi-
tive definite. For simplicity, we restrict ourselves to scler-
onomic constraints Eq. (1c) throughout the present paper. All
results remain, however, valid as well in the case of rheono-
mic constraints ®(q,t) =0 that depend explicitly on time ¢ .

Readers who are not familiar with the Lie group setting
might for the moment abstract from many technical details
considering the special case of a linear configuration space
G =RF with vector valued elements qeR* that will be
denoted by boldface letters throughout this presentation. In
linear spaces, the kinematic relations Eq. (1a) are simplified to
q=v and the constraint matrix B(q) is given by the Jaco-
bian (6®/0q)(q) -

The most straightforward approach to the time integration
of constrained systems relies on a direct time discretization of
the equations of motion in their original form Egs. (1). In lin-
ear spaces, the discretization of the kinematic Eq. (1a) is based
on the Taylor expansion

a(t+h)=a(e)+hv(t) +§V(z)+0(h3), (h—0),

that is in the Lie group setting generalized to
5 W - N
q(t+h)=q(t)oexp hv(t)+7v(t)+0(h ) ,

(h — 0), with the exponential map exp:g— G . For matrix
Lie groups G, this exponential map is formally given by its
series expansion exp(vif):zi w' /il . As proposed in Ref.
[13], we consider a generalized-o. Lie group method that
updates the numerical solution (g,,v,.a,,},) in time step
t, >t,+h according to

e =y 0oxplhAG, ), G2
Aq, =V, +(0.5- B)ha, + Bha,,,, (3b)
Viut1 = Vp +(l_7)ha" +rha,.,., (3¢)
(1= aty, )2y + 2, Z(l_af)‘.'n-%—l +apv, (3d)

with vectors v, 1, satisfying the equilibrium conditions

. 7
M(qnﬂ )Vn+l = _g(qnﬂ > Vel ’tn+l)_ B (qnﬂ ) )"nﬂ > (36)
D(g,41) =0. (3

In linear spaces, the update Eq. (3a) for the position coordi-
nates is simplified to q,,; = q, + /4 Aq,, . Method Egs. (3) is
characterized by algorithmic parameters «,, a,, S and
y that are typically selected based on the linear stability
analysis for generalized- o methods in linear spaces according
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to Chung and Hulbert [4]. Throughout the paper, we suppose
that the order condition y=1/2-A, with A, :=a,
is satisfied to guarantee a local truncation error of size O(h”)
for unconstrained systems in linear spaces.

—a

3. Order reduction caused by velocity projection

In the 1990’s, the DAE aspects of constrained systems Egs.
(1) in linear spaces were studied in great detail, see, e.g., Ref.
[14] for a compact summary. Generalizing these classical
results to the Lie group setting in Egs. (1), we get hidden con-
straints at the level of velocity coordinates differentiating Eq.
(Ic)ywrt. t:

0=S((1)) = D@ (4(1))-4(0)

=D®(q)- (DL, (e)-¥)=B(q)v “)

see Eq. (2). For a second differentiation step that results in
hidden constraints

d

0 :%(B(q(t))v(t)) - 0(q(1). ¥(1)

=B(q)v+Z(q)(v.v) ©)]

at the level of acceleration coordinates, we consider the direc-
tional partial derivative of function G)(q,z):zB(q)z w.I.t.
geG that may be represented by a bilinear form
Z(q):RF xR¥ 5 R™ with

DqG)(q,z).(DLq(e)-W) = Z(q)(z,w)(z,w € Rk),

see Ref. [12]. In linear spaces, Z(gq) is given by the curva-
ture terms (62(1>/ 8q2)(q).

The generalized-o time integration method Egs. (3) dis-
cretizes the equations of motion Egs. (1) directly, i.e., without
considering any hidden constraints. An alternative to this ap-
proach are DAE time integration methods that are based on
index reduction before time discretization and use hidden
constraints like Egs. (4) and (5). If the original constraints Eq.
(1c) are simply substituted by Eq. (4) or by Eq. (5), we get
the index-2 formulation or the index-1 formulation of the
equations of motion [14]. In contrast to the numerical solution
4,4+ 1in the generalized-o method Egs. (3) that remains for

all time steps f, —>t,,;=t,+h in the constraint manifold
Mm .= {q € G:(I)(q) = 0} , see Eq. (3f), there is no guarantee

that the holonomic constraints Eq. (1¢) are exactly satisfied by
numerical solutions ¢,,; for index reduced formulations.
We observe a linear (index-2 formulation) or quadratic (index-
1 formulation) drifi-off effect, ie., |®(q,)| grows like

¢y (ty—ty) orlike ¢(z, —1y)* respectively.

To avoid this constraint violation in index reduced for-
mulations, the numerical solution ¢,.; is projected onto

M before continuing time integration with the next time
step ¢,,1 = t,42 , see Refs. [14, 18]. In the Lie group set-

ting, the classical projection step q,,; — q,.; +dq,,; Wwith
dq,, eR* denoting the solution of the constrained mini-
mization problem min {||dq|| :(I)(q,,+1+dq):0} may be

generalized to

dn = Gn+1© exp(a\(lnﬂ) (63)
with
dq,1 = argmin | da |:®(g,. oexp(da)) <0 | (6b)

see also the work of Terze et al. [19] on projection techniques in
the Lie group context. The velocity vector v,.; should be
projected to the tangential space 7,9 at ¢=g,,©

exp(a\(in-{-l) , S€C EqS (6)9 by

Vsl > Vo1 T dvn+1 (73-)
with
dv, = argmin{||dv\|:B(q)(vn+l+dv)=0}. (7b)

The combination of index reduction and projection tech-
niques is well established in DAE time integration of higher
index systems [14]. The extra errors being introduced by
the projection of g,y V,.1, to M and T, M according
to Egs. (6) and (7) remain in the size of discretization errors
and do not deteriorate the order of convergence. This re-
sult follows from the observation that g¢(z)e9 and
v(t)e Ty(o) 9M,(1=1y), such that after one time step the nu-
merical solution ¢,,,v,,; of a method with local error
OhP*y is always O(hP*!) -close to the manifold and to its
tangential space. Therefore, the increments dq,_;, dv,,; in
the projection steps Egs. (6) and (7) remain in the size of the
local error O(h? +l) , see Ref. [14, Sec. VIL.2].

The drift-off effect is typical of index reduced formula-
tions and does not affect the generalized- @ method Egs. (3)
that discretizes the original Lie group index-3 DAE directly
resulting in ®(q,,;)=0, see Eq. (3f). In the hidden con-
straints at velocity level, we observe a residual of size
| B(¢y41) Vst I= O(h?) that corresponds to the global error
of order two for the numerical solution ¢,.,,,v,;. To illus-
trate this numerical effect, we apply Egs. (3) with algorithmic
parameters according to Ref. [4] and a damping ratio at infin-
ity of p, =0.9 to the heavy top benchmark problem [2, 13,
17]. The equations of motion and all model parameters are
given in the appendix below. The equations are formulated in
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Fig. 1. Heavy top benchmark [2, 17], generalized-o Tethod (3) with & =1.0x1073s (a) and; h=5.0x 10745 (b) first component of the residual
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Fig. 2. Heavy top benchmark [2, 17], generalized-a method (3), velocity projection at ¢ = £=07s. (a)*Numerical solution A, for 7=1.0x 1073 s,
te [0.65 s, 0.85] ; (b) maximum of the norm of global errors in A in a time interval that contains# (Solid line) and in the subinterval [0, ¢ ]

(Dashed line).

the Lie group R>x SO(3) with m=3 holonomic con-
straints that result in 3 hidden constraints at velocity level. Fig.
1 shows one component of the constraint residual B(q) V VS,
t for time step sizes h=hy= 103s (Fig. 1(a)) and
h=hy/2 (Fig. 1(b)). Up to a discontinuity at £ =0.7s (that
will be discussed in more detail below) the constraint residual
oscillates smoothly with an amplitude that is decreased by a
factor of 22 =4 if the step size is reduced by a factor of 2.

Despite these rather large residuals in the hidden constraints
Eq. (4), the generalized- @ method Egs. (3) with reasonable
starting values [12] converges with order p=2 in all solu-
tion components. For the Lagrange multipliers A , this is illus-
trated by the dashed line in the right plot of Fig. 2 that has
slope +2 in double logarithmic scale. After impacts in the
mechanical system and after step size changes it would, how-
ever, be quite natural to enforce zero constraint residuals Eq.
(4) by a projection of v, to the tangential space 7, 9
according to Egs. (7) with |dv|| = (dVTM(q)dV)l/ and
q4=4q,, , 1€, we substitute v, ., at t=t¢,,, by its projec-
tion

-1
* Y -7
Vsl = (Ik _|:M B (BM B ) Bj|(Qn+l)]vn+l

onto the tangential space 7, M at g=g,,;, see also Refs.
[14, 20] for a more detailed discussion of velocity projection
in DAE time integration.

Taking into account the positive convergence results for the
combination of index reduction and projection techniques that
were discussed above, we might expect that such a velocity
projection does also not deteriorate the second order conver-
gence of the generalized-« method Egs. (3).

The test results in Fig. 1 and in the left plot of Fig. 2 show,
however, oscillating constraint residuals of large amplitude for
a velocity projection at ¢, = £ =0.7s that results in oscillat-
ing constraint residuals and in spurious oscillations of large
amplitude in the numerical solution A, that are damped out
after about 100 time steps. Furthermore, we observe an order
reduction for the Langrange multipliers A that is illustrated
by a solid line of slope +1 in the right plot of Fig. 2. This plot
shows in terms of relative errors |k(tn) -4, | / | Xn|‘ the
maximum of the norm of global errors in components A for
t<t (ie., without velocity projection, dashed line) and for
te[O,l] (i.e., with velocity projection at ¢=¢", solid line).
The maximum of global errors in [0,1] is dominated by the
large error terms in the transient phase after the velocity pro-
jectionat r=1¢".

The undesired numerical results reflect a coupled one-step
recursion for the scaled constraint residuals B(g,)v, //# and
the global errors in components A and B(q)a that is given
by

E, = ((T;lTO) ®1, )En ®)
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with

(t)¥(r)- @(z)?(z)) /12
and a vector §, = O(h*) that depends in a complicated way
on the global error in the position coordinates ¢ and van-

ishes on initialization [12]. The Kronecker product
(T;lTO) ®1,, is composed of matrices

0 0 -p
T, =1 0 -y ,
0 l-a, 1-a,
1 0 05-p5
Ty=1 0 -y
0 -ar -a,

and the identity matrix I, . For algorithmic parameters ¢, ,
ar, B and y according to Chung and Hulbert [4], the
spectral radius of the iteration matrix in Eq. (8) is given by
p(T;1 T)) = p, with p, €[0,1] denoting the damping ratio
at infinity.

Without any projection steps, the constraint residuals
B(q,)v, for the generalized- method Egs. (3) are of size
O(h*) , see Fig. 1. The scaled constraint residuals
B(g,)v, /h in the first component of E, compensate the
first order error term hB(q(¢))r(z), see Eq. (8), and result in
E,=O(h*) if p,<1and the starting values v,, a, are
defined such that E; = O(h?), see Ref. [12].

The velocity projection at ¢ =¢.=0.7s eliminates the
constraint residual B(g,)v, at n=n . Therefore, the com-
pensation of term AB(g(t )r(t') in the first component of
E . is now missing and we get an additional first order error
term ((T;'T,)"™" ®I,)E . for all n> n" that results in
order reduction for components . Analysing || (T;1 TO)E |
by a transformation to Jordan canonical form, see Ref. [12],
we get the error bound [|A(t,)— 4, ||< C(nj pl h+h*) with
7=n-n">0 and a suitable constant C>0.

4. Conclusions

The recently developed one-step error recursion for general-
ized- o time integration methods is a powerful tool to analyse
in the constrained case the asymptotic behaviour for small
time step sizes. In numerical tests, we observed that the pro-
jection of the velocity vector onto the manifold that is defined
by the hidden constraints at the level of velocity coordinates
may cause transient oscillations of large amplitude in the La-

grange multipliers. The one-step error recursion shows that
this undesired numerical behaviour is caused by order reduc-
tion resulting from the velocity projection.
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Appendix
A.1 Heavy top benchmark problem

A top that rotates in a gravity field is a classical test problem
for studying and comparing different parameterizations of
finite rotations in rigid body dynamics. As in Ref. [2], we
consider a top rotating about a fixed point. In this appendix,
we follow the presentation of the heavy top benchmark prob-
lem in Ref. [12, Sec. 5] using model parameters from Ref. [17,
Sec. 7.1].

In the inertial frame, the position and orientation of the top
are represented by the position xe R* of the center of mass
and by the rotation matrix R eSO(3). The set R*xSO(3)
with the composition operation

(Xl, Rl) O(Xz, Rz) = (xl + X2, Rl R2)

defines a 6-dimensional Lie group G< R'? with elements
g =(x, R). The kinematic relations Eq. (1a) are given by
x=u,R=RQ (A.la)

with ue R® denoting the translational velocity in the inertial
frame and a skew symmetric matrix

0 Q5 Q
Q= Q 0 -Q|eR¥]
Q, Q 0

that represents the angular velocity Q =(Q;, Q, Q3 )T eR3.
Vectors u and Q are summarized in the velocity vector
V= (uT, QT)—r e R®. In this absolute coordinate formulation,
the equations of motion are given by

mxX—Ah=my, (A.1b)
JO+OxJQ+XR A =0, (A.lc)
—Xx+RX=0 (A.1d)

with m denoting the mass of the top and the inertia tensor
J that is defined with respect to the center of mass. The grav-
ity forces are given by y e R>.

To fix the tip of the top at the origin, we introduce the posi-
tion X of the center of mass in the body-fixed frame and get
the m=3 holonomic constraints Eq. (A.ld). The corre-
sponding Lagrange multipliers are given by A eR>. Due to
these constraints, the motion is restricted to a 3-dimensional
submanifold of G and we have

mly; 0 —my -
M= ,g= B=(-1; -RX).
(0 Jj & [me] (4 )

Omitting all physical units, the model data are given by
X=(0,1,0)",y=(0,0,-9.81)", m=15 and

J = diag(0.234375, 0.46875, 0.234375) .

The (consistent) initial values are set to x(0)=X,
R(0) =15, 2(0) = (0,150, - 4.61538)" and u(0)=-XQ(0).
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