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Abstract 
 
Blade-rotor systems frequently encounter the problem of blade-to-case rubbing, which affects their safety and stability. Numerical 

simulation can be used to predict the steady-state response of these systems. However, such simulation is frequently computationally 
expensive because of the high dimensions of the dynamic model of a blade-rotor system. To overcome this problem, a new method that 
combines the receptance-based dimension-reduction approach with the incremental harmonic balance (IHB) method is presented in this 
study. First, a dynamic model of a blade-rotor system is developed using the finite element method, and the number of dimensions of the 
model is reduced by the receptance method. Subsequently, the steady-state response is obtained by the improved IHB method to conven-
iently manage the large number of super-harmonic components of the local rubbing system. Finally, the precision and efficiency of the 
proposed method is verified by comparing its results with those obtained by the Newmark-b method. The proposed method is found to be 
efficient in analyzing local rubbing blade-rotor systems with high dimensions, local nonlinearities, and rich super-harmonics.  
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1. Introduction 

The blade-rotor system is an important component of tur-
bomachinery (e.g., steam turbines, aeroengines, and air com-
pressors). Blade-to-case local rubbing faults frequently occur 
because of the small clearance between the blade and the case. 
These faults can seriously affect the safe and stable operation 
of rotating machinery. In the past decades, numerous studies 
have been conducted on rubbing blade-rotor systems, as pre-
sented in the comprehensive review of Muszynska [1]. 

In general, the dynamic model of a blade-rotor system in 
large rotating machinery has high dimensions and strong non-
linearity. Therefore, a numerical simulation instead of an ana-
lytical method is commonly used to predict response in such 
systems. However, using numerical methods such as the 
Newmark-b [2, 3] and the Runge-Kutta [4] to analyze high-
dimensional dynamic systems, particularly blade-to-case rub-
bing rotor systems, is time-consuming. To overcome this dis-
advantage, reducing the number of dimensions of nonlinear 
blade-rotor systems is critical. At present, two types of ap-
proach are available to reduce the dimensions of such dy-
namic systems with a large number of degrees of freedom 
(DOFs). The first type is the dynamic substructure methods, 
which are frequently combined with time-domain methods. 
The fixed-interface component mode synthesis (CMS) ap-

proach [5-7] is the most widely used dynamic substructure 
method. In this method, the structure is divided into two parts 
(linear and nonlinear parts). Modal truncation is applied to the 
linear part, and only the lower-order modes remain; therefore, 
the number of dimensions of the initial structure is reduced. 
Although these methods can reduce computational effort, the 
accuracy of the result may decrease because the effects of 
higher-order modes are ignored [8]. 

The second type comprises receptance-based dimension-
reduction approaches [9, 10], which are frequently combined 
with frequency-domain methods. By utilizing the receptance 
functions of the linear part of a system, the number of dimen-
sions can be reduced to be equal to that of nonlinear DOFs. 
Therefore, this method can significantly improve computa-
tional efficiency for steady-state response prediction. In addi-
tion, it is more accurate than the CMS method because it 
avoids modal truncations. 

In some studies, the receptance-based dimension-reduction 
method was combined with the harmonic balance (HB) meth-
od [11] and the describing function (DF) method [12] to ob-
tain the steady-state response of local nonlinear systems. For 
example, Bonellop [13] developed the receptance HB method 
to rapidly compute the steady-state periodic vibration of an 
entire aeroengine model. Similar methods were proposed by 
other researchers [14-16]. Wei and Zheng [8] conducted mul-
ti-harmonic response analysis of a dynamic system with local 
nonlinearities based on the DF method and linear receptance 
data. All these studies have proven that using the receptance-
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based dimension-reduction method before employing fre-
quency-domain analysis methods, such as the HB and DF 
methods, can greatly improve computational efficiency. How-
ever, few studies have utilized the receptance-based dimen-
sion-reduction method to expand the applicability of the IHB 
method.  

Blade-to-case rubbing is frequently local to rotating machin-
ery, and a large number of super-harmonics exists in the 
steady-state responses of the system [17]. These super-
harmonics should be considered to achieve precise numerical 
simulation results. The IHB method [18-23] is an efficient tool 
for analyzing strong nonlinear vibrations with multi-harmonics. 
It can also provide solutions with higher precision than the HB 
and DF methods. Therefore, a new response prediction method 
based on the IHB method for blade-to-case rubbing is proposed. 
To reduce the time required for calculation, the method is 
combined with the receptance-based dimension-reduction ap-
proach. Numerical experiments are performed to verify the 
precision and efficiency of the proposed method. 

 
2. Dynamic modeling of a blade-rotor system 

2.1 Dynamic model 

The structure of a blade-rotor system is frequently compli-
cated; hence, modeling the system using commercial finite 
element software such as ANSYS is convenient. Analyzing 
the system by using finite element discretization to conven-
iently find a solution is necessary. 

In the following subsection, the finite element model of 
each part of the blade-rotor system is developed using the 
ANSYS Parametric Design Language. 

 
2.1.1 Rotor beam element model 

In the rotor system, the rotor shaft can be discretized into 
Beam188 elements. Each node of the beam element has three 
translational and three rotational DOFs, as shown in Fig. 1. 
The generalized displacement of each element is defined by 
Eq. (1):  

 

, , , , , , , , , , ,
T

A A A xA yA zA B B B xB yB zBx y z θ θ θ x y z θ θ θé ùë û . (1) 

 
2.1.2 Blade shell element model 

The blade is modeled using the Shell63 element, which has 
both bending and membrane capabilities. The element has 6 
DOFs at each node: translations in the nodal x, y, and z direc-
tions and rotations about the nodal x, y, and z axes. The geo-
metric model of this element is presented in Fig. 2. 

 
2.1.3 Support and connection 

The left and right supports of the rotor system are modeled 
using the Matrix27 element. The connection between the rotor 
and the blade roots is considered to be rigid, and the “CERIG” 
command in ANSYS is used to connect the two types of ele-
ment (The rotor and the blade). 

Thus, the dynamic modeling of the blade-rotor system is 
completed and the following assumptions are accounted for. 

(1) Straight blades are adopted in this model, and the effect 
of blade profile is neglected. 

(2) The connection between the blade roots and the disk is 
rigid coupling that neglects the contact of tenon/mortise. 

 
2.2 Dynamic modeling procedure 

Although model development is convenient using ANSYS, 
solving the problem of local rubbing nonlinear vibration and 
obtaining a steady-state response using this software is diffi-
cult and time-consuming. Therefore, finite element model data 
are exported to MATLAB to develop the mathematical model 
and solve the problem. 

The exported data are assembled into matrices M, K, and C 
using matrix assembly techniques. These matrices are entered 
into the MATLAB algorithm program to conveniently find a 
solution for the system. The entire modeling procedure of the 

 
 
Fig. 1. Model of the beam element. 
 

 
 
Fig. 2. Model of the shell element. 

 

 
 
Fig. 3. Complete modeling procedure of the blade-rotor system. 
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blade-rotor system (Fig. 3) is divided into two modules, 
namely: the ANSYS modeling module and the MATLAB 
solving module. 

 
2.3 Mathematical model 

While considering the effect of nonlinear rubbing, the equa-
tion of motion of the blade-to-case contact rotor system is 
given in Eq. (2): 

 
r+ + = +Mx Cx Kx U F&& & , (2) 

 
where M , C , and K  are the mass, damping, and stiffness 
matrices, respectively; x  is the displacement vector; U  is 
the excitation vector caused by unbalance; and rF  is the 
nonlinear rubbing force vector. The dots above x  denote 
differentiation with respect to time t . 

Assuming that rubbing occurs at node l, the rubbing force 
vector can be written as shown in Eq. (3): 

 
T6 6
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l

r nx nyf f
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F
678
L L , (3) 

 
where nxf  and nyf  are the rubbing force components in the 
x and y directions, respectively. 

The rubbing force adopts the model of piecewise linear 
nonlinearity and the expressions are given in Eq. (4): 
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where, nif  is the nonlinear force at node i, 

iJx  is the radial 
displacement, nik  represents the nonlinear contact stiffness, 
and ie  denotes the clearance between the blades and the case. 
The blade tip comes in contact with the case when its radial 
vibration exceeds clearance ie . 

 
3. Methodological details 

3.1 Dimension reduction based on receptance data 

The DOFs of the rotor system are separated into two dis-
tinct groups, namely: the nonlinear group 1x  contains DOFs 
that are related to nonlinear rubbing forces, and the linear 
group 2x  contains DOFs that are unrelated to rubbing forces. 

Eq. (2) can be rearranged as follows: 
 

( ) 1 2, cos sinn t tw w+ + + = +Mx Cx Kx f x x F F&& & & ; (5) 

 
that is, 
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When the rotor system is in a steady state, the response vec-

tor x  is periodic, and the response of node i can be expanded 
as follows: 

 

( )0 s
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where 1 cos sin cos sins t t r t r tw w w w= é ùë ûC L  and 

T

0 1 1i i i i ri ria a b a b= é ùë ûA L . 
If diag , , ,s s s= é ùë ûS C C CL  and 

TT T T
1 2, , , hé ù= ë ûA A A AL , then 

=x SA . 
When the rotor system is in a steady state, the nonlinear 

force vector ( ),nf x x&  is also periodic and can be expressed as 
follows: 

 
( ),n =f x x SP& , (8) 

 

where 
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satisfy the following equation: 
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where n e=f S P  and ( )Ren n=f f . 
Eq. (9) can be rewritten as follows: 

 

11 12 1 11 12 1 11 12 1

21 22 21 22 21 22 22 2

ì ü ì üé ù é ù é ù ì üï ï ï ï+ +í ý í ý í ýê ú ê ú ê ú
ë û ë û ë û î þï ï ï ïî þ î þ

M M x C C x K K x
M M C C K K xx x

&& &

&& & . 

11 12j -j1

21 22

e j e
0

t tn w wì ü ì ü ì üï ï+ = +í ý í ý í ý
ï ï î þ î þî þ

F Ff
F F

  (10) 

 

Suppose 
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kth-order harmonic term of response x , and 
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Hik ik ikx p qw w= + . Based on the second term of Eq. (10), 
the kth harmonic term 2H kx  can be written as follows: 
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Substituting Eq. (11) into the first term of Eq. (10) yields 
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where n1H kf  is the kth harmonic term of 1nf , 
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For the fundamental harmonic term 1 ,Hx  if =Lx  

( ) ( )-1 -12 j 2 -j
1 2- +j e - -j j et tw ww w w w+K M C F K M C F  is the re-

sponse of a rotor system with no rubbing, and if 
1 1H L H= + Dx x x , then 1HDx  satisfies the following equation: 
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From Eq. (13), the following equation can be obtained: 
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From Eqs. (12) and (14), the following equation can be de-

rived: 
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The number of dimensions of Eq. (15) is considerably less 

than that of the original system. Moreover, Eq. (15) only con-
siders the nonlinear forces because the responses of the linear 
part are already represented in the responses of the nonlinear 
part by using the frequency response function (Receptance). 

The real part of Eq. (15) can be written as follows: 
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Eq. (16) can be solved by the IHB method. After 1x  is ob-

tained, 2x  can be recovered from 1x  using Eq. (11). 
 

3.2 Receptance IHB method 

The IHB method is an effective method for obtaining peri-
odic solutions to nonlinear multi-DOF systems. A brief intro-
duction to the procedures of the method is presented in this 
paper; further details can be found in Refs. [18-23]. 

The general form of the equation with real number parame-
ters is given by Eq. (17): 

 
( ) 1 2cos sinn t tw w+ + + = +Mx Cx Kx f x F F&& & . (17) 

 
Assuming that the periodic solution is =x SA , and 
 

0 e= +x x x ; (18) 
 

then 0 0=x SA  and e e=x S A . 
By substituting Eq. (18) into Eq. (17) and neglecting higher-

order harmonic components, the following equation is ob-
tained: 
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By applying Galerkin’s procedure, Eq. (19) yields 
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Through iteration, A  can be solved first from Eq. (20), 

and then x  can be calculated afterward. 
The difference between Eqs. (15) and (17) is that the coeffi-

cients in Eq. (15) are complex numbers, and thus, the IHB 
method cannot be used directly. To improve the IHB method, 
suppose that 
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Based on Eq. (12), the following deduction can be made: 
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Therefore,  
 

1 0 2m m mD = +K A R A R . (24) 

 
Through iteration, 0A  can be solved from Eq. (24); and 

finally, x  can be obtained. 
 

4. Numerical experiments and discussion 

4.1 Introduction to the blade-rotor system 

The dynamic model of the rotor system with blade-to-case 
rubbing is displayed in Fig. 4. The rotor is divided into 28 
segments and 29 nodes, and the element parameters are listed 
in Table 1. 

Four groups of blades, with eight blades in each group, are 
rigidly connected with the rotor system. The geometric and 
material parameters of the blades are listed in Table 2. 

The left and right supports depicted in Fig. 4 are located at 
nodes 5 and 26, respectively, with a support stiffness of 5×109 
N/m. Assuming that the elastic modulus of steel is 210 GPa, 
the density of the rotor material is 7850 kg/m3. 

The finite element model is shown in Fig. 5, in which sev-
eral key nodes used in the following numerical simulations are 
indicated. In this study, the rubbing fault is assumed to occur 
at node 10198 (a blade tip on the fourth blade group) and the 
excitation force is imposed on node 17, as illustrated in Fig. 5. 
The finite element model has 1710 and 1326 DOFs before and 
after coupling DOF, respectively. 

 
4.2 Precision comparison 

4.2.1 Comparison with the Newmark-b method 
The excitation force (Amplitude A = 1×104 N, frequency f = 

20 Hz) is imposed at node 17 in the rotor, with the nonlinear 

contact stiffness and rubbing clearance values of  kn = 1×109 
N/m and e = 4×10−4 m, respectively.  

The comparison of the steady-state responses obtained from 
these two methods is depicted in Fig. 6, wherein the solid lines 
denote the results of the Newmark-b method and the solid 
lines with “°” represent the results of the proposed method. In 
particular, Figs. 6(a) and (b) show the conditions under sym-
metric and asymmetric rubbing, respectively. The comparison 
of the proposed method with the Newmark-b method shows 
that their calculated results are nearly identical. Hence, the 
precision of the proposed method is verified. 

 
4.2.2 Steady-state responses at different locations 

The steady-state responses at the noncontact node 10070 on 
the blade and at node 20 on the shaft are illustrated in Figs. 
7(a)-(d), with the same simulation parameters as those in Fig. 
6. The response of the noncontact location on the blade has 
similar characteristics to the rubbing location on the blade, 

Table 2. Geometric and material parameters of the blade. 
 

Width of the blade (mm) 90 

Height of the blade (mm) 180 

Thickness of the blade (mm) 10 

Elastic modulus ( GPa ) 210 

Material density ( 3kg m-× ) 7850 

Poisson’s ratio 0.3 

 

 
 
Fig. 4. Dynamic model of the rotor system with blade-to-case rubbing. 

 

 
 
Fig. 5. 1326-DOF finite element model of the blade-rotor system. 

 
 

Table 1. Rotor element parameters. 
 

Serial number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Length (mm) 287 259 337 175 175 37 54 54 294 54 54 294 54 54 

Diameter (mm) 184 225 310 340 340 448 600 600 448 600 600 448 600 600 

Serial number 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Length (mm) 294 54 54 360 150 100 140 100 150 199.5 199.5 225 180 617 

Diameter (mm) 448 600 600 486 400 1007 400 1007 400 370 370 225 196 170 
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whereas the response of the blade is slightly more nonlinear 
than that of the location on the shaft. This result indicates that 
the proposed method can obtain the responses of both nonlin-
ear and linear locations. 

 
4.2.3 Multi-harmonic responses for different contact stiff-

ness values 
The multi-harmonic curves at rubbing node 10198 for exci-

tation frequencies ranging from 10 Hz to 40 Hz with e = 
2×10−4 m are shown in Fig. 8. In particular, Figs. 8(a)-(c) rep-
resent the condition of asymmetric rubbing with kn1 = 1×107 
N/m, kn2 = 5×107 N/m, and kn3 = 1×108 N/m for harmonic 
components 0X, 1X, and 2X, respectively. Meanwhile, Figs. 
8(d)-(f) represent the condition of symmetric rubbing with kn1 
= 2×106 N/m, kn2 = 5×106 N/m, and kn3 = 1×107 N/m for har-
monic components 1X, 3X, and 5X, respectively. When con-
tact stiffness is large, the proportion of the 1X harmonic com-
ponent (Fundamental frequency) is small, whereas the propor-
tion of the other harmonic components is large.  

 
4.2.4 Multi-harmonic responses for different rubbing clear-

ances 
The multi-harmonic responses at rubbing node 10198 with 

e1 = 2×10−4 m, e2 = 3×10−4 m, and e3 = 4×10−4 m are presented 
in Fig. 9. In particular, Figs. 9(a)-(c) denote the condition of 
asymmetric rubbing with kn = 1×107 N/m. In this case, the 1X 
harmonic component tends to slightly increase, whereas the 
other harmonic components tend to decrease with the increase 
in rubbing clearance. In addition, Figs. 9(d)-(f) denote the 

condition of symmetric rubbing with kn = 1×105 N/m. In this 
case, as rubbing clearance increases, the 1X harmonic compo-
nent exhibits no obvious change, the peak of the 3X harmonic 
component tends to increase, the frequency band of the 3X 
harmonic component becomes narrow, and the peak and fre-
quency band of the 5X harmonic component tend to decrease. 

 
(a) 

 

 
(b) 

 
Fig. 6. Comparison of the steady-state responses of y10198 obtained by 
the proposed method and the Newmark-b method. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 7. Time-domain waveforms and amplitude spectrum at nodes 
10070 and 20. 
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Based on these analytical results, the effectiveness of the 
proposed method is confirmed. First, the response at linear 
locations can be obtained, although the DOFs of the system 
are reduced to the number of nonlinear DOFs by the reduction 
method (Fig. 7). Second, the harmonic response can be di-
rectly obtained by using the proposed method (Figs. 8 and 9). 
This finding indicates that the current method is an efficient 
tool for analyzing the multi-harmonic response of local 
nonlinear systems. 

4.3 Efficiency comparison 

To verify the efficiency of the proposed method, its CPU 
time is compared with that of the Newmark-b method (Table 
3). The proposed method can greatly reduce the computational 
cost of solving the problem. In Table 3, “r” denotes the num-
ber of harmonic terms, and “n” represents the number of non-
linear DOFs in the system. Moreover, the effects of these two 
parameters on computational efficiency are discussed. 

 
                          (a)                                         (b)                                          (c) 
 

 
                       (d)                                   (e)                                    (f) 
 
Fig. 8. Multi-harmonic responses with different contact stiffness values. 
 

 
                         (a)                                          (b)                                          (c) 
 

 
                      (d)                                     (e)                                    (f) 
 
Fig. 9. Multi-harmonic responses with different rubbing clearances. 
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First, the effect of “r” is investigated. Assuming that one 
nonlinear DOF exists at node 10198 and taking n = 1 and r = 3, 
6, 9, computational cost increases significantly with an in-
crease in the number of harmonic terms r. However, the pre-
sent method is more economical than the Newmark-b method 
even when the number of harmonic terms reaches r = 9. The 
precision of the results is guaranteed when r = 6 (Fig. 10). 

Subsequently, the effect of “n” on computational efficiency 
is studied. Taking r = 3 and n = 1 (Node 10198), n = 2 (Nodes 
10198 and 10230, which are uniformly located in one cycle in 
the fourth blade group at 180°), and n = 4 (Nodes 10198, 
10230, 10214, and 10246, which are uniformly located in one 
cycle in the fourth blade group at 90°), computational effi-
ciency is found to decrease with an increase in the number of 
nonlinear DOFs, n. 

In addition, the effects of these two parameters on the preci-
sion of this method are also presented. Based on the HB the-
ory, if more harmonic terms “r” are considered, then more 
accurate responses can be obtained. Nevertheless, the number 
of nonlinear DOFs has less influence on the accuracy of the 
proposed method because the IHB method can analyze both 
weak and strong nonlinear vibration systems. When the num-
ber “n” is large, the nonlinearity of the system is strong. 

 
4.4 Discussion 

From the preceding analysis, we can infer that the proposed 
method is an efficient tool for performing frequency-domain 
response analysis, which can also be used to directly obtain the 

harmonic response of each order. Moreover, the proposed 
method has high efficiency and good precision. It can sharply 
reduce machine hours compared with the Newmark-b  method. 

However, the precision and efficiency of the method are al-
so affected by two parameters, namely: the number of har-
monic terms adopted and the number of nonlinear DOFs in 
the system. With an increase in the number of harmonic terms 
adopted, more accurate results can be obtained but with lower 
computational efficiency. Moreover, with the increase in the 
number of nonlinear DOFs, computational efficiency will be 
reduced. 

Thereby, parameter “r” should be selected carefully to find 
the right balance between precision and efficiency. Provided 
that precision is assured, the number “r” must be kept to a 
minimum value to improve the efficiency of the numerical 
calculation. 

 
5. Conclusion 

A blade-rotor system with local rubbing has a large number 
of super-harmonics and high dimensions. Therefore, a fre-
quency-domain method that combines the IHB and the recep-
tance-based dimension-reduction approach is proposed to 
obtain the steady-state response of the system. 

By comparing the present method with the conventional 
time-domain method (The Newmark-b method), a conclusion 
can be drawn that the proposed method can sharply reduce 
computational effort without compromising the precision of 
the results. Nevertheless, the proposed method will require 
more computational effort when the system has more nonlin-
ear DOFs and when more harmonic terms are adopted. 

Numerical experiments indicate that the proposed method 
has excellent advantages for analyzing high-dimensional local 
nonlinear systems. The method addresses the difficulty in 
calculating rubbing fault in blade-rotor systems. 
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