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Abstract 
 
Sequential surrogate model-based global optimization algorithms, such as super-EGO, have been developed to increase the efficiency 

of commonly used global optimization technique as well as to ensure the accuracy of optimization. However, earlier studies have draw-
backs because there are three phases in the optimization loop and empirical parameters. We propose a united sampling criterion to sim-
plify the algorithm and to achieve the global optimum of problems with constraints without any empirical parameters. It is able to select 
the points located in a feasible region with high model uncertainty as well as the points along the boundary of constraint at the lowest 
objective value. The mean squared error determines which criterion is more dominant among the infill sampling criterion and boundary 
sampling criterion. Also, the method guarantees the accuracy of the surrogate model because the sample points are not located within 
extremely small regions like super-EGO. The performance of the proposed method, such as the solvability of a problem, convergence 
properties, and efficiency, are validated through nonlinear numerical examples with disconnected feasible regions.  
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1. Introduction 

Global optimization has gained much attention because it 
can systematically provide not only the best design solution 
within a design space, but also multiple alternatives of the best 
designs [1-4]. However, its computational burden remains high. 
To overcome this difficulty and maximize the benefits of 
global optimization, a surrogate model, often referred to as a 
metamodel, has emerged as an effective alternative [5, 6]. The 
surrogate model is an approximate model to transfer the im-
plicit relationship between the design variables and the re-
sponse into an explicit one that can be easily expressed with 
simple basis functions or polynomials. One of the greatest ad-
vantages is that the surrogate model can quickly and cheaply 
evaluate responses at any untried points over the design do-
main. Therefore, the computational burden of global optimiza-
tion can be remarkably reduced by the surrogate model [7].  

However, metamodel-based design optimization (MBDO) 
can frequently lead to quite a large violation from the actual 
constraints even if there is only a slight error of the surrogate 

model in the neighborhood of the optimum because most op-
timums are located on the boundary of the active constraints 
[8]. Therefore, a sequential surrogate model-based global op-
timization algorithm has been recently developed to increase 
the efficiency of commonly used global optimization algo-
rithms as well as to ensure the accuracy of optimization [9]. 
This approach focuses more on how to efficiently explore a 
global optimum with a surrogate model rather than how to 
globally build an accurate surrogate model over the design 
space. In this research, we used a surrogate model to find an 
initial solution, refine the solution and search for another fea-
sible point in an optimization algorithm. Therefore, this algo-
rithm provides an accurate optimum because it samples re-
sponses at the optimum. 

For constrained global optimization, super-EGO, which is 
an enhanced version of EGO, is known to solve various prob-
lems including disconnected feasible regions and nonlinearity 
[10]. When it explores a global optimum, super-EGO uses 
three phases: two stochastic searching phases and a local 
search phase. In the two stochastic phases, the criteria are used 
to search the first feasible region and move to another feasible 
region, respectively. In the local search phase, DIRECT algo-
rithm finds the local optimum point if the sampling point satis-
fies the constraints once. However, if the surrogate model 
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varies significantly from the sampling points, super-EGO 
spends most of the optimization time in the local search phase 
without stochastic information. In this case, super-EGO is less 
effective than standard global optimization. Thus, it is inap-
propriate to classify super-EGO as a stochastic global optimi-
zation. In addition, because the local search phase locates the 
sample points within an extremely small region, this increases 
the likelihood of a singular correlation matrix of the surrogate 
model and the model gives inaccurate prediction. Lastly, su-
per-EGO requires several empirical parameters, which is hard 
to determine suitable parameters for various problems [10]. 
Therefore, it is necessary to develop a stochastic and unified 
sampling criterion without parameters that can be easily appli-
cable to various problems.  

We propose a united sampling criterion based on a statisti-
cal surrogate model for effective global optimization of prob-
lems with constraints. The proposed method consists of feasi-
ble search parts and an expected improvement (EI) part. The 
feasible search part, which plays a key role of the method, is a 
combination of the infill sampling criterion, the boundary 
sampling criterion, and the mean squared error (MSE) from 
kriging surrogate model. The MSE determines which criterion 
is more dominant among two criteria. It is able to select the 
points located in a feasible region with high model uncertainty 
as well as the points along the boundary of constraint at the 
lowest objective value. The performance of the proposed 
method, including the solvability of a problem, convergence 
properties, and efficiency is validated through nonlinear nu-
merical examples with disconnected feasible regions.  

 
2. Kriging-based stochastic probability  

Kriging originally comes from the field of geostatistics as a 
method to predict geological data, such as the thickness of ore 
layers [11]. Sack and coworkers exploited the kriging model 
as a prediction tool for engineering designs, where it is named 
as “Design and analysis of computer experiments (DACE)” 
[12]. The kriging surrogate model is an interpolation model 
that is appropriate for deterministic responses. Recently, a 
variety of sampling criteria using the kriging surrogate model 
have been widely developed due to its excellent prediction 
performance and its useful statistical quantities [10, 13]. In 
this section, the ways for dealing with stochastic probability in 
global optimization are described.  

 
2.1 Space filling sampling criterion  

Once the kriging surrogate model is generated, it can pro-
vide not only the predicted value, but also its stochastic pre-
diction error denoted by 2s) . The MSE is directly related to 
the uncertainty of the predicted value. At the sample data, the 
model passes exactly through the data and the MSE becomes 
zero. Meanwhile, the uncertainty of prediction at an untried 
point becomes high as an untried point is far away from the 
sample points. Thus, the sampling technique for searching the 

point with the highest value of the MSE is able to locate the 
new experimental points farthest from the sample points. That 
is why it is called “Space filling sampling criterion”. 

 
2.2 Expected improvement sampling criterion 

Kriging theory assumes that both the sample data and the 
predicted values of the kriging surrogate model are normally 
distributed. Let us consider a response of the kriging surrogate 
model )( 1xY

)
 at the design point of x1. 

We use Kushner’s criterion followed by the EI probability 
[14]. The stochastic probability that x1 is smaller than fmin, the 
probability of improvement, is defined as 
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where ɸ (·) is the cumulative distribution function (CDF) of 
the standard normal distribution and I1 is the stochastic quan-
tity depending on x1. The minimum value among the observed 
data is denoted by fmin. 

To illustrate the basic search strategy of the EI probabil-
ity, a one-dimensional example is shown in Fig. 1. The 
sine-shaped solid line of the upper figure is a kriging sur-
rogate model built from four sample data denoted by solid 
circles. Then, we examine the probability of EI on three 
arbitrary sample points, x1, x2 and x3. The point of x1 has the 
highest probability of improvement among the three differ-
ent points. 

 
2.3 Infill sampling & boundary sampling criterion 

The feasible region consists of an inactive and active region. 

 
 
Fig. 1. Graphical expression for the probability of the EI. 
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First, a sampling criterion for exploring inactive region is the 
infill sampling defined just like probability of the EI. If a con-
straint is defined as G(x) ≤ 0, then the infilling probability is as 
follows: 
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where ɸ (·) is the CDF of the standard normal distribution, 
Ĝ(x) is predictor of kriging surrogate model for constraint 
function and ( )s x)  is the MSE value. 

To illustrate the behavior of the criterion, a two-dimensional 
example with a constraint function is introduced as shown in 
Fig. 2. The equation is as follows: 
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x
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This example has three disconnected feasible regions. The 

two feasible regions are so small that it is difficult to find the 
solution with other methods. The plot of constraint and a con-
tour plot with feasible sets and sampled points are (a) and (b) 
as shown in Fig. 2, respectively. 21 sample points based on 
optimal Latin-hypercube design (OLHD) are used. In the in-
feasible region, the value of the infill sampling criterion be-
comes zero in Fig. 2(c). The larger the value this criterion has, 
the more the sample point locates the interior of the feasible 
region. Thus, because it selects the point on the inside, it is 
called the “Infill sampling criterion”.  

Second, the criterion to find the active region is boundary 
sampling criterion which locates the sample points around the 
boundary of constraint [7]. It uses the probability density func-
tion (PDF) instead of CDF. The criterion is given as follows: 
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where ( )j × is the PDF of standard normal distribution. 

A plot of the criterion is Fig. 2(d). The criterion has a larger 
value along the boundary lines than interior of feasible region, 
and the value of the criterion becomes zero in an infeasible 
region. Thus, it is called “Boundary sampling criterion”. 

 
3. Stochastic probability based sampling criterion 

In this section, the requirements of the sampling criterion 
for stochastic global optimization are suggested based on 
studying the sampling criteria as follows: 

(1) Optimization technique should find the design point to 
improve the objective function in a feasible region.  

(2) It is necessary to approximate efficiently and accurately 
the feasible region of the direction to improve the objective 
function using little sample points. Further, because the opti-
mum point is usually located on the boundary of the constraint, 
it must be able to sample on the boundary of the constraint.  

(3) The model uncertainty for global optimization should be 
considered. The farther the distance from the sample points, 
the larger the model uncertainty. Thus, it is able to serve as the 
sampling portions thereof.  

(4) If the sampling criterion is in cooperation with the con-
ditions 2 and 3, it can perform optimization more efficiently. 
That is, it pursues not considering the model uncertainty on 
the overall design domain, but considering the model uncer-
tainty in feasible regions only. 

 
Finally, a new sampling criterion that meets the above re-

quirements is proposed as follows:  
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Primarily, the proposed sampling criterion consists of an 

objective and constraint parts. The objective part is the same 
with the probability of the super-EGO. The key of the pro-
posed method is the constraint parts, which are the sum of the 
boundary probability and the infill probability considered the 
uncertainty of a constraint function. When the surrogate model 
is inaccurate in an early stage, the infill probability will be a 
more dominant factor than the boundary. Thus, a new sample 
point is located in the feasible region. As the sample points are 

(a) (b) 
 

(c)                          (d) 
 
Fig. 2. Three-hump camelback example: (a) 3-D plot; (b) contour plot 
and sampled points, feasible regions are shaded; (c) 3-D plot of infill 
sampling criterion; (d) 3-D plot of boundary sampling criterion. 
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added and the feasible region is approximated accurately, the 
inaccuracy of the surrogate model represented by the MSE is 
reduced. And the boundary probability becomes a more domi-
nant factor than the infill probability. Thus, a new sample 
point moves to the boundary of feasible region. In other words, 
the proposed method performs infill sampling with space fill-
ing of feasible region in early stage of optimization. As the 
number of points increases, it selects a point along the bound-
ary where the optimum point is commonly located.  

The procedure of the proposed method is as follows: 
Step 1. Do initial data set, X, and obtain (Y,G) with p points. 
Step 2. Repeat steps 3~5 until # of data set exceeds limits. 
Step 3. Fit the kriging models with the data (X,Y), (X,G). 
Step 4. Find the point P to maximize Eq. (5). 
Step 5. X ⋃ P → X, Y ⋃ y(P) → Y, G ⋃ g(P) → G. 
Finally, minimum value of Y, while satisfying G < 0, is op-

timum value, y*, and x is the optimum solution at y(x) = y*.  

 
4. Numerical examples  

To investigate the performance of the proposed method, 
three different global optimization problems are illustrated. 
For better visualization, two-variable problems are selected 
with a nonlinear constraint and discrete feasible regions. The 
seven-variable problem, Hock-Schittkowski example that has 
nonlinear constraint and objective function, is also solved. In 
this paper, the average number of function calls and determi-
nant of correlation matrix are used to check efficiency of op-
timization and stability of kriging surrogate model. If the cor-
relation matrix of the kriging surrogate model is singular, the 
numerical error to predict untried points is largely generated. 
Thus, the determinant value of the correlation matrix is needed 
to remain higher for stable predicting. For duplication, initial 
sample sets are randomly chosen by optimal Latin-hypercube 
design (OLHD). Genetic algorithm (GA) and super-EGO are 
used for comparison. Once the error of design variables be-
comes below 5%, algorithms are terminated and the number 
of function calls is calculated. The relative error at the opti-
mum is as follows:  

 

100opt
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opt
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-
= ´

x x
x

, (6) 

 
where xopt is the point of true solution and x is a current point 
obtained by GA, super-EGO or the proposed method. 

 
4.1 Example 1: Six-hump camelback example 

The objective function is a quadratic function in Fig. 3(a). 
The constraint function, six-hump camelback is highly nonlin-
ear as shown in Fig. 3(b), and it causes disconnected feasible 
regions as shown in Fig. 3(c). The global optimum is at the 
inside of a much smaller feasible region than other feasible 
regions. The optimum is xopt = [1.815, -0.875], f(xopt) = -2.950.  
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The proposed method obtains a global optimum in small 

feasible region at 31 sampled points. The (d) of Fig. 3 is a 
scatter plot and contour plot of kriging predictors at 31 sam-
pled points. At the beginning of optimization in bottom fig-
ures of Fig. 4, the proposed method selects the point in one of 
the large feasible regions due to the infill probability part. 
Because the infill probability part in the proposed method can 
consider model uncertainty, new points, red square points in 
solid circle are located on the interior of the feasible region 
during two iterations. After approximating the inner region, 
new sample points, red square points in dotted circles are lo-
cated along the boundary of the feasible region. As the feasi-
ble region is approximated accurately, the boundary sampling 
criterion is more dominant because a point near the feasible 
region has a lower MSE value. Thus, when a feasible region is 
accurately approximated, the proposed method can search 
improved boundary point. Finally, the proposed method can 
find a global optimum in very small disconnected feasible 

Table 1. Comparison of the proposed method and other optimizer for 
example 1. 
 

Global optimizer Ave. # of function calls 
(10 runs) 

Determinant of  
correlation matrix 

GA 578.4 - 

Super-EGO 28.6 5.2616e-037 

Proposed method 31.4 5.0925e-018 

 

 
(a)                          (b) 

 

 
(c)                         (d) 

 
Fig. 3. Example 1: (a) objective function; (b) constraint function; (c) 
contour plot of the problem and optimum point; (d) scatter plot of 31 
sampled points and contour plot of kriging predictors. 
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region with only 31 iterations.  
In this problem, super-EGO needs 29 function calls for 

finding the global optimum as listed in Table 1. It is more 
efficient than the proposed method. However, in the case of 
super-EGO, the correlation matrix in kriging surrogate model 
becomes singular because the local search phase makes many 
sample points extremely clustered. On the contrary, the pro-
posed method keeps the distance between the sample points 
and a new point due to the MSE. Thus, it can alleviate the 
singularity of the correlation matrix and keep the accuracy in 
the large sampling points. 

 
4.2 Example 2: Modified haupt and Schewefel example 

The second example has a highly nonlinear objective func-
tion and a constraint function as shown in Figs. 5(a) and (b), 
respectively. It has three global optima and two global optima 
on the boundary of the feasible regions and the other exists 
inside the feasible region. In Fig. 5(c), the three global optima 
have identical function values of f(xopt) = -1.365 at xopt = 
[6.086, 6.086], [-6.086, 6.086], [6.086, -6.086]. 

 
1 2

1 2

1 1 2 2

1 2

( ) sin( ) 1.5 sin( )
3 3
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x xMin f x x
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x
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Upon the 23th iteration, the proposed method can find a 

lower right optimum. An upper right optimum inside of a 
feasible region is explored within 34 iterations. The last one, 
an upper left optimum on the boundary of constraint, is sam-

pled in just 41 iterations. The proposed method efficiently 
obtains global optima in the feasible region as well as along 
the boundary of constraints. It shows that the ratio of the infill 
sampling criterion considering model uncertainty and the con-
stant boundary criterion are complementary in constraint parts. 

The result provides evidence to support the claim that the 
proposed method can provide several design candidates effi-
ciently over the entire design space. As listed in Table 2, the 
result of the proposed method is more efficient than the result 
of super-EGO. Also, the determinant of the correlation matrix 
of super-EGO is much smaller than that of the proposed 
method.  

 
4.3 Example 3: Hock-Schittkowski problem 100 

The Hock-Schittkowski problem 100 (HS100) is a test 
problem involving seven variables, one objective and four 
constraints. For this analysis, only the objective function and 
one of the constraints are used as response function in Eq. (9). 
A global optimum had function value of f(xopt) = 678.68 at xopt 
= [2.96, 1.92, -0.67, 4.26, -0.63, 1.13, 1.46] on the active 
boundary line of constraint. 

 
 
Fig. 4. Convergence history of example 1 (Red square point: last sam-
ple point, black square points: previous sample points). 

 

Table 2. Comparison of proposed method and other optimizer for 
example 2. 
 

Global optimizer Ave. # of function calls 
(10 runs) 

Determinant of  
correlation matrix 

GA 440.6 None 

Super-EGO 45.3 4.8477e-056 

Proposed method 41.1 1.3996e-032 

 

 
(a)                           (b) 

 

(c)                          (d) 
 
Fig. 5. Example 2: (a) objective function; (b) constraint function; (c) 
contour plot of the problem & optima; (d) scatter plot of 41 sampled 
points and contour plot of kriging predictors. 

 
 



1426 S. Cho et al. / Journal of Mechanical Science and Technology 29 (4) (2015) 1421~1427 
 

 

( ) ( ) ( )2 2 24
1 2 3 4

6 2 4
5 6 7 6 7 6 7

2 4 2
1 2 3 4 5

( ) 10 5 12 3 11

10 7 4 10 8

( ) 127 2 3 4 5
[ 5,5], 1,2, ,7.i

Min f x x x x

x x x x x x x

s.t. g x x x x x
x i

= - + - + + -

+ + + - - -

= - - - - -

Î - =

x

x
L

 (9) 

 
The results of each algorithm are listed in Table 3. Because 

the local search phase is continued until certain three design 
points are within an extremely small distance, super-EGO 
performs the same as usual global optimization, and it finally 
cannot obtain the optimum within the maximum number of 
function calls (1000). GA can obtain the optimum, but it needs 
many sample points. On the other hand, the proposed method 
is superior to GA with respect to the average number of func-
tion calls. 

 
5. Conclusions and future work 

We have proposed a new stochastic sampling criterion 
based on statistical surrogate model to resolve the several 
difficulties of earlier studies as well as to effectively find the 
global optimum of problems with nonlinear constraints. Pri-
marily, the proposed sampling criterion consists of an objec-
tive part called as EI probability and constraint parts. The key 
element of the method is the constraint part, which is a com-
bination of the infilling criterion, the boundary sampling crite-
rion, and MSE. The MSE determines which criterion is more 
dominant between the infill sampling criterion and the bound-
ary sampling criterion.  

For numerical examples with disconnected feasible region, 
multiple optima and/or multivariable, the proposed method 
obtains a global optimum/s accurately as well as efficiently. In 
addition, due to use space filling concept, the proposed meth-
od can alleviate singularity of correlation matrix and keep the 
accuracy of surrogate model compared to super-EGO. Thus, 
the result of the proposed method in multivariate problem is 
much superior to that of GA and super-EGO.  

In this study, only one numerical problem with seven de-
sign variables was employed. For further study, it is necessary 
to handle various multivariate problems. Also, in the case of a 
simple example with single global optimum, the proposed 
method was slower in finding the optimal solution compared 
to the super-EGO because the EI probability has the property 
of step function with 0 or 1, over the design domain. Speeding 
up the proposed method is therefore a matter of further re-

search. In this research, the optimization process is terminated 
by using the total number of function calls and monitoring the 
history plot of an objective function. The termination criterion 
is one of the remaining challenges for stochastic global opti-
mization. An ideal stopping rule would incorporate an esti-
mate of the model accuracy and of the probability that the 
global optimum has been found. A sampling criterion with 
combination of expected improvement probability, model 
uncertainty and two constraint criteria based on probability 
was proposed. Therefore, a termination criterion based on the 
proposed method could be a good alternative and it should be 
extensively examined in further study. 
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