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Abstract 
 
This paper presents the results of immersed boundary method-based three-dimension numerical simulations of natural convection in a 

cubical enclosure with an inner circular cylinder at a Prandtl number of 0.7. This simulation spans three decades of Rayleigh number, 
Ra , from 310  to 610 . The location of the inner circular cylinder is changed vertically along the centerline of the cubical enclosure. 
This study primarily focuses on the effects of both buoyancy-induced convection and the location of the inner circular cylinder on heat 
transfer and fluid flow in the cubical enclosure. In the range of Rayleigh numbers considered in this study, the thermal and flow fields 
eventually reach steady state, regardless of the location of the inner cylinder. When Ra  is 310 , the end wall of the cubical enclosure 
has a negligible effect on the thermal and flow fields in the enclosure. However, in the range of 4 610 10Ra£ £ , the effect of the end 
wall on heat transfer and fluid flow in the enclosure depends on both the location of the inner cylinder and the Rayleigh number. Detailed 
analysis results for the distribution of streamlines, isotherms, and Nusselt numbers are presented in this paper.  
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1. Introduction 

Natural convection in an enclosure is relevant to many in-
dustrial applications and tools, such as heat exchangers, nu-
clear and chemical reactors, and cooling of electronic equip-
ment. Natural convection heat transfer exhibits a great variety 
of complex dynamic behaviors, which depend greatly on the 
geometry and thermal conditions of the enclosure. Many in-
vestigations have addressed the influence of various thermal 
conditions on natural convection in an enclosure without an 
inner body [1-5]. However, natural convection in an enclosure 
containing an inner body filled with convective fluid is more 
complex and applicable to engineering than a simple enclo-
sure without an inner body. Thus, many researchers have stud-
ied natural convection in an enclosure that includes an inner 
body [6-10]. 

In the past few years, many researchers have investigated 
the effects of various parameters on natural convection in an 
enclosure with an inner body. For example, Cesini et al. [6] 
investigated the influence of the aspect ratio of an enclosure 
on natural convection in the enclosure. Shu and Zhu [7] and 

Angeli et al. [8] studied the effect of diameter-to-side aspect 
ratio, and Kim et al. [9] studied the effect of the position of an 
inner cylinder on natural convection in the space between a 
cylinder and an enclosure. Xu et al. [10] reported changes in 
the characteristics of natural convection in an enclosure with 
respect to the shape of the inner body. 

Cesini et al. [6] performed numerical and experimental 
analyses for natural convection heat transfer between an inner 
cylinder and a rectangular enclosure. The study investigated 
the effects of the Rayleigh number, Ra , and the aspect ratio 
of an enclosure on the heat transfer between the cylinder and 
the enclosure. The range of the Rayleigh number and aspect 
ratio under consideration were 3 41.3 10 7.5 10Ra´ £ £ ´  and 
2.1, 2.9, 3.6, and 4.3, respectively. As the Rayleigh number 
increased, the average heat transfer coefficient increased, and 
the maximum value was found at a low aspect ratio. 

Shu and Zhu [7] studied the changes in the thermal and 
flow fields in a square enclosure with respect to the various 
radii of an inner circular cylinder. They obtained the results 
for a Rayleigh number range of 4 610 10Ra£ £  with a Prandtl 
number of 0.71  and diameter-to-side aspect ratios between 
1.67 and 5.0. It was found that both the diameter-to-side as-
pect ratio and the Rayleigh number are critical to the patterns 
of thermal and flow fields in the enclosure.  

Angeli et al. [8] investigated the effect of the radius of an 
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inner cylinder on the heat transfer between a cylinder and a 
square enclosure. The range of the Rayleigh number was 

2 610 5 10Ra£ £ ´ , and the Prandtl number was 0.7 . Four 
values of the diameter-to-side ratio were considered: 0.2, 0.4, 
0.6, and 0.8. Substantial differences were observed in the 
thermal and flow fields in the square enclosure, depending on 
the diameter-to-side aspect ratio and the Rayleigh number. 

Kim et al. [9] studied natural convection in a square enclo-
sure with respect to the position of the inner circular cylinder. 
The range of the Rayleigh number was 3 610 10Ra£ £ , and 
the Prandtl number was 0.7.  The inner circular cylinder 
moved along the vertical centerline of the enclosure in the 
range of 0.25 0.25d- £ £ . They reported that the number, 
size, and formation of convection cells in the enclosure de-
pend on the location of the inner cylinder as well as the 
Rayleigh number. 

Xu et al. [10] investigated the effect of the shape of an inner 
cylinder on natural convection in an enclosure by changing the 
cross-sectional shape of the inner cylinder to square, rhombic, 
circular, and triangular. The range of the Rayleigh number 
was 3 710 10Ra£ £ , and the Prandtl number was 0.7 . They 
reported that the characteristics of thermal and flow fields in 
an enclosure are changed by the shape of the cross section of 
the inner cylinder. 

Most of these previous studies have investigated natural 
convection in an enclosure by using the two-dimensional 
computational domain, which assumes that the enclosure has 
an infinite length. However, natural convection in a three-
dimensional space such as a cubical enclosure cannot be prop-
erly analyzed by a two-dimensional simulation, as reported by 
Chan and Banerjee [11]. Thus, three-dimensional analysis has 
been conducted by many researchers for cubical enclosures 
without an inner body [11-13] or with an inner body [14, 15].  

Chan and Banerjee [11] investigated natural convection in a 
hexagonal enclosure by changing the aspect ratio of the enclo-
sure to 1:1 and 5:11. The Rayleigh number was 410 , and the 
Prandtl number was 0.72. They compared the results of two-
dimensional and three-dimensional simulations and found that 
two-dimensional calculation does not agree well with three-
dimensional calculation, especially for enclosures with an 
aspect ratio less than unity.  

Fusegi et al. [12] studied three-dimensional steady natural 
convection in a cubical enclosure without an inner body. The 
cubical enclosure was heated differentially at two vertical 
sidewalls. The range of the Rayleigh number was 310 £  

610Ra £ , and the Prandtl number was 0.71. It was found that 
as the Rayleigh number increased, the convective activities 
intensify and significant variations in the z-direction are con-
fined to narrower areas close to the end walls. 

Pallares et al. [13] performed three-dimensional analysis to 
characterize natural convection in a cubical enclosure in which 
buoyancy was induced by imposing a moderate temperature 
difference between the heated bottom and cooled top plates 
with perfectly adiabatic vertical walls, in the range of 
3,500 10,000Ra£ £  at a Prandtl number of 0.71. They re-

ported that there are four different thermal and flow structures 
and that the surface-averaged Nusselt number depends on 
these structures. 

Ha and Jung [14] investigated natural convection in a cubi-
cal enclosure with an inner cubic body. They conducted nu-
merical simulation to investigate three-dimensional, steady, 
conjugate heat transfer in a cubical enclosure with a heat-
conducting cubic body. The range of the Rayleigh number 
was 3 510 10Ra£ £ , and the Prandtl number ( )Pr  was 
0.0112 . They reported that the flow and isotherm distribu-
tions change to complex three-dimensional patterns as the 
Rayleigh number increases.  

Yoon et al. [15] studied the influence of the position of an 
inner sphere on natural convection in a cubical enclosure. 
They investigated the effect of the location of the inner sphere 
on the heat transfer and fluid flow in a cubical enclosure in the 
Rayleigh number range of 3 610 10Ra£ £ . They reported that 
the distribution of the local Nusselt number of the cylinder 
depends greatly on the location of the inner sphere as well as 
the Rayleigh number. 

As shown in the results of previous studies, natural convec-
tion in an enclosure depends on the shape and position of an 
inner body. Additionally, the thermal and flow characteristics 
of natural convection in a cubical enclosure cannot be prop-
erly analyzed by a two-dimensional simulation. However, 
there is little information about three-dimensional natural con-
vection when a circular cylinder exists in different positions in 
a cubical enclosure. The configuration of the cubical enclosure 
with an inner circular cylinder which has the same length as 
the enclosure is widely present in the engineering equipment 
such as shell-and-tube heat exchangers, underground trans-
mission line and cask for keeping the nuclear wastes. In these 
devices, the mutual position between the enclosure and the 
inner cylinder is one of the key design parameters. Thus, this 
study investigates the effect of the position of an inner circular 
cylinder on three-dimensional natural convection in a cubical 
enclosure. Isotherms, streamlines, and Nusselt number are 
presented to analyze the effect of the position of the cylinder 
on natural convection in the cubical enclosure. 

 
2. Computational details 

2.1 Numerical methods 

To investigate the effect of the position of an inner cylinder 
on natural convection in an enclosure, Kim et al. [9], Lee et al. 
[16], Kang et al. [17], Yoon et al. [18], and Park et al. [19] 
used the immersed boundary method (IBM). When the loca-
tion of an inner circular cylinder is changed in a cubical enclo-
sure, the IBM is easier to implement and more efficient than 
classical approaches such as body-fitted curvilinear grids. 
Especially, when the circular cylinder is very close to the wall 
of the enclosure, the grid generation is not easy due to the high 
aspect ratio and the limitation of the number of grids. How-
ever, when the IBM used to generate grid for the configuration 
which the distance between the circular cylinder and the wall 
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of the enclosure is very small, it is easy to apply the dense 
grids without the huge increase in the number of grids. Thus, 
in this study, the IBM was used to handle the surface of the 
circular cylinder located in the cubical enclosure. 

The governing equations for mass, momentum, and energy 
conservation using the IBM are defined as follows in their 
nondimensional forms: 
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The dimensionless variables in the preceding equations are 

defined as 
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In the preceding equations, ,  Tr , and a  represent the 

density, dimensional temperature, and thermal diffusivity, 
respectively. The superscript * in Eq. (4) represents the di-
mensional variables; ix  represents Cartesian coordinates, iu  
represents the corresponding velocity components, t  is the 
time, p  is the pressure, and q  is the temperature. 

The preceding nondimensionalization produces two dimen-
sionless parameters: /Pr n a=  and ( )3 * * /h cRa g L T Tb na= - , 
where ,  gn , and b  are the kinematic viscosity, gravita-
tional acceleration, and volume expansion coefficient, respec-
tively. The terms of q , if , and h  in Eqs. (1)-(3) are related 
to the IBM. The mass source/sink, q , in Eq. (1) and momen-
tum force, if , in Eq. (2) were applied to the surface or inside 
the body to satisfy the no-slip condition and mass conserva-
tion in the cell containing the immersed boundary. In Eq. (3), 
the heat source/sink, h , was applied to satisfy the isothermal 
boundary condition on the surface of the inner body. A sec-
ond-order linear or bilinear interpolation scheme was applied 
to satisfy the no-slip and isothermal conditions on the im-
mersed boundary. Kim et al. [20] and Kim and Choi [21] pro-
vide further details of the IBM. 

The semi-implicit scheme was used for the temporal and 
spatial discretization of governing Eqs. (1)-(3). Thus, the ad-
vection terms were treated explicitly using the second-order 
Adams-Bashforth scheme, and the diffusion terms were 
treated implicitly using the second-order accurate Crank-
Nicolson scheme. The discrete governing equations in conser-
vative form are as follows: 
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The term ( )NL j  and ( )DIF j  in these equations are de-

fined as 
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The basic method for the discretization of the partial differ-

ential equations was the finite volume method. A time interval 
to obtain a Courant-Friedrichs-Lewy (CFL) number smaller 
than 0.15 was selected in this study for the temporal integra-
tion in the time-marching procedure. To efficiently calculate 
the three-dimensional governing equations, the message pass-
ing interface (MPI) parallel computing method was used in 
this study. 

Once the velocity and temperature fields are obtained, the 
local and surface-averaged Nusselt numbers, Nu  and Nu , 
are defined, respectively, as 

 

wall
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where n  is the normal direction with respect to the wall and 
A  is the area of the surface of the cylinder. 

 
2.2 Computational conditions 

A schematic of the system considered in this study is shown 
in Fig. 1(a). The edge length of the enclosure is L , and the 

 
(a) 

 
(b) 

 
Fig. 1. (a) Computational domain and coordinate system along with 
boundary conditions; (b) definition of planes for cross-sectional view. 
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radius of the inner circular cylinder is 0.2R L= . To represent 
the location of the inner circular cylinder along the vertical 
centerline of the cubical enclosure, the dimensionless location 
of the inner circular cylinder, d  ( 310Ra = ), varies within the 
range 0.25 0.25 .d- £ £ Ra varies in the range of 

3 610 10Ra£ £ , and Pr  is 0.7. No-slip and impermeability 
conditions were used for the walls of the enclosure and the 
surface of the inner cylinder. The front and back walls of the 
cubical enclosure were assumed to be perfectly insulated, and 
the other walls of the cubical enclosure were assumed to be 
isothermal, with nondimensional temperature 0cq = . The 
surface of the inner circular cylinder was also assumed to be 
isothermal, with nondimensional temperature 1hq = . The 
Boussinesq approximation accounted for density variations 
and gravitational acceleration acted in the negative y-direction. 

In the computational domain of the cubical enclosure, the 
grid points were nonuniformly distributed, as shown in Fig. 2. 
The distribution of grid points was dense around the walls of 
the enclosure and cylinder to account for the high gradients. 
The dense grids were uniformly distributed within the cylinder. 
The minimum size of the grid was / 250L , and the maximum 
size of the grid was 3 / 200L . For the process of grid distribu-
tion between the minimum and maximum sizes, the hyper-
bolic tangent function was used. Grid independence of the 
resolution was tested by additional simulations on much finer 
grids, up to the minimum mesh size of / 350L . The differ-
ence in the surface-averaged Nusselt number of the enclosure 
and cylinder obtained by using the coarse and fine grids was 
less than 0.3%. 

 
2.3 Validation test 

To verify the present numerical methods, the case of natural 
convection in a rectangular enclosure with an inner circular 
cylinder, as reported by Fiscaletti et al. [22], was considered. 
In the process of the validation test, we followed their experi-
mental conditions. The rectangular enclosure is filled with 
water, and the thermal boundary conditions are assumed to be 
isothermal, with low and high temperatures for the surfaces of 
the enclosure and cylinder, respectively. 

Fig. 3 shows a comparison of the surface-averaged Nusselt 
number, CNu , computed by the present numerical methods 

with the experimental data obtained by Fiscaletti et al. [22]. 
The definitions of CNu and Ra  used in this validation test 
were the same as those used by Fiscaletti et al. [22]. As shown 
in Fig. 3, the CNu  values obtained from the present numeri-
cal results generally agree with the experimental results ob-
tained by Fiscaletti et al. [22]. 

 
3. Results 

3.1 Thermal and flow fields 

3.1.1 310Ra =  
Fig. 4 shows the distribution of the isotherms and stream-

lines when the inner cylinder moves downward and upward at 
310Ra = . The dependence of the thermal and flow fields in 

the cubical enclosure on d  can be observed in the plots of 
the isotherms and streamlines for different d  values at 

310Ra = , as shown in Fig. 4. The definitions for the x- and z-
plane cross sections of the enclosure are given in Fig. 1(b). 

When the inner circular cylinder is located at the lowest po-
sition of 0.25d = - , two overall rotating main eddies are 
formed at the left and right sides of the x-plane cross section 
of the enclosure, as shown in Fig. 4(a). When 0.25d = - , the 
centers of the inner vortices are located over the upper surface 
of the circular cylinder owing to the wider space available 
between the inner circular cylinder and the top wall of the 
cubical enclosure. This wide space ensures the strong circula-

  
(a) (b) 

 
Fig. 2. (a) Typical three-dimensional view; (b) two-dimensional ( ,  z)y - 
plane view at 0.5x L=  for 0d =  with nonuniform grid distribution 
denoting the immersed boundary for inner circular cylinder. 

 
 

 
 
Fig. 3. Comparison of the present surface-averaged Nusselt numbers 
with those obtained by Fiscaletti et al. [22]. 

 

    
(a) 0.25d = - , x = 0.5L  

 
(d) 0.25d = - , z = 0.5L  

 

    
(b) 0d = , x = 0.5L  

 
(e) 0d = , z = 0.5L  

 

    
(c) 0.25d = , x = 0.5L  (f) 0.25d = , z = 0.5L  

 
Fig. 4. Isothermals and streamlines for different d  values at 310Ra =  
(contour values range from 0.1 to 1 with 10 levels). 

 



 C. Choi et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1307~1318 1311 
 

  

tion of flow.  
As shown in Fig. 4(b), when the inner circular cylinder is 

positioned at the center of the cubical enclosure, the thermal 
and flow fields are almost symmetrical about the vertical and 
horizontal centers of the cubical enclosure. When 0,d =  
there are two inner vortices in each main circulation area in 
the upper and lower parts of the x-plane cross sections of the 
enclosure. 

When the value of d  is higher than 0 , the size of the 
lower inner vortex is larger than that of the upper vortex be-
cause the wide space available between the cylinder and the 
bottom wall of the enclosure enlarges the circulation of the 
lower inner vortex. When the circular cylinder moves con-
tinuously upward to 0.25,d =  as shown in Fig. 4(c), the 
inner vortices in the main circulation areas are located below 
the center of the lower surface of the cylinder. 

Even though the thermal and flow fields on the x-plane 
cross section of the enclosure depend on the dimensionless 
location of the cylinder, d , the effect of d  on the three-
dimensionality in the thermal and flow fields of the z-plane 
cross section of the enclosure is negligible, as shown in Figs. 
4(d)-(f). This is because, at this low Rayleigh number of 310 , 
the effect of convection on the thermal and flow fields in the 
cubical enclosure is so small that the effects of the front and 
back adiabatic walls on the thermal and flow fields are negli-
gible, as shown in the plots of the z-plane cross section in Figs. 
4(d)-(f). 

 
3.1.2 410Ra =  

Fig. 5 shows the thermal and flow fields in the cubical en-
closure with respect to the dimensionless location of the cyl-
inder, d , at 410Ra = . The effect of convection on heat trans-
fer in the cubical enclosure at 410Ra =  is greater than that at 

310Ra = . Thus, when 0.25d = - , a weak upward thermal 
plume appears over the upper surface of the circular cylinder 
for 410Ra = , unlike that for 310Ra = , as shown in Figs. 4(a) 
and 5(a).  

When the circular cylinder is located at the center of the en-
closure, 0d = , the upward thermal plume becomes weak 
owing to the decrease in the space between the cylinder and 
the wall of the enclosure. However, a careful observation 
shows that the thermal boundary layer on the bottom of the 
circular cylinder is thinner than that on the top of the circular 
cylinder. This is because the effect of convection on thermal 
and flow fields increases when the Rayleigh number increases. 
Even though the effect of convection on heat transfer in the 
enclosure increases as the Rayleigh number increases, the 
thermal and flow fields on the x-plane cross section of the 
enclosure for 0d =  and 410Ra =  are almost the same as 
those for 0d =  and 310Ra = , as shown in Figs. 4(b) and 
5(b). Thus, when the circular cylinder is located at the vertical 
center of the cubical enclosure, the effects of the front and 
back adiabatic walls of the cubical enclosure on the thermal 
and flow fields are negligible when 410Ra = . 

As the circular cylinder moves upward to 0.25d = , the 

two inner vortices in each main circulation area of the x-plane 
cross section of the enclosure merge and generate one inner 
vortex in each main circulation area, as shown in Fig. 5(c). 
When the circular cylinder is located close to the top wall of 
the enclosure, a stagnation region with cold, heavy fluid is 
formed in the lower half of the enclosure because the strong 
convective flow is confined in the upper half of the enclosure. 
Thus, at 0.25d = , the heat transfer at the bottom wall of the 
enclosure is not effective, as shown in Fig. 5(c).  

Because the convection effect becomes greater at 410Ra = , 
the thermal and flow fields on the z-plane cross section of the 
enclosure are influenced by the position of the circular cylin-
der, as shown in Figs. 5(d)-(f). When 0.25d = - , a thermal 
plume is observed on the z- and x-plane cross sections of the 
enclosure, as shown in Figs. 5(a) and (d). However, when the 
circular cylinder is located at the center of the enclosure, 

0d = , the effect of convection is negligible on the thermal 
and flow fields of the z-plane cross section of the enclosure, as 
shown in Fig. 5(e). As the circular cylinder moves upward 
through the vertical center of the enclosure, there is a weak 
upward thermal plume at the bottom wall of the enclosure, as 
shown in Fig. 5(f). Because thermal convection is mainly 
generated by the inner high-temperature circular cylinder, the 
flow diverges at the center of the top wall of the enclosure and 
converges at the center of the bottom wall of the enclosure, as 
shown in Figs. 5(d) and (f). Thus, the direction of the thermal 
plume at 0.25d =  is upward from the bottom wall of the 
enclosure, as shown in Fig. 5(f). 

 
3.1.3 510Ra =  

Fig. 6 shows the distribution of isotherms and streamlines 
for different d  values at 510Ra = . The pattern of thermal 
and flow fields on the x- and z-plane cross sections of the 
enclosure at 510Ra =  is significantly different from that at 
lower Rayleigh numbers of 310Ra =  and 410 . This is be-
cause when Ra  is 510 , buoyancy-induced convection be-

    
(a) 0.25d = - , x = 0.5L  

 
(d) 0.25d = - , z = 0.5L  

 

    
(b) 0d = , x = 0.5L  

 
(e) 0d = , z = 0.5L  

 

    
(c) 0.25d = , x = 0.5L  (f) 0.25d = , z = 0.5L  

 
Fig. 5. Isothermals and streamlines for different d  values at 410Ra =  
(contour values range from 0.1 to 1 with 10 levels). 
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comes more predominant than the conduction of heat transfer 
between the cylinder and the enclosure. 

When the inner circular cylinder is located at the lowest po-
sition of 0.25d = - , the size of the thermal plume on the x-
plane cross section of the enclosure for 510Ra =  is larger 
than that for 410Ra = , as shown in Figs. 5(a) and 6(a). The 
large thermal plume over the upper surface of the circular 
cylinder creates a strong thermal gradient on the top wall of 
the cubical enclosure.  

As shown in Figs. 5(b) and 6(b), when the circular cylinder 
is placed at the vertical center of the enclosure, 0d = , there is 
a thermal plume over the upper surface of the cylinder for 

510Ra = , unlike that for 410Ra = . This thermal plume pro-
duces a strong thermal gradient at the top wall of the cubical 
enclosure and a much lower thermal gradient at the bottom 
surface of the enclosure. Moreover, when the circular cylinder 
is located at the vertical center of the enclosure, 0d = , the 
number of inner vortices for 510Ra =  is different than for 

410Ra = , as shown in Figs. 5(b) and 6(b). Whereas there are 
four inner vortices for 410Ra = , there are two inner vortices 
at the upper half of the x-plane cross section of the enclosure 
for 510Ra = . Consequently, the dominant flow is in the upper 
half of the enclosure and the flow in the lower half of the en-
closure is much weaker than that in the upper half. Thus, the 
thermal and flow fields are almost stratified in the lower re-
gion of the enclosure.  

When the cylinder moves upward to 0.15d = , the thermal 
plume over the upper surface of the circular cylinder is di-
vided into three plumes, as shown in Fig. 6(c). Two upwelling 
thermal plumes are generated over the upper surface of the 
inner circular cylinder. A third, weak, downward thermal 
plume appears on the top wall of the enclosure. Whereas the 
number of thermal plumes is changed at 0.15d = , the cores 
of the two main eddies are placed in the region above the 
halfway point of the circular cylinder, as shown in Fig. 6(c). 

As d  increases further, the reduced space between the cyl-
inder and the top wall of the enclosure confines the vertical 
motion of flow; as a result, heat conduction is locally pre-
dominant over convective heat transfer in this space. Even 
though there are three thermal plumes on the top of the surface 
of the cylinder, the cores of the two main eddies appear in the 
region below the halfway point of the circular cylinder, as 
shown in Figs. 6(d) and (e). 

As the convection effect on heat transfer in the cubical en-
closure increases, the thermal and flow fields on the z-plane 
cross section of the enclosure are distorted near the front and 
back walls of the enclosure, as shown in Figs. 6(f)-(j). This is 
because the effect of viscous shearing increases as the strength 
of local three-dimensional flow increases. 

When the circular cylinder is placed at 0.25d = - , three 
upward thermal plumes appear over the top surface of the 
inner circular cylinder, as shown in Fig. 6(f). As shown in Figs. 
5(d) and 6(f), even though the strength of the plume at the 
longitudinal center of the top surface of the cylinder for 

510Ra =  is weaker than that for 410Ra = , there are two 

thermal plumes near the front and back adiabatic walls of the 
cubical enclosure for 510Ra = , unlike the result for 410Ra = . 

As the location of the circular cylinder approaches the verti-
cal center of the cubical enclosure, the distance shortens be-
tween the two thermal plumes near the front and back walls of 
the enclosure. Eventually, when the circular cylinder is located 
at the vertical center of the enclosure, 0d = , there are just 
two upward thermal plumes over the top surface of the circu-
lar cylinder, as shown in Fig. 6(g). Owing to the increased 
effect of convection on the thermal and flow fields for 

510Ra = , there is a weak upward thermal plume over the 
bottom wall of the enclosure, as shown in Fig. 6(g). 

When the dimensionless location of the circular cylinder, 
d , is greater than 0.15 , as shown in Figs. 6(h)-(j), the iso-
therms over the top surface of the cylinder are stratified be-
cause of the narrow space between the cylinder and the top 
wall of the enclosure. However, there is still a thermal plume 
over the bottom wall of the enclosure. 

 
3.1.4 610Ra =  

When Ra  is 610 , the distribution of thermal and flow 
fields in the cubical enclosure is influenced by buoyancy-
induced convection, as shown in Fig. 7. Thus, the number of 
eddies on the x-plane cross section of the enclosure depends 
greatly on the location of the inner circular cylinder. In addi-

    
(a) 0.25,  x = 0.5Ld = -  

 
(f) 0.25,  z = 0.5Ld = -  

 

    
(b) 0,  x = 0.5Ld =  

 
(g) 0,  z = 0.5Ld =  

 

    
(c) 0.15,  x = 0.5Ld =  

 
(h) 0.15,  z = 0.5Ld =  

 

    
(d) 0.2,  x = 0.5Ld =  

 
(i) 0.2,  z = 0.5Ld =  

 

    
(e) 0.25,  x = 0.5Ld =  (j) 0.25,  z = 0.5Ld =  

 
Fig. 6. Isotherms and streamlines for different d  values at 510Ra =  
(contour values range from 0.1 to 1 with 10 levels). 
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tion to the different numbers of eddies on the x-plane cross 
section of the enclosure, the core of the two main eddies is 
placed at the region above the halfway point of the circular 
cylinder, regardless of the cylinder’s location. This is because, 
as the Rayleigh number increases, the magnitude of the veloc-
ity circulating in the enclosure increases. As a result, the ther-
mal boundary layer on the top wall of the enclosure for 

610Ra =  becomes thinner than that for 510Ra = . 
When the inner circular cylinder is located at 0.25d = - , 

the thermal and flow fields on the x-plane cross section of the 
cubical enclosure for 610Ra =  have a similar pattern to that 
for 510Ra = . As shown in Figs. 6(a) and 7(a), when Ra  is 

610 , the thermal plume over the upper surface of the cylinder 
strengthens, and the vertical location of the cores of the two 
main eddies is close to the top wall of the enclosure. 

As the location of the circular cylinder nears the vertical 
center of the cubical enclosure, the pattern of isotherms for 

610Ra =  is similar to that for 510Ra = . However, the 
streamlines on the x-plane cross section of the cubical enclo-
sure show a different pattern in the space between the circular 
cylinder and the bottom wall of the enclosure. Whereas the 
streamlines on the bottom wall of the enclosure are almost 
parallel to the bottom wall for 510Ra = , as shown in Fig. 6(b), 
an upwelling pattern in the streamlines and two recirculating 
eddies appear at the center of the bottom wall for 610Ra = , as 

shown in Fig. 7(b).  
As d  becomes higher than 0 , the two recirculating ed-

dies on the bottom wall of the cubical enclosure grow because 
of the increase in the convection effect and the space between 
the cylinder and the bottom wall of the enclosure. Similar to 
the result for 510Ra = , when the circular cylinder is placed at 

0.15d = , there are three thermal plumes on the x-plane cross 
section of the enclosure owing to the narrow space between 
the cylinder and the top wall of the enclosure, as shown in Fig. 
7(c). However, the two upward thermal plumes from the up-
per surface of the circular cylinder and the downward thermal 
plume from the top wall of the cubical enclosure for 610Ra =  
are stronger than that for 510Ra =  owing to the increased 
effect of convection on thermal and fluid flow in the enclosure.  

When the circular cylinder is placed at 0.2d = , four ther-
mal plumes appear in the space between the cylinder and the 
top wall of the enclosure, as shown in Fig. 7(d). There are two 
upward plumes from the upper surface of the cylinder and two 
weak downward plumes from the top wall of the enclosure. In 
addition to the increased number of thermal plumes in the 
space between the cylinder and the top wall of the enclosure, 
two secondary vortices are newly generated over the upper 
surface of the cylinder, as shown in the streamline of Fig. 7(d). 
Whereas the two secondary vortices are generated in the space 
between the cylinder and the top wall of the enclosure, as 
shown in Fig. 7(d), the recirculating eddies disappear around 
the bottom wall of the enclosure owing to the increased space 
between the cylinder and the bottom wall. 

The thermal field at 0.25d =  is similar to that at 0.2d = , 
as shown in Figs. 7(d)-(e). However, the two secondary vor-
tices disappear in the space between the cylinder and the top 
wall of the enclosure, leaving just two main eddies on the x-
plane cross section of the enclosure owing to the decreased 
space between the cylinder and the top wall.  

When Ra  is 610 , the thermal and flow fields on the z-
plane cross section of the enclosure are influenced by buoy-
ancy-induced convection. Thus, the thermal and flow fields on 
the z-plane cross section of the enclosure at 610Ra =  display 
more complex patterns than those at 510Ra = , as shown in 
Figs. 7(f)-(j).  

When the circular cylinder is located at 0.25d = - , three 
upward thermal plumes over the top surface of the inner circu-
lar cylinder on the z-plane cross section of the enclosure for 

610Ra =  are stronger than that for 510Ra = , as shown in 
Figs. 6(f) and 7(f). As the cylinder approaches the vertical 
center of the cubical enclosure, the plumes decrease at the 
longitudinal center of the cylinder. Eventually, when the circu-
lar cylinder is placed at the vertical center of the enclosure, 

0d = , the thermal plume at the longitudinal center of the 
cylinder disappears and there are two thermal plumes around 
the front and back walls of the enclosure, as shown in Fig. 
7(g). As shown in Figs. 6(g) and 7(g), the distance between 
the two thermal plumes for 610Ra =  is greater than that for 

510Ra = . Additionally, the thermal boundary layer on the 
bottom surface of the circular cylinder for 610Ra =  is thinner 

    
(a) 0.25,  x = 0.5Ld = -  

 
(f) 0.25,  z = 0.5Ld = -  

 

    
(b) 0,  x = 0.5Ld =  

 
(g) 0,  z = 0.5Ld =  

 

    
(c) 0.15,  x = 0.5Ld =  

 
(h) 0.15,  z = 0.5Ld =  

 

    
(d) 0.2,  x = 0.5Ld =  

 
(i) 0.2,  z = 0.5Ld =  

 

    
(e) 0.25,  x = 0.5Ld =  (j) 0.25,  z = 0.5Ld =  

 
Fig. 7. Isotherms and streamlines for different d  values at 610Ra =  
(contour values range from 0.1 to 1 with 10 levels). 
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than that for 510Ra = . This is because the effects of buoy-
ancy-induced convection and transverse rolls increase as the 
Rayleigh number increases.  

When d  further increases to 0.15 , five thermal plumes, 
four upward plumes, and one downward plume appear in the 
space between the cylinder and the top wall on the z-plane 
cross section of the enclosure, as shown in Fig. 7(h). There are 
four transverse rolls on the top surface of the circular cylinder. 
The number of transverse rolls increases when the circular 
cylinder is placed at 0.2d = , as shown in Fig. 7(i). However, 
there is no thermal plume in the space between the cylinder 
and the top wall of the enclosure owing to the narrow gap 
between the cylinder and the top wall. As the space narrows 
between the cylinder and the top wall of the enclosure, the 
effect of buoyancy-induced convection on the thermal and 
flow fields decreases in this region. Thus, when d  further 
increases to 0.25 , there is no transverse roll or thermal plume 
in the space between the cylinder and the top wall of the en-
closure, as shown in Fig. 7(j).  

 
3.2 Local Nusselt number of inner circular cylinder 

Figs. 8 and 9 show the local distribution of Nusselt number 
on the surface of the circular cylinder, CNu , at different d  
values for 310Ra = , 410 , 510 , and 610 . Regardless of the 
location of the cylinder and the Rayleigh number, the thermal 
and flow fields in the cubical enclosure are symmetrical about 
the vertical center plane of the cubical enclosure, 0.5z L= . 
Thus, the distribution of CNu  on the surface of the cylinder 
is visible in Figs. 8 and 9 from the right wall of the enclosure. 
As the Rayleigh number increases, the effect of three-
dimensionality on the heat transfer between the cylinder and 
the enclosure grows. Thus, as the Rayleigh number increases, 
the difference increases between CNu  at the longitudinal 
center of the cylinder and CNu  around the two end walls of 
the cylinder. 

When the circular cylinder is located at 0.25d = -  for 
310Ra = , the maximum value of CNu  is at the bottom of the 

cylinder and the minimum value of CNu  is at the top of the 
cylinder, as shown in Fig. 8(a). When d  further increases to 
0 , the value of CNu  on the surface of the cylinder is nearly 
constant, as shown in Fig. 8(b). However, as the distance de-
creases between the cylinder and the top wall of the enclosure, 
the value of CNu  at the upper part of the cylinder becomes 
higher than that at the bottom part of the cylinder. As a result, 
when the cylinder is placed at 0.25d = , the distribution of 

CNu  is symmetrical to that at 0.25d = - , as shown in Figs. 
8(a) and (c). Regardless of d , the distribution of CNu  is 
almost parallel to the longitudinal direction of the cylinder, as 
shown in Figs. 8(a)-(c). In consequence, at this low Rayleigh 
number of 310 , conduction is a dominant mode of heat trans-
fer and the effect of three-dimensionality on the thermal and 
flow fields is negligible. 

The maximum and minimum values of CNu  for 410Ra =  
are similar to those for 310Ra = . However, the distribution of 

CNu  for 410Ra =  is unlike that for 310Ra = , as shown in 
Fig. 8. When the circular cylinder is located at 0.25d = - , as 
shown in Fig. 8(d), CNu  has an upwelling pattern at the lon-
gitudinal center of the cylinder because the effect of convec-
tion on the thermal and flow fields increases in the enclosure, 
as shown in Figs. 5(a) and (d). Thus, at the upper part of the 
cylinder, the value of CNu  at the longitudinal center of the 
cylinder is higher than that around the two end walls of the 
cylinder. When 0d = , the value of CNu  around the two end 
walls of the cylinder is slightly higher than that at the longitu-
dinal center of the cylinder. However, the difference in the 
value of CNu  is very small. When the circular cylinder is 
placed at 0.25d = , the minimum value of CNu  does not 
exist at the lowest part of the cylinder. The minimum value of 

CNu  appears between the vertical center and the lowest part 
of the cylinder, as shown in Fig. 8(f). This is because the in-
tensity of circulating flow in the enclosure that impinges on 
the bottom of the cylinder for 410Ra =  is stronger than that 
for 310Ra =  owing to the increase in convection as the 
Rayleigh number increases. Thus, the position of the mini-
mum local Nusselt number for 410Ra =  at 0.25d =  is not 
at the lowest part of the cylinder. 

Fig. 9 shows the distribution of CNu  at different locations 
of the cylinder for 510Ra =  and 610 . The maximum value 
of CNu  for 510Ra =  and 610  exists at the bottom of the 
cylinder, except in the cases of 0.25d = , because the thick-
ness of the thermal boundary layer is the thinnest and the 
thermal gradient is the highest at the bottom of the cylinder. 

When the value of d  is less than 0 , for 510Ra =  and 
610 , the minimum value of CNu  is at the highest part of the 

cylinder because the thermal boundary layer is thickest and 
the thermal gradient is lowest in this region. However, when 
the value of d  is higher than 0  (i.e., the circular cylinder is 
placed at the top of the enclosure), the position of the mini-

  
(a) 310 ,  0.25Ra d= = -  

 
(d) 410 ,  0.25Ra d= = -  

 

  
(b) 310 ,  0Ra d= =  

 
(e) 410 ,  0Ra d= =  

 

  
(c) 310 ,  0.25Ra d= =  (f) 410 ,  0.25Ra d= =  

 
Fig. 8. Local Nusselt number distribution on the surface of the inner 
circular cylinder at different positions of the cylinder for 310Ra =  
(left column, (a)-(c)) and 410Ra = (right column, (d)-(f)). 

 
 



 C. Choi et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1307~1318 1315 
 

  

mum CNu  is not at the highest part of the cylinder, but is 
somewhere at the upper part of the cylinder owing to the 
strong interaction between the upward thermal plume and the 
available space between the cylinder and the top wall of the 
enclosure, depending on d . Thus, as shown in Figs. 9(c), (d), 
(h) and (i), the position of the minimum value of CNu  at 

0.15d =  and 0.2  is identical to the position of thermal 
plumes over the surface of the circular cylinder. 

 
3.3 Surface-averaged Nusselt number 

Fig. 10(a) shows the surface-averaged Nusselt number on 
the top wall of the enclosure, TNu , as a function of d  for 
different Rayleigh numbers. The value of TNu  increases as 
the Rayleigh number increases, regardless of the location of 
the inner circular cylinder, owing to the increased effect of 
buoyancy-induced convection. 

For 310Ra =  and 410 , when the circular cylinder is 
placed at the lower half of the cubical enclosure, 0d £ , TNu  
increases slowly as d  increases. However, when the cylinder 
is located close to the top wall of the enclosure, the value of 

TNu  increases very rapidly with increasing d . The differ-
ence in the value of TNu  between 310Ra =  and 410Ra =  

is highest at 0.25d = -  and becomes constant when the value 
of d  is higher than 0.15 , as shown in Fig. 10(a). This is 
because, as the space decreases between the cylinder and the 
top wall of the enclosure, the effect of convection on the ther-
mal and flow fields in the enclosure decreases. Thus, when d  
is higher than 0.15 , conduction is a dominant mode of heat 
transfer between the circular cylinder and the top wall of the 
enclosure. 

When d  increases from 0.25-  to 0.05-  at 510Ra = , 
as shown in Fig. 10(a), the value of TNu  increases slowly 
because the thermal gradient on the top wall of the enclosure 
increases slightly as the distance decreases between the cylin-
der and the top wall. In this range of d , the dependence of 

TNu  on d  is very low. However, when d  increases to 0  
and 0.05  at 510Ra = , the value of TNu decreases slightly 
as d  increases. This is because the strength of the upwelling 
thermal plume formed over the upper surface of the circular 
cylinder decreases and transverse rolls are formed on the top 
surface of the cylinder, as shown in Figs. 6(b) and (g). When 
d  further increases to 0.25 , the effect of d  on TNu  
grows. However, the increase of TNu  for 510Ra =  has a 
similar trend to that for 310Ra =  and 410Ra =  in the range 
of 0.1 0.25d£ £ . Thus, in this range of d , the effect of con-
vection on thermal and flow fields in the enclosure for 

510Ra =  is not as dominant as the effect of conduction. This 
is because of the reduced space between the cylinder and the 
top wall of the enclosure with increasing d . 

When Ra  is 610 , the rate of increase in the value of TNu  
is the lowest with respect to the location of the cylinder, so the 
difference in the value of TNu  between 0.25d = -  and 

0.25d =  is the smallest. This is because, when Ra  is 610 , 

  
(a) 510 ,  0.25Ra d= = -  

 
(f) 610 ,  0.25Ra d= = -  

 

  
(b) 510 ,  0Ra d= =  

 
(g) 610 ,  0Ra d= =  

 

  
(c) 510 ,  0.15Ra d= =  

 
(h) 610 ,  0.15Ra d= =  

 

  
(d) 510 ,  0.2Ra d= =  

 
(i) 610 ,  0.2Ra d= =  

 

  
(e) 510 ,  0.25Ra d= =  (j) 610 ,  0.25Ra d= =  

 
Fig. 9. Local Nusselt number distribution on the surface of the inner 
circular cylinder at different positions of the cylinder for 510Ra =  
(left column, (a)-(e)) and 610Ra = (right column, (f)-(j)). 
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(b) 

 

 
(c) 

 
Fig. 10. Surface-averaged Nusselt numbers as a function of d  for 
different Rayleigh numbers on (a) top wall; (b) bottom wall; (c) sidewall. 
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the effect of buoyancy-induced convection on the thermal and 
flow fields in the enclosure is dominant, even though the cyl-
inder is placed close to the top wall of the enclosure. When d  
increases from 0.25-  to 0.15  at 610Ra = , as shown in Fig. 
10(a), the value of TNu  increases gradually. However, when 
the circular cylinder is placed at 0.2d = , the value of TNu  
decreases because of the strong interaction between the sec-
ondary vortices and the transverse rolls, as shown in Figs. 7(d) 
and (i). When 0.25d =  at 610Ra = , the value of TNu  
increases again to the maximum value. This is because the 
effect of conduction on heat transfer between the inner circu-
lar cylinder and the top wall of the enclosure increases when 
the distance between the cylinder and the top wall is the 
smallest.  

Fig. 10(b) shows the surface-averaged Nusselt number on 
the bottom wall of the cubical enclosure, BNu , as a function 
of d  for different Rayleigh numbers. Regardless of the 
Rayleigh number, the value of BNu  decreases with increas-
ing d . The dependence of BNu  on d  is generally higher 
than that of TNu . When 0.25 0d- £ £ , the value of BNu  
decreases very rapidly with increasing d . In this range of d , 
the value of BNu  is highly dependent on d , regardless of 
Ra . However, when 0 0.25d£ £ , the value of BNu  de-
creases slowly with increasing d . This is because the varia-
tion of isotherms in the stagnation flow region is slow when 
the circular cylinder is placed in the range of 0 0.25d£ £ .  

Fig. 10(c) shows the surface-averaged Nusselt number on 
the sidewall of the enclosure, SNu , as a function of d  for 
different Rayleigh numbers. The value of SNu  generally 
increases as the Rayleigh number increases because the effect 
of convection on heat transfer between the cylinder and the 
enclosure increases. However, the dependence of SNu  on 
d  is very low, unlike the cases of TNu  and BNu . Whereas 
the effect of d  on the value of SNu  is negligible for 

3 510 10Ra£ £ , the value of SNu  decreases generally as d  
increases for 610Ra = . This is because the effect of convec-
tion on heat transfer on the sidewall of the enclosure decreases 
as d  increases. 

Fig. 11 shows the total surface-averaged Nusselt number of 
the enclosure, ENNu , and the surface-averaged Nusselt num-
ber of the circular cylinder, CNu , as a function of d  for 
different Rayleigh numbers. When 310Ra =  and 410 , the 
value of ENNu  has a parabolic profile with the minimum 
value at 0d = . The value of ENNu  for 410Ra =  is almost 
the same as that for 310Ra = , regardless of d . However, 
when Ra  is 510 , the minimum value of ENNu  is at 

0.05d = , and the value of ENNu  at 0.25d = -  is higher 
than that at 0.25d = , as shown in Fig. 11(a). This is because 
the effect of convection on the heat transfer between the cyl-
inder and the enclosure increases as the Rayleigh number and 
the space between the cylinder and the top wall of the enclo-
sure increase. When Ra  increases to 610 , the minimum 
value of ENNu  is 0.2d = , as shown in Fig. 11(a). The dif-
ference between the minimum value of ENNu  and the second 
lowest value of ENNu  for 610Ra =  is greater than that for 

510Ra = . This is because the decrease in the value of ENNu  
for 610Ra =  is caused by the strong interaction between the 
secondary vortices and the transverse rolls, as shown in Figs. 
7(d) and (i). The pattern of variation of CNu  as a function of 
d  is generally similar to that of ENNu , as shown in Fig. 
11(b). 

When 3 410 10Ra£ £ , the effect of three-dimensionality on 
the thermal and flow fields in the enclosure is negligible. 
However, as shown in Fig. 11, when 5 610 10Ra£ £ , ENNu  
and CNu  obtained in this study are different from those ob-
tained by Kim et al. [9] using a two-dimensional calculation 
owing to the increase in the three-dimensionality effect. As the 
Rayleigh number increases, the difference in the value of 

ENNu  and CNu  increases between the three-dimensional 
and two-dimensional calculation results. When 510Ra = , the 
maximum difference occurs at 0.25d = - . When the circular 
cylinder is located in the range of 0.2 0.25d- £ £ , the value 
of ENNu  and CNu  for the three-dimensional calculation is 
similar to that for the two-dimensional calculation. However, 
when 610Ra = , the value of ENNu  and CNu  for the three-
dimensional calculation is less than that for the two-
dimensional calculation owing to the effect of three-
dimensionality on heat transfer between the cylinder and the 
enclosure. The maximum difference occurs at 0.05 £  

0.15d £  because the recirculating eddies and transverse rolls 
appear in the enclosure. In the range of 0.05 0.15d£ £ , the 
value of ENNu  and CNu  for the three-dimensional calcula-
tion is approximately 10 percent less than that for the two-

 
(a) 

 

 
(b) 

 
Fig. 11. Total (a) surface-averaged Nusselt number of enclosure, 

ENNu , and; (b) surface-averaged Nusselt number of the inner cylinder, 
CNu , as a function of d  for different Rayleigh numbers. Two-

dimensional results were obtained by Kim et al. [9]. 
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dimensional calculation. 

 
4. Conclusions 

The present study investigates the effects of a high-
temperature inner circular cylinder, present at different loca-
tions along the vertical centerline of a low-temperature cubical 
enclosure, on fluid flow and heat transfer for different 
Rayleigh numbers in the range of 3 610 10Ra£ £ . The IBM is 
implemented with a finite-volume method to simulate three-
dimensional flow and heat transfer over the cylinder in the 
cubical enclosure in Cartesian coordinates. 

For different locations of the inner cylinder and different 
values of the Rayleigh number, the thermal and flow field 
characteristics change. However, for all Rayleigh numbers 
considered in this study, the thermal and flow fields eventually 
reach steady state. When Ra  is 310 , three-dimensionality in 
the thermal and flow fields due to the front and back walls of 
the cubical enclosure does not exist for any locations of the 
inner cylinder. As the Rayleigh number increases, the effect of 
three-dimensionality grows of the front and back walls of the 
enclosure on the thermal and flow fields in the cubical enclo-
sure. In particular, the effect of three-dimensionality in the 
thermal and flow fields on the heat transfer between the cylin-
der and the enclosure is great when the inner cylinder is lo-
cated at the lower half of the cubical enclosure. This is be-
cause the space between the cylinder and the top wall of the 
enclosure is secure when the inner cylinder is located at the 
lower half of the enclosure. When Ra  is 610 , even though 
the space between the cylinder and the top wall of the enclo-
sure narrows, the pattern appears of thermal and flow fields 
attributable to the effect of the front and back walls of the 
enclosure because the effect of buoyancy-induced convection 
is predominant over the effect of conduction. Thus, when 

610Ra = , complex thermal and flow patterns exist with re-
spect to the location of the inner cylinder, d .  

The change in thermal and flow patterns in the space be-
tween the cylinder and the enclosure with respect to d  and 
Ra  has an influence on the distribution of the Nusselt num-
ber on the surface of the cylinder and walls of the enclosure. 
As the Rayleigh number increases, the effect of d  on the 
distribution of Nusselt number on the surface of the cylinder 
and walls of the enclosure increases. For 510Ra =  and 610 , 
the maximum surface-averaged Nusselt number of the cylin-
der and enclosure occurs when the circular cylinder is located 
at 0.25d = - . This is because the wide space between the 
cylinder and the top wall of the enclosure ensures the strong 
circulation of flow. However, the location of the cylinder for 
the minimum surface-averaged Nusselt number of the cylinder 
and enclosure depends on the Rayleigh number because the 
strength of the local three-dimensional flow increases as the 
Rayleigh number increases. As the Rayleigh number increases, 
the difference in the value of ENNu  and CNu  increases be-
tween the three-dimensional and two-dimensional calculations. 
When the circular cylinder is located in the range of 

0.05 0.15d£ £  for 610Ra = , the difference due to three-
dimensionality is at its maximum. The maximum difference in 
this range of d  for 610Ra =  is about 10 percent. 
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