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Abstract 
 
Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling 

problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new 
chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of 
benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient 
and competitive than some other existing algorithms.   
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1. Introduction 

Job-shop scheduling problem (JSP) is a branch of produc-
tion scheduling and combinatorial optimization problems. The 
classical JSP consists of scheduling a set of jobs on a set of 
machines under constraint; each job has a specied processing 
order. The exible job-shop problem (FJSP) is an extension of 
the classical job-shop problem in which each operation must 
be processed on a machine chosen among a set of available 
ones. 

In FJSP, the problem of scheduling jobs involves the fol-
lowing sub-problems: assigning the operation to a machine 
(routing problem) and sequencing the operations on machines 
(sequencing problem) to minimize the performance indicators. 
Therefore, the combination of two decisions presents addi-
tional complexity. Thus, FJSP is NP-hard because it is an 
extension of JSP that is proven to be NP-hard [1]. 

Over the years, metaheuristics has been used to solve FJSP, 
specifically through tabu search, simulated annealing, genetic 
algorithm, and particle swarm optimization. 

In this research work, we propose a new genetic algorithm 
(NGA) to solve FJSP to minimize the makespan. We create a 
new chromosome representation called “permutation job”. 
This method enables us to find a new coding scheme for indi-
vidual jobs, which considers all constraints of FJSP. At the 
same time, we employ different strategies for crossover and 
mutation operators. Computational results show that the pro-
posed algorithm is effective. 

This paper is organized as follows. The problem definition 
and formulation are presented in Sec. 2. Related studies are 
reviewed in Sec. 3. The NGA is explained in Sec. 4. Compu-
tational results are presented in Sec. 5. Conclusion and future 
research directions are provided in Sec. 6. 

 
2. Definition and formalization problem 

2.1 Problem description 

We focus on FJSP composed of the following elements: 
• Jobs. J = { 1J ……. nJ } is a set of n jobs to be scheduled. 

Each job iJ  consists of a predetermined set of opera-
tions. ijO is the operation  j  of job iJ . All jobs are re-
leased at time 0. 
• Machines. M = { 1 mM M¼¼  } is a set of m machines. 

Each machine can process only one operation at a given 
time, and each operation can be processed without inter-
ruption. All machines are available at time 0. 
• Flexibility. FJSP is classified into two types as follows 

[2]: 
- Total FJSP (T-FJSP): Each operation can be processed 

on any machine among M existing machines on the 
shop floor. 

- Partial FJSP (P-FJSP): Each operation can be processed 
on one machine of a subset of M existing machines on 
the shop floor. 

• Constraints: Rules that limit the possible assignments of 
the operations. They can be classified mainly into the fol-
lowing conditions: 
- Each operation can be processed by only one machine 

at a time (disjunctive constraint). 
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- Each operation, which has started, runs to completion 
(non-preemption condition). 

- Each machine performs operations one after another 
(capacity constraint). 

- Although no precedence constraints exist among opera-
tions of various jobs, the predetermined sequence of 
operations for each job forces each operation to be 
scheduled after all predecessor operations (prece-
dence/conjunctive constraint). 

- The machine constraints emphasize that the operations 
can be processed only by the machine from the given 
set (resource constraint). 

• Objective: To find a schedule that requires minimum 
time to complete all operations (minimum makespan). 

 
To simplify the presentation of the algorithm, we designed a 

sample instance of FJSP that is used in this paper. Table 1 
provides the dataset of P-FJSP, including two jobs operated on 
five machines where rows correspond to operations and col-
umns correspond to machines. Each cell denotes the process-
ing time of that operation on the corresponding machine. 

 
2.2 Problem formulation 

Some symbols used in our paper are listed as follows: 
 

Ω     : Set of all machines 
n      : Number of total jobs 
m     : Number of total machines 
i      : Index of  thi  job 
j      : Index of jth operation of job ij  
ioJ     : Number of total operations of job iJ  
ijO  : jth Operation of job ij  
ijΩ    : Set of available machines of Oij 

ijkp    : Processing time of operation Oij on machine k 
ijkS    : Start time of operation Oij on machine k 

Eijk  : End time of operation Oij on machine k 
L= n

1 ioJå : Sum of all operations of all jobs 
H     : Very large positive integer 

 
Objective function 
 

Minimize ( )1 21 2 , ,
nJ J nJMax C C Cé ù¼ê úë û

. (1) 

Subject to 

ijC - ijS - ( )Ωij: . 0     ,
ijk O ijk ijkP X i j
Î

å = "  (2) 

 
       (3) 

 (4) 
ijS ≥0  ,i j"              (5) 

1ijS + - 0 ,ijC i j³ " , j = 1… 1  iJ -  (6) 

( )Ωij: 1
ijk O ijkX
Î

å = , ,i j"                              (7) 

 
(8)

 

. 
(9)

 
 
Objective Eq. (1) minimizes. The constraint set Eq. (2) im-

poses that the difference between the completion time and the 
starting time of an operation is equal to its processing time on 
the assigned mach. Constraint sets Eqs. (3) and (4) ensure that 
no two operations can be processed simultaneously on the 
same machine. This disjunctive constraint Eq. (3) becomes 
inactive when  and the disjunctive constraint Eq. (4) 
becomes inactive when  Constraint set Eq. (5) ensures 
that the start time of an operation is always positive. Constraint 
set Eq. (6) represents the precedence relationship among 
various operations of a job. Constraint set Eq. (7) imposes 
that an operation can be assigned to only one machine [16]. 

 
3. Related works  

Bruker and Schlie [3] were the first to consider this problem 
by developing a polynomial algorithm to solve the FJSP with 
two jobs. Brandimarte [4] was the first to apply the decompo-
sition approach to the FJSP by solving the routing sub-
problem using some existing dispatching rules and then focus-
ing on the scheduling sub-problem using a tabu search heuris-
tic. Paulli [5] applied a hierarchical approach and Mesghouni 
et al. [6] were the first to model GA known as parallel job 
representation to solve FJSP. Chen et al. [7] proposed a GA 
that uses an A-B string representation to solve FJSP for mini-
mum makespan time criterion. Kacem, Hammadi, and Borne 
[8] proposed a genetic algorithm controlled by the assignment 
model generated by the approach of localization (AL) to 
mono-objective and multi-objective FJSP. Ho and Tay [9] 
proposed a GA based tool called GENACE to solve the FJSP 
for minimum makespan time criterion. Zhang and Gen [10] 
proposed a method called multistage-based genetic algorithm 
to solve FJSP. Mehrabad and Fattahi [11] presented a mathe-
matical model and tabu search algorithm to solve FJSP with a 
sequence dependent on setups to minimize the makespan. Ho 
et al. [12] proposed an architecture for learning and evolving 
of flexible job-shop schedules for minimum makespan crite-
rion called learnable genetic architecture (LEGA), a generali-
zation of their previous approach GENACE. Gao and Gen 

Table 1. Processing time table of an instance of P-FJSP.  
 

Job Operation 1M  2M  3M  4M  5M  

11O  2 6 5 3 4 
1J  

21O  - 8 - 4 - 

21O  3 - 6 - 5 

22O  4 6 5 - - 2J  

23O  - 7 1 5 8 
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[13] developed a hybrid optimization strategy for multi-
objective FJSP (min makespan, min maximal machine work-
load, and min total workload) by combining the genetic algo-
rithm and bottleneck shifting. Tay and Ho [14] proposed a 
genetic programming-based approach for evolving effective 
composite dispatching rules to solve the multi-objective FJSP. 
Girish and Jawahar [15] proposed a GA for the FJSP for 
minimum makespan time criterion. Ponnambalam et al. [16] 
employed a genetic algorithm (GA)-based heuristics that have 
adopted the Giffler and Thompson (GT) procedure, an effi-
cient and active feasible schedule for makespan time criterion. 
Giovanni and Pezzella [17] proposed an improved GA to 
solve the distributed FJSP to minimize the makespan. Sun et 
al. [18] examined the FJSP based on a modified GA. Mo-
taghedi et al. [19] presented an effective hybrid genetic algo-
rithm to solve the multi-objective FJSP. Guohui et al. [20] 
proposed an effective genetic algorithm to solve the FJSP to 
minimize the makespan criteria. Zhang et al. [21] proposed a 
GA with tabu search procedure for FJSP with transportation 
constraints and bounded processing times to minimize the 
makespan and the storage of solutions. Chen et al. [22] pro-
posed a GA and grouping GA for JSP with parallel machines 
and reentrant process. 

 
4. A new genetic algorithm for flexible job-shop schedul-

ing problem  

4.1 Basis of genetic algorithm  

GAs are search methods based on principles of natural se-
lection and genetics [23, 24]. The interest in heuristic search 
algorithms with underpinnings in natural and physical proc-
esses began as early as the 1970s when Holland [25] first 
proposed genetic algorithms. The fundamental underlying 
mechanism to start the search GAs is initialized with a popula-
tion of individuals. The individuals are encoded as chromo-
somes in the search space. GAs use two main operators, 
namely, crossover and mutation, to direct the population to the 
global optimum. Crossover allows exchanging information 
between different solutions (chromosomes), and mutation 
increases the variety in the population. After the selection and 
evaluation of the initial population, chromosomes are selected 
and the crossover and mutation operators are applied. Then, 
the new population is formed. This process is continued until a 
termination criterion is met [26, 27]. 

 
4.2 Chromosome representation 

Our chromosome representation has one component, which 
is job permutation (JP). We use an array of integers with 
length equal to L, and each integer value equals the index of 
array of corresponding jobs. Our chromosome depends on the 
following two components: 

Concerning the operation sequence part, we use an array of 
integers with a length equal to L, and each integer value equals 
the index of array of operation for the corresponding job se-

quence. For the machine sequence part, we also use the same 
length equal to L. For instance, M1 is selected to process op-
eration 21O because the value in the array of alternative ma-
chine set is 1. The value in the array is also equal to 1 because 
operation 21O  can be processed on two machines, M1 or M3, 
and the valid values are 1 and 3, as shown in Fig. 1. For the 
structure of the proposed PJ chromosome. 

The procedures of the JP encoding chromosome and decod-
ing used in this study are described in Figs. 3 and 4. 

  
Fig. 1. Structure of proposed PJ chromosome.  

 
Chromosome 1= 2 2 1 2 1 

 
Chromosome 2= 1 2 1 2 2 

 
Fig. 2. Two different permutations for chromosome.  

 
Procedure: Job permutation encoding 

Input: Total number of state (machine) m, total number of jobs 
nj, total number of operations for each job noj, processing time 
matrix Time. 
Output: Digit permutation chromosome CHROM; assign ma-
chine, processing time 
Step 1: Generate randomly a vector CHROM of sequencing    
operations. 
Step 2: Set index l =1. 
Step 3: Choose randomly from Time matrix a machine such that 
two operations cannot be processed simultaneously on the same 
machine. 
Set machine (l)  
Set processing (l) 
Permutation; assignment machine and processing time for each 
operation is built and read from left to right.  
Set l = l + 1. 
step 4: Repeat step 3 until l = K  
Output CHROM, machine, processing.   
End 
 

 
Fig. 3. Procedure of job permutation encoding. 
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Procedure: Job permutation decoding 

Input: Total number of state (machine) m, total number of jobs 
nj, total number of operations for each job noj, digit permutation 
CHROM; assign machine Machine; processing time matrix 
Time. 
Output: Best schedule, makespan 
Step 1: Deduct from CHROM operation order 
Step 2: Choose machine for each operation 
Step 3: Calculate makespan 
Best schedule, makespan 
End 

 
 
Fig. 4. Procedure of job permutation decoding. 

 
Procedure: Wheel selection job 

Input: Total number of state (machine) m, total number of jobs 
nj, total number of operations for each job noj, total number of 
individuals in one population np, makespan for each individual  
Mspan(np), population 
Output: Selected population Newpopulation 
Step 1: Sort Mspan; set index l =1. 
Step 2: Prob(l) = Mspan(l)/(sum(Mspan)) 
l = l + 1. 
Step 3: Repeat step 2 until l = np 
Step 4: Probp= cumsun(Prob) 
Step 5: Select best individuals 
Perc = np*30%    
Keep 50% of best individuals 
rdn random probability  
Set index l = 1, repeat 
Set index k = 1, repeat 
If  rdn < Probp(k) 
Newpopulation (l) = Population (k) 
Break 
Endif 
     k = k+1 
Until k = np 
     l = l+1 
Until l = Perc 
Output Newpopulation with 30% of best individuals 
End 

 
 
Fig. 5. Procedure of wheel selection job. 

 
4.3 Genetic operators  

Selection operator  
Choosing individuals for reproduction is the task of selec-

tion [28]. The chosen selection approach is adopted. Detailed 
steps are shown in Fig. 5. 

 
Crossover operator 

The goal of the crossover is to obtain better chromosomes  

Procedure: Uniform crossover job 

Input: Total number of individuals in one population np, 
Makespan for each individual Mspan (np), Newpopulation 
Output: Newpopulation 
Step 1: Choose randomly 2 individuals, parent 1 and parent2 
Step 2: Generate randomly a binary vector unif(np) 
Step 3: Set index l = 1. 
Step 4: If unif(l) = 1  

Offset1(l) = parent1(l) 
Offset2(l) = parent1(1) 

with Precedence preserving order 
Endif 

l = l + 1. 
Step 5: Repeat step 3 until l = 50% of population 
Replace parent 1,2 with offset 1,2 
Newpopulation 
End  

 
 
Fig. 6. Procedure of uniform crossover job. 

 
 
Procedure: Values mutation job 

Input:  Total number of individuals in one population np, 
Makespan for each individual Mspan(np), Newpopulation 
Output: Newpopulation 
Step 1: Set index l = 1 
Step 2: Choose randomly an individual from Newpopulation 
Step 3: Generate randomly 2 values in an individual 
       Permute these values if precedence order 
Step 4: Repeat step 1 until l 50% of population 
Output  Newpopulation 
End  
 

 
Fig. 7. Procedure of values mutation job. 

 
 

to improve the result by exchanging information contained in 
the current good ones. In this study, we conducted two kinds 
of crossover operator for the chromosomes. 

In accordance with the adopted representation, two cross-
over operators are used in this study. Uniform crossover and a 
precedence preserving order-based crossover (POX). The 
uniform crossover operation is described in Fig. 6. 

 
Mutation operator 

Mutation introduces extra variability into the population to 
enhance the population diversity. Usually, mutation is applied 
with small probability. Large probability may destroy the 
good chromosome. In our study, we conducted one kind of 
mutation operator, which is the mutation by values for the 
chromosome PJ (values mutation job is described in Fig. 7). 

The framework of the proposed NGA is illustrated in Fig. 8. 
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Procedure: New genetic algorithm 

Input: Total number of state (machine) m, total number of job nj, 
total number of operations for each job noj, total number of indi-
viduals np, total number of generations ng 
Output: Schedule, makespan 
Step 1: Generate randomly  initial generation, Set index g = 1 
Step 2: Calculate makespan 
Step 3: Keep best solution 
Step 4: Wheel selection operation 
Step 5: Uniform crossover operation 
Step 6: Values mutation operation 
Step 7: Repeat steps from step 2 until g = ng 
Output  Schedule, makespan 
End  

 
Fig. 8. Framework of proposed new GA. 

 
 

4.4 Performance verification of NGA  

The proposed new GA is tested on Brandimarte’s data set 
(BR data). The data set consists of 10 problems with number 
of jobs ranging from 10 to 20, number of machines ranging 
from 4 to 15, and number of operations for each job ranging 
from 5 to 15. 

The proposed new algorithm is compared to the following 
algorithms [17, 20, 29]: 

- M&G: approach proposed by Mastrolilli and Gambardella 
(2000). 

- GENACE: approach proposed by Ho and Tay (2004). 
- Zhang et al.: approach proposed by Guohui Zhang and 

Ling Gao (2011). 
- Chen et al.: approach proposed by Chen H and Ihlow J 

(1999). 
- Pessella et al.: approach proposed by Pezzelle and Mor-

ganti (2008). 
- HGTS: approach proposed by J. J. Palacios and A. Gon-

zález (2014). 

The proposed NGA algorithm for FSJ problem was coded 
in Matlab and run on a 2.3 GHz PC with 4 GO memory with 
the following parameters: popsize =100, c P = 0.8, m P = 0.05, 
selection percentage = 30%. 

Table 2 summarizes the experimental results. It lists prob-
lem names, problem dimension (number of jobs × number of 
machines), best known solution ( mC ), solution obtained by 
our algorithm (NGA), and solution obtained by each of the 
other algorithms. The computational results show that the 
proposed genetic algorithm is speed so far of searching opti-
mal solution. Among the 10 test problems, Mk01 could gain 
better solution among all the approaches. Mk03 and Mk08 
could obtain the optimal solution in the first generation by 
using NGA. Mk02, Mk04, Mk05, and Mk09 (four problems) 
could have the same good results as the M&G approach. One 
problem, Mk06, could gain the same results as GENACE and 
two problems (Mk07, Mk10) could obtain the same results as 
Chen et al. In Figs. 9 and 10, we draw the decrease of 

Table 2. Results of Brandimart’s data. 
 

M&G GENACE Zhang et al Chen et al Pezzella et al HGTS NGA 
Problem n*m 

mC  mC  mC  mC  mC  mC  mC  

Mk01 10*6 40 40 40 40 40 40 37 

Mk02 10*6 26 32 26 29 26 26 26 

Mk03 15*8 204 N/A 204 204 204 204 204 

Mk04 15*8 60 67 60 63 60 60 60 

Mk05 15*4 173 176 173 181 173 172 173 

Mk06 10*15 58 67 58 60 63 57 67 

Mk07 20*5 144 147 144 148 139 139 148 

Mk08 20*10 523 523 523 523 523 523 523 

Mk09 20*10 307 320 307 308 311 307 307 

Mk10 20*15 198 229 198 212 212 198 212 
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Fig. 9. Decrease of makespan (MK01). 
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Fig. 10. GANTT chart of MK01.  
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makespan and Gantt chart for the Mk01 test problem with 10 
jobs and 6 machines from the BR data.  

 
5. Case study problem 

Our research work considers a real-world application: the 
scheduling problem of a drug company. Saidal Group is one 
of the leading pharmaceutical manufacturers in Algeria. The 

company produces a variety of drugs. Each product may be 
considered as a job. Thus, we consider 10 jobs in this problem 
as shown in Table 3. The parts are produced in machines. The 
machine set size is 31. 

The processing time is the time required for a machine to be 
processed in different stages. The processing time taken by 
each machine is measured many times and the average time is 
taken in this work. The processing time (in 10-3 seconds) of all 
10 jobs in different machines are presented in Table 4. 

 
5.1 Results  

To obtain meaningful results, we ran our algorithm five 
times on the same instance. The parameters used in the NGA 
were chosen experimentally to obtain a satisfactory solution 
within an acceptable time span. According to the complexity 
of the problems, the population size of the effective GA 
ranged from 50 to 150.  

Initially, we checked the performance of the approach in 
Figs. 11-13. Then, we drew the decrease of the average best 
makespan over five runs for the weighing room with (10 jobs 
and 10 machines) production shop with (10 jobs and 8 ma-
chines), and conditionnement shop with (10 job and 13 ma-

Table 3. Drugs involved in jobs. 
 

Job 1J  2J  3J  4J  5J  6J  7J  8J  9J  10J  

Product Suipuren  
180 ml 

Encofluide 
adult  

180 ml 

Encofluide 
enfant  
180 ml 

Pentussil  
180 ml 

Eupnex  
180 ml 

Salbutamol-
saidal  
150 ml 

Ferracur  
125 ml 

Bromhexine-
saidal  
60 ml 

Allertine  
60 ml 

Valkine  
60 ml 

 

 
Table 4. Example of job assignment by three shops and different ma-
chines. 
 

Product / Job Shop Operation Machines Pij (ms) 

BP1 57600 
O11 

BP2 0 

BA1 72000 
O12 

BA2 600 

B1 43200 

B2 50400 O13 

B3 0 

IM1 7200 

IM2 0 

 
Weinghing room 

O14 

IM3 9000 

CF1 0 

CF2 230400 O15 

CF3 648000 

GB1 1320 
O16 

GB2 60 

NP1 72000 

NP2 0 

Fabrication 

O17 

NP3 120 

O18 TE 6000 

O19 BV 80160 

O110 RE-SE 3720 

O111 TA1 5760 

O112 ET 56 

O113 TA2 6420 

O114 EC-PN 4500 

O115 TP 32 

O116 ID 5520 

VN1 0 O117 
 VN2 52 

MC1 7200 

 
Suipuren  
180 ml 

j1 

Conditionnement 

O118 
MC2 10800 
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Fig. 11. Decrease of makespan (weighing room). 
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Fig. 12. Decrease of makespan (fabrication shop). 
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chines). 
In Fig. 14, we show the decrease of the average best 

makespan over five runs for the entire company’s problem 
with 10 jobs and 31 machines. 

Figs. 15-17 show the Gantt chart of optimal solution for 
weighing room, fabrication shop and conditionnement shop of 
this company.  

Finally, the Gantt chart of the entire company is shown in 
Fig. 19. 

 
5.2 Additional performance evaluation  

We conduct a set of experiments to evaluate the perform-
ance of the proposed NGA algorithm. The different factor 
levels for the design of experiments and the best makespan 
comparison is presented in Table 5. According to the results, 
the proposed GA algorithm provides optimal results with 
minimum computational time. A graphical representation of 
the gap between our approach and the company’s processing 
time is presented in Fig. 18).  

Table 5. Makespan Comparison between SAIDAL Company And 
NGA. 
 

Shop n*m SAIDAL 
(103)(ms) NGA (ms) Gap (ms) x103 

Weighing room 10*10 27000.00 452300.00 265.47700 

Fabrication 10*8 108000.00 1134180.00 1068.65820 

Conditionnement 10*13 3000.00 699020.00 23.00980 

Company 10*31 138000.00 1570140.00 136429860.00 
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Fig. 13. Decrease of makespan (conditionnement shop). 
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Fig. 14. Decrease of makespan for company. 

 

 
 
Fig. 15. Gantt chart of weighing room. 

 

 
 
Fig. 16. Gantt chart of fabrication shop. 

 

 
 
Fig. 17. Gantt chart of conditionnement shop. 

 

 
 
Fig. 18. Comparison of processing time between SIADAL company 
and NGA. 
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6. Conclusion and future study 

In this paper, we proposed an NGA to solve FJSP. Thus, we 
proposed a new chromosome representation scheme and vari-
ous strategies for crossover and mutation operators. Besides, 
the proposed algorithm has been tested on instances issued 
from benchmark literature, and we checked this algorithm 
with real word application data that belonged to a drug manu-
facturing company. The computational results show that the 
proposed new genetic algorithm (NGA) efficiently solves 
FJSP. 

In our future research, we intend to optimize this algorithm 
and the solution procedure to consider multiple objectives 
such as due dates, mean flow-time requirements, and other 
constraints such as changing tools. 
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