

Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281

www.springerlink.com/content/1738-494x
DOI 10.1007/s12206-015-0242-7

A new genetic algorithm for flexible job-shop scheduling problems†

Imen Driss*, Kinza Nadia Mouss and Assia Laggoun
Automatics & Manufacturing Engineering Laboratory, University of Batna, 1s t Street Chahid Boukhlouf, Batna, Algeria

(Manuscript Received August 18, 2014; Revised November 25, 2014; Accepted December 2, 2014)

--

Abstract

Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling

problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new
chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of
benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient
and competitive than some other existing algorithms.

Keywords: FJSP; Scheduling; Genetic algorithm; Chromosome representation
--

1. Introduction

Job-shop scheduling problem (JSP) is a branch of produc-
tion scheduling and combinatorial optimization problems. The
classical JSP consists of scheduling a set of jobs on a set of
machines under constraint; each job has a specied processing
order. The exible job-shop problem (FJSP) is an extension of
the classical job-shop problem in which each operation must
be processed on a machine chosen among a set of available
ones.

In FJSP, the problem of scheduling jobs involves the fol-
lowing sub-problems: assigning the operation to a machine
(routing problem) and sequencing the operations on machines
(sequencing problem) to minimize the performance indicators.
Therefore, the combination of two decisions presents addi-
tional complexity. Thus, FJSP is NP-hard because it is an
extension of JSP that is proven to be NP-hard [1].

Over the years, metaheuristics has been used to solve FJSP,
specifically through tabu search, simulated annealing, genetic
algorithm, and particle swarm optimization.

In this research work, we propose a new genetic algorithm
(NGA) to solve FJSP to minimize the makespan. We create a
new chromosome representation called “permutation job”.
This method enables us to find a new coding scheme for indi-
vidual jobs, which considers all constraints of FJSP. At the
same time, we employ different strategies for crossover and
mutation operators. Computational results show that the pro-
posed algorithm is effective.

This paper is organized as follows. The problem definition
and formulation are presented in Sec. 2. Related studies are
reviewed in Sec. 3. The NGA is explained in Sec. 4. Compu-
tational results are presented in Sec. 5. Conclusion and future
research directions are provided in Sec. 6.

2. Definition and formalization problem

2.1 Problem description

We focus on FJSP composed of the following elements:
• Jobs. J = { 1J ……. nJ } is a set of n jobs to be scheduled.

Each job iJ consists of a predetermined set of opera-
tions. ijO is the operation j of job iJ . All jobs are re-
leased at time 0.
• Machines. M = { 1 mM M¼¼ } is a set of m machines.

Each machine can process only one operation at a given
time, and each operation can be processed without inter-
ruption. All machines are available at time 0.
• Flexibility. FJSP is classified into two types as follows

[2]:
- Total FJSP (T-FJSP): Each operation can be processed

on any machine among M existing machines on the
shop floor.

- Partial FJSP (P-FJSP): Each operation can be processed
on one machine of a subset of M existing machines on
the shop floor.

• Constraints: Rules that limit the possible assignments of
the operations. They can be classified mainly into the fol-
lowing conditions:
- Each operation can be processed by only one machine

at a time (disjunctive constraint).

*Corresponding author. Tel.: +213 33803396, Fax.: +213 33803396
E-mail address: Idrissamina@hotmail.fr

† Recommended by Editor Haedo Jeong
© KSME & Springer 2015

1274 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281

- Each operation, which has started, runs to completion
(non-preemption condition).

- Each machine performs operations one after another
(capacity constraint).

- Although no precedence constraints exist among opera-
tions of various jobs, the predetermined sequence of
operations for each job forces each operation to be
scheduled after all predecessor operations (prece-
dence/conjunctive constraint).

- The machine constraints emphasize that the operations
can be processed only by the machine from the given
set (resource constraint).

• Objective: To find a schedule that requires minimum
time to complete all operations (minimum makespan).

To simplify the presentation of the algorithm, we designed a

sample instance of FJSP that is used in this paper. Table 1
provides the dataset of P-FJSP, including two jobs operated on
five machines where rows correspond to operations and col-
umns correspond to machines. Each cell denotes the process-
ing time of that operation on the corresponding machine.

2.2 Problem formulation

Some symbols used in our paper are listed as follows:

Ω : Set of all machines
n : Number of total jobs
m : Number of total machines
i : Index of thi job
j : Index of jth operation of job ij
ioJ : Number of total operations of job iJ
ijO : jth Operation of job ij
ijΩ : Set of available machines of Oij

ijkp : Processing time of operation Oij on machine k
ijkS : Start time of operation Oij on machine k

Eijk : End time of operation Oij on machine k
L= n

1 ioJå : Sum of all operations of all jobs
H : Very large positive integer

Objective function

Minimize ()1 21 2 , ,
nJ J nJMax C C Cé ù¼ê úë û

. (1)

Subject to

ijC - ijS - ()Ωij: . 0 ,
ijk O ijk ijkP X i j
Î

å = " (2)

 (3)

 (4)
ijS ≥0 ,i j" (5)

1ijS + - 0 ,ijC i j³ " , j = 1… 1 iJ - (6)

()Ωij: 1
ijk O ijkX
Î

å = , ,i j" (7)

(8)

.
(9)

Objective Eq. (1) minimizes. The constraint set Eq. (2) im-

poses that the difference between the completion time and the
starting time of an operation is equal to its processing time on
the assigned mach. Constraint sets Eqs. (3) and (4) ensure that
no two operations can be processed simultaneously on the
same machine. This disjunctive constraint Eq. (3) becomes
inactive when and the disjunctive constraint Eq. (4)
becomes inactive when Constraint set Eq. (5) ensures
that the start time of an operation is always positive. Constraint
set Eq. (6) represents the precedence relationship among
various operations of a job. Constraint set Eq. (7) imposes
that an operation can be assigned to only one machine [16].

3. Related works

Bruker and Schlie [3] were the first to consider this problem
by developing a polynomial algorithm to solve the FJSP with
two jobs. Brandimarte [4] was the first to apply the decompo-
sition approach to the FJSP by solving the routing sub-
problem using some existing dispatching rules and then focus-
ing on the scheduling sub-problem using a tabu search heuris-
tic. Paulli [5] applied a hierarchical approach and Mesghouni
et al. [6] were the first to model GA known as parallel job
representation to solve FJSP. Chen et al. [7] proposed a GA
that uses an A-B string representation to solve FJSP for mini-
mum makespan time criterion. Kacem, Hammadi, and Borne
[8] proposed a genetic algorithm controlled by the assignment
model generated by the approach of localization (AL) to
mono-objective and multi-objective FJSP. Ho and Tay [9]
proposed a GA based tool called GENACE to solve the FJSP
for minimum makespan time criterion. Zhang and Gen [10]
proposed a method called multistage-based genetic algorithm
to solve FJSP. Mehrabad and Fattahi [11] presented a mathe-
matical model and tabu search algorithm to solve FJSP with a
sequence dependent on setups to minimize the makespan. Ho
et al. [12] proposed an architecture for learning and evolving
of flexible job-shop schedules for minimum makespan crite-
rion called learnable genetic architecture (LEGA), a generali-
zation of their previous approach GENACE. Gao and Gen

Table 1. Processing time table of an instance of P-FJSP.

Job Operation 1M 2M 3M 4M 5M

11O 2 6 5 3 4
1J

21O - 8 - 4 -

21O 3 - 6 - 5

22O 4 6 5 - - 2J

23O - 7 1 5 8

 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281 1275

[13] developed a hybrid optimization strategy for multi-
objective FJSP (min makespan, min maximal machine work-
load, and min total workload) by combining the genetic algo-
rithm and bottleneck shifting. Tay and Ho [14] proposed a
genetic programming-based approach for evolving effective
composite dispatching rules to solve the multi-objective FJSP.
Girish and Jawahar [15] proposed a GA for the FJSP for
minimum makespan time criterion. Ponnambalam et al. [16]
employed a genetic algorithm (GA)-based heuristics that have
adopted the Giffler and Thompson (GT) procedure, an effi-
cient and active feasible schedule for makespan time criterion.
Giovanni and Pezzella [17] proposed an improved GA to
solve the distributed FJSP to minimize the makespan. Sun et
al. [18] examined the FJSP based on a modified GA. Mo-
taghedi et al. [19] presented an effective hybrid genetic algo-
rithm to solve the multi-objective FJSP. Guohui et al. [20]
proposed an effective genetic algorithm to solve the FJSP to
minimize the makespan criteria. Zhang et al. [21] proposed a
GA with tabu search procedure for FJSP with transportation
constraints and bounded processing times to minimize the
makespan and the storage of solutions. Chen et al. [22] pro-
posed a GA and grouping GA for JSP with parallel machines
and reentrant process.

4. A new genetic algorithm for flexible job-shop schedul-

ing problem

4.1 Basis of genetic algorithm

GAs are search methods based on principles of natural se-
lection and genetics [23, 24]. The interest in heuristic search
algorithms with underpinnings in natural and physical proc-
esses began as early as the 1970s when Holland [25] first
proposed genetic algorithms. The fundamental underlying
mechanism to start the search GAs is initialized with a popula-
tion of individuals. The individuals are encoded as chromo-
somes in the search space. GAs use two main operators,
namely, crossover and mutation, to direct the population to the
global optimum. Crossover allows exchanging information
between different solutions (chromosomes), and mutation
increases the variety in the population. After the selection and
evaluation of the initial population, chromosomes are selected
and the crossover and mutation operators are applied. Then,
the new population is formed. This process is continued until a
termination criterion is met [26, 27].

4.2 Chromosome representation

Our chromosome representation has one component, which
is job permutation (JP). We use an array of integers with
length equal to L, and each integer value equals the index of
array of corresponding jobs. Our chromosome depends on the
following two components:

Concerning the operation sequence part, we use an array of
integers with a length equal to L, and each integer value equals
the index of array of operation for the corresponding job se-

quence. For the machine sequence part, we also use the same
length equal to L. For instance, M1 is selected to process op-
eration 21O because the value in the array of alternative ma-
chine set is 1. The value in the array is also equal to 1 because
operation 21O can be processed on two machines, M1 or M3,
and the valid values are 1 and 3, as shown in Fig. 1. For the
structure of the proposed PJ chromosome.

The procedures of the JP encoding chromosome and decod-
ing used in this study are described in Figs. 3 and 4.

Fig. 1. Structure of proposed PJ chromosome.

Chromosome 1= 2 2 1 2 1

Chromosome 2= 1 2 1 2 2

Fig. 2. Two different permutations for chromosome.

Procedure: Job permutation encoding

Input: Total number of state (machine) m, total number of jobs
nj, total number of operations for each job noj, processing time
matrix Time.
Output: Digit permutation chromosome CHROM; assign ma-
chine, processing time
Step 1: Generate randomly a vector CHROM of sequencing
operations.
Step 2: Set index l =1.
Step 3: Choose randomly from Time matrix a machine such that
two operations cannot be processed simultaneously on the same
machine.
Set machine (l)
Set processing (l)
Permutation; assignment machine and processing time for each
operation is built and read from left to right.
Set l = l + 1.
step 4: Repeat step 3 until l = K
Output CHROM, machine, processing.
End

Fig. 3. Procedure of job permutation encoding.

1276 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281

Procedure: Job permutation decoding

Input: Total number of state (machine) m, total number of jobs
nj, total number of operations for each job noj, digit permutation
CHROM; assign machine Machine; processing time matrix
Time.
Output: Best schedule, makespan
Step 1: Deduct from CHROM operation order
Step 2: Choose machine for each operation
Step 3: Calculate makespan
Best schedule, makespan
End

Fig. 4. Procedure of job permutation decoding.

Procedure: Wheel selection job

Input: Total number of state (machine) m, total number of jobs
nj, total number of operations for each job noj, total number of
individuals in one population np, makespan for each individual
Mspan(np), population
Output: Selected population Newpopulation
Step 1: Sort Mspan; set index l =1.
Step 2: Prob(l) = Mspan(l)/(sum(Mspan))
l = l + 1.
Step 3: Repeat step 2 until l = np
Step 4: Probp= cumsun(Prob)
Step 5: Select best individuals
Perc = np*30%
Keep 50% of best individuals
rdn random probability
Set index l = 1, repeat
Set index k = 1, repeat
If rdn < Probp(k)
Newpopulation (l) = Population (k)
Break
Endif
 k = k+1
Until k = np
 l = l+1
Until l = Perc
Output Newpopulation with 30% of best individuals
End

Fig. 5. Procedure of wheel selection job.

4.3 Genetic operators

Selection operator
Choosing individuals for reproduction is the task of selec-

tion [28]. The chosen selection approach is adopted. Detailed
steps are shown in Fig. 5.

Crossover operator

The goal of the crossover is to obtain better chromosomes

Procedure: Uniform crossover job

Input: Total number of individuals in one population np,
Makespan for each individual Mspan (np), Newpopulation
Output: Newpopulation
Step 1: Choose randomly 2 individuals, parent 1 and parent2
Step 2: Generate randomly a binary vector unif(np)
Step 3: Set index l = 1.
Step 4: If unif(l) = 1

Offset1(l) = parent1(l)
Offset2(l) = parent1(1)

with Precedence preserving order
Endif

l = l + 1.
Step 5: Repeat step 3 until l = 50% of population
Replace parent 1,2 with offset 1,2
Newpopulation
End

Fig. 6. Procedure of uniform crossover job.

Procedure: Values mutation job

Input: Total number of individuals in one population np,
Makespan for each individual Mspan(np), Newpopulation
Output: Newpopulation
Step 1: Set index l = 1
Step 2: Choose randomly an individual from Newpopulation
Step 3: Generate randomly 2 values in an individual
 Permute these values if precedence order
Step 4: Repeat step 1 until l 50% of population
Output Newpopulation
End

Fig. 7. Procedure of values mutation job.

to improve the result by exchanging information contained in
the current good ones. In this study, we conducted two kinds
of crossover operator for the chromosomes.

In accordance with the adopted representation, two cross-
over operators are used in this study. Uniform crossover and a
precedence preserving order-based crossover (POX). The
uniform crossover operation is described in Fig. 6.

Mutation operator

Mutation introduces extra variability into the population to
enhance the population diversity. Usually, mutation is applied
with small probability. Large probability may destroy the
good chromosome. In our study, we conducted one kind of
mutation operator, which is the mutation by values for the
chromosome PJ (values mutation job is described in Fig. 7).

The framework of the proposed NGA is illustrated in Fig. 8.

 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281 1277

Procedure: New genetic algorithm

Input: Total number of state (machine) m, total number of job nj,
total number of operations for each job noj, total number of indi-
viduals np, total number of generations ng
Output: Schedule, makespan
Step 1: Generate randomly initial generation, Set index g = 1
Step 2: Calculate makespan
Step 3: Keep best solution
Step 4: Wheel selection operation
Step 5: Uniform crossover operation
Step 6: Values mutation operation
Step 7: Repeat steps from step 2 until g = ng
Output Schedule, makespan
End

Fig. 8. Framework of proposed new GA.

4.4 Performance verification of NGA

The proposed new GA is tested on Brandimarte’s data set
(BR data). The data set consists of 10 problems with number
of jobs ranging from 10 to 20, number of machines ranging
from 4 to 15, and number of operations for each job ranging
from 5 to 15.

The proposed new algorithm is compared to the following
algorithms [17, 20, 29]:

- M&G: approach proposed by Mastrolilli and Gambardella
(2000).

- GENACE: approach proposed by Ho and Tay (2004).
- Zhang et al.: approach proposed by Guohui Zhang and

Ling Gao (2011).
- Chen et al.: approach proposed by Chen H and Ihlow J

(1999).
- Pessella et al.: approach proposed by Pezzelle and Mor-

ganti (2008).
- HGTS: approach proposed by J. J. Palacios and A. Gon-

zález (2014).

The proposed NGA algorithm for FSJ problem was coded
in Matlab and run on a 2.3 GHz PC with 4 GO memory with
the following parameters: popsize =100, c P = 0.8, m P = 0.05,
selection percentage = 30%.

Table 2 summarizes the experimental results. It lists prob-
lem names, problem dimension (number of jobs × number of
machines), best known solution (mC), solution obtained by
our algorithm (NGA), and solution obtained by each of the
other algorithms. The computational results show that the
proposed genetic algorithm is speed so far of searching opti-
mal solution. Among the 10 test problems, Mk01 could gain
better solution among all the approaches. Mk03 and Mk08
could obtain the optimal solution in the first generation by
using NGA. Mk02, Mk04, Mk05, and Mk09 (four problems)
could have the same good results as the M&G approach. One
problem, Mk06, could gain the same results as GENACE and
two problems (Mk07, Mk10) could obtain the same results as
Chen et al. In Figs. 9 and 10, we draw the decrease of

Table 2. Results of Brandimart’s data.

M&G GENACE Zhang et al Chen et al Pezzella et al HGTS NGA
Problem n*m

mC mC mC mC mC mC mC

Mk01 10*6 40 40 40 40 40 40 37

Mk02 10*6 26 32 26 29 26 26 26

Mk03 15*8 204 N/A 204 204 204 204 204

Mk04 15*8 60 67 60 63 60 60 60

Mk05 15*4 173 176 173 181 173 172 173

Mk06 10*15 58 67 58 60 63 57 67

Mk07 20*5 144 147 144 148 139 139 148

Mk08 20*10 523 523 523 523 523 523 523

Mk09 20*10 307 320 307 308 311 307 307

Mk10 20*15 198 229 198 212 212 198 212

0 10 20 30 40 50 60 70 80 90 100
35

40

45

50

55

60

65

70

Fig. 9. Decrease of makespan (MK01).

0 5 10 15 20 25 30 35 40

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

J5;1J3;1

J5;2

J7;1

J1;1

J9;1J6;1

J5;3

J10;1

J2;1

J8;1

J1;2

J8;2 J1;3

J4;1

J7;2

J7;3

J9;2

J3;2

J5;4

J2;2J4;2

J6;2

J9;3

J7;4

J8;3 J2;3

J6;3

J3;3J1;4J9;4

J5;5

J3;4

J6;4

J1;5

J1;6

J9;5

J10;2

J6;5

J2;4

J4;3

J8;4

J9;6

J2;5

J6;6

J4;4

J5;6

J8;5

J3;5

J4;5

J7;5

Makespan

Ma
ch

ine
s

Fig. 10. GANTT chart of MK01.

1278 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281

makespan and Gantt chart for the Mk01 test problem with 10
jobs and 6 machines from the BR data.

5. Case study problem

Our research work considers a real-world application: the
scheduling problem of a drug company. Saidal Group is one
of the leading pharmaceutical manufacturers in Algeria. The

company produces a variety of drugs. Each product may be
considered as a job. Thus, we consider 10 jobs in this problem
as shown in Table 3. The parts are produced in machines. The
machine set size is 31.

The processing time is the time required for a machine to be
processed in different stages. The processing time taken by
each machine is measured many times and the average time is
taken in this work. The processing time (in 10-3 seconds) of all
10 jobs in different machines are presented in Table 4.

5.1 Results

To obtain meaningful results, we ran our algorithm five
times on the same instance. The parameters used in the NGA
were chosen experimentally to obtain a satisfactory solution
within an acceptable time span. According to the complexity
of the problems, the population size of the effective GA
ranged from 50 to 150.

Initially, we checked the performance of the approach in
Figs. 11-13. Then, we drew the decrease of the average best
makespan over five runs for the weighing room with (10 jobs
and 10 machines) production shop with (10 jobs and 8 ma-
chines), and conditionnement shop with (10 job and 13 ma-

Table 3. Drugs involved in jobs.

Job 1J 2J 3J 4J 5J 6J 7J 8J 9J 10J

Product Suipuren
180 ml

Encofluide
adult

180 ml

Encofluide
enfant
180 ml

Pentussil
180 ml

Eupnex
180 ml

Salbutamol-
saidal
150 ml

Ferracur
125 ml

Bromhexine-
saidal
60 ml

Allertine
60 ml

Valkine
60 ml

Table 4. Example of job assignment by three shops and different ma-
chines.

Product / Job Shop Operation Machines Pij (ms)

BP1 57600
O11

BP2 0

BA1 72000
O12

BA2 600

B1 43200

B2 50400 O13

B3 0

IM1 7200

IM2 0

Weinghing room

O14

IM3 9000

CF1 0

CF2 230400 O15

CF3 648000

GB1 1320
O16

GB2 60

NP1 72000

NP2 0

Fabrication

O17

NP3 120

O18 TE 6000

O19 BV 80160

O110 RE-SE 3720

O111 TA1 5760

O112 ET 56

O113 TA2 6420

O114 EC-PN 4500

O115 TP 32

O116 ID 5520

VN1 0 O117
 VN2 52

MC1 7200

Suipuren
180 ml

j1

Conditionnement

O118
MC2 10800

0 5 10 15 20 25 30 35 40 45 50
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3
x 10

5

Generations

Ma
ke

sp
an

Fig. 11. Decrease of makespan (weighing room).

0 5 10 15 20 25 30 35 40 45 50
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34
x 10

6

Generations

Ma
ke

sp
an

Fig. 12. Decrease of makespan (fabrication shop).

 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281 1279

chines).
In Fig. 14, we show the decrease of the average best

makespan over five runs for the entire company’s problem
with 10 jobs and 31 machines.

Figs. 15-17 show the Gantt chart of optimal solution for
weighing room, fabrication shop and conditionnement shop of
this company.

Finally, the Gantt chart of the entire company is shown in
Fig. 19.

5.2 Additional performance evaluation

We conduct a set of experiments to evaluate the perform-
ance of the proposed NGA algorithm. The different factor
levels for the design of experiments and the best makespan
comparison is presented in Table 5. According to the results,
the proposed GA algorithm provides optimal results with
minimum computational time. A graphical representation of
the gap between our approach and the company’s processing
time is presented in Fig. 18).

Table 5. Makespan Comparison between SAIDAL Company And
NGA.

Shop n*m SAIDAL
(103)(ms) NGA (ms) Gap (ms) x103

Weighing room 10*10 27000.00 452300.00 265.47700

Fabrication 10*8 108000.00 1134180.00 1068.65820

Conditionnement 10*13 3000.00 699020.00 23.00980

Company 10*31 138000.00 1570140.00 136429860.00

0 5 10 15 20 25 30 35 40 45 50
6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35
x 10

5

Generations

Ma
ke

sp
an

Fig. 13. Decrease of makespan (conditionnement shop).

0 5 10 15 20 25 30 35 40 45 50
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
x 10

6

Generations

Ma
ke

sp
an

Fig. 14. Decrease of makespan for company.

Fig. 15. Gantt chart of weighing room.

Fig. 16. Gantt chart of fabrication shop.

Fig. 17. Gantt chart of conditionnement shop.

Fig. 18. Comparison of processing time between SIADAL company
and NGA.

1280 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281

6. Conclusion and future study

In this paper, we proposed an NGA to solve FJSP. Thus, we
proposed a new chromosome representation scheme and vari-
ous strategies for crossover and mutation operators. Besides,
the proposed algorithm has been tested on instances issued
from benchmark literature, and we checked this algorithm
with real word application data that belonged to a drug manu-
facturing company. The computational results show that the
proposed new genetic algorithm (NGA) efficiently solves
FJSP.

In our future research, we intend to optimize this algorithm
and the solution procedure to consider multiple objectives
such as due dates, mean flow-time requirements, and other
constraints such as changing tools.

Acknowledgment

The study has been generously supported by Batna Univer-
sity. The authors express their sincere appreciation for all sup-
port provided.

References

[1] M. R. Garey, D. S. Johmson and R. Sethi, The complexity of
flow shop and job shop scheduling, Mathematics of Opera-
tional Research, 1 (1976) 117-129.

[2] I. Kacem, S. Hammadi and P. Borne, Pareto-optimality ap-
proach for flexible job shop scheduling problems, Hybridi-
zation of evolutionary algorithms and fuzzy logic, Matimatic
and Computers in Simulation, 60 (2002) 245-276.

[3] P. Brucker and R. Schile, Job-shop scheduling with multi-
purpose machines, Computing, 45 (4) (1990) 369-375.

[4] P. Brandimarte, Routing and scheduling in a flexible job
shop by tabu search, Annals of Operations Research, 41
(1993) 157-183.

[5] J. A. Paulli, Hierarchical approach for the FMS scheduling
problem, European Journal of Operational Research, 86 (1)
(1995) 32-42.

[6] K. Mesghani, S. Hammadi and P. Borne, On modeling ge-
netic algorithms for flexible job shop scheduling problems
(1998).

[7] H. Chen, J. Ihlow and C. A. Lehmann, Genetic algorithm for
flexible Job shop scheduling, IEEE International Conferenceon
Robotics and Automation, Detroit, 2 (1999) 1120-1128.

[8] I. Kacem, S. Hammadi and P. Borne, Approche by localiza-
tion and multiobjective evolutionary and optimization for
flexible job shop scheduling problems, IEEE Transations
Man and Cybernetrics, 32 (1) (2002) 1-13.

[9] N. B. Ho and J. C. Tay, GENACE : An efficient cultural
algorithm for solving the flexible job shop problem, Pro-
ceeding of IEEE Congress on Evolutionary Computation, 1
(2004) 1759-1766.

[10] H. P. Zhang and M. Gen, Multistage-based genetic algo-
rithm for flexible job shop scheduling problem, Journal of
Complexity International, 48 (2005) 409-425.

[11] P. Fattahi, M. S. Mehrabad and F. Joli, Mathematical mod-
eling and heuristic approaches to flexible job shop schedul-
ing problems, Journal of Inteligent Manufacturing, 18
(2007) 331-342.

[12] N. B. Ho, J. C Tay, M. Edmund and K. Lai, An effective
architecture for learning and evolving flexible job shop
schedules, European journal of Operational Research, 179
(2007) 316-333.

[13] J. Gao, M. Gen and L. Sun, A hybrid of genetic algorithm
and bottleneck shifting for multi objective flexible job shop
scheduling problems, Computers and Industrial Engineering,
53 (2007) 149-162.

[14] J. C. Tay and N. B. Ho, Evolving dispatching rules using
genetic programming for solving multi- objective flexible
jobshop problems, Computers and Industrial Engineering,
54 (2008) 453-473.

[15] B. S. Girish and N. Jawahar, Scheduling job shops associ-
ated with multiple routings with genetic and ant colony heu-
ristics (2008).

[16] S. G. Pannanbalam, N. Jawahar and B. S. Girish, Giffler
and Thampson Procedure based genetic algorithms for
scheduling job shops, Springer-Verbag Berlin Heidelberg
(2009) 229-259.

[17] F. Pezzela, G. Margenti and G. Ciaschetti, A genetic algo-
rithm for flexible job shop scheduling problem, Computers
and Operations Research, 35 (10) (2007) 3202-3212.

Fig. 19. The Gantt chart of the drug manufacturing company.

 I. Driss et al. / Journal of Mechanical Science and Technology 29 (3) (2015) 1273~1281 1281

[18] W. Sun, Y. Pan, X. Lu and Q. Ma, Research on flexible job
shop scheduling problem based on a modified genetic algo-
rithm, Journal of Mechanical Science And Technology, 24
(10) (2010) 2115-2119.

[19] A. Motaghedi, K. Sabri-Laghare and M. Heydari, solving
flexible job shop scheduling problem with multi objectives,
International Journal of Industrial Engineering and Produc-
tion Research, 21 (2010)197-209.

[20] G. Zhang, L. Gao and Y. Shi, An effective genetic algo-
rithm for the flexible job shop scheduling problem, Expert
System with Application, 38 (2011) 3563-3573.

[21] Q. Zhang, H. Manier and A. Manier, A genetic algorithm
with tabu search procedure for flexible job shop scheduling
with transportation constants and bounded proceding times,
Computers and operations Research, 39 (2012) 1713-1723.

[22] J. C. Chen, C. C. Wu and C. W. Chen, Flexible job shop
with parallel machines using genetic algorithm and grouping
genetic algorithm, Expert Systems with Application, 39
(2012) 10016-10021.

[23] N. Kim, H. Kim and J. Lee, Damage detection of truss
structures using two stage optimization based on micro ge-
netic algorithm, Journal Of Mechanical Science And Tech-
nology, 28 (9) (2014) 3687-3695.

[24] R. N. Yadar, V. Yadar and G. H. Singh, Application of non
dominated sorting genetic algorithm for multi objective op-
timization of electrical discharge diamond face grinding
process, Journal of Mechanical Science And Technology, 28
(6) (2014) 2299-2306.

[25] L. N. Xing, Y. U. Chen and K. W. Yang, Multi population
interactive coevolutionnary algorithm for flexible job shop
scheduling problems, Comput. Optim. Appl. (2009), DOI
10.1007//S 10589-009-9244-7.

[26] F. N. Defersha and M. Chen, A coase-grain parallel genetic
algorithm for flexible job shop scheduling with lot streaming,
In IEEE International Conference on Computational Science
and Engineering (2009).

[27] Y. K. Park and J. M. Yang, Optimization of mixed casting
processes considering discrete ingot sizes, Journal Of Me-

chanical Science and Technology, 23 (2009) 1899-1910.
[28] S. F. Hwang, Y. Hsu and Y. Chen, A genetic algorithm for

the optimization of fiber angles in composite laminates, Jour-
nal of Mechanical Science and Technology, 28 (8) (2014)
3163-3169.

[29] J. J. Palacios, A. González and C. R. González, Genetic tabu
search for the fuzzy flexible job shop problem, Computers &
Operations Research (2014) 5474-89.

Imen Driss received her Master’s de-
gree from the Department of Industrial
Engineering, University of Batna, Alge-
ria, in 2010. She is currently a doctoral
student at the Department of Industrial
Engineering, University of Batna, Alge-
ria. Her research interests include pro-
ducti degree on scheduling, production

engineering, ma nufacturing, and others.
E-mail : idrissamina@hotmail.fr.

Kinza Nadia Mouss was born in Batna,
Algeria, in 1960. She received the B.Sc.
degree in Electrical Engineering in 1983
from the National Polytechnic School of
Algiers, Algeria; the M.Sc. degree in
Electrical and Computer Engineering in
1984 from the ENSERB, France; and
the Ph.D. also in Electrical and Com-

puter Engineering in 1986 from Bordeaux University, France.
After graduation, she joined the University of Batna, Algeria,
where she is a Professor of Electrical and Computer Engineer-
ing. Dr. Mouss is the head of the Computer Integrated Manu-
facturing and Supply Chain Management Group. Her current
research interests include industrial supply chain management,
production systems, and computer integrated manufacturing.
E-mail : kinzmouss@yahoo.fr.

