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Abstract 
 
In this study, the applicability of differential transformation method (DTM) in investigations on vibrational characteristics of function-

ally graded (FG) size-dependent nanobeams is examined. The material properties of FG nanobeam vary over the thickness based on the 
power law. The nonlocal Eringen theory, which takes into account the effect of small size, enables the present model to be effective in the 
analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton’s principle. The obtained re-
sults exactly match the results of the presented Navier-based analytical solution as well as those available in literature. The DTM is also 
demonstrated to have high precision and computational efficiency in the vibration analysis of FG nanobeams. The detailed mathematical 
derivations are presented and numerical investigations performed with emphasis placed on investigating the effects of several parameters, 
such as small scale effects, volume fraction index, mode number, and thickness ratio on the normalized natural frequencies of the FG 
nanobeams. The study also shows explicitly that vibrations of FG nanobeams are significantly influenced by these effects. Numerical 
results are presented to serve as benchmarks for future analyses of FG nanobeams.  
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1. Introduction 

Functionally graded materials (FGMs), which are micro-
scopically heterogeneous and typically made from isotropic 
components, such as metals and ceramics, were initially de-
signed to serve as thermal barrier materials for aerospace 
structures and fusion reactors [1]. In comparison with tradi-
tional composites, FGMs possess various advantages, includ-
ing ensuring smooth transition of stress distributions, minimi-
zation or elimination of stress concentration, and increased 
bonding strength along the interface of two dissimilar materi-
als. Over the past two decades, FGMs have had wide applica-
tions in modern industries including, aerospace, mechanical, 
electronics, optics, chemical, biomedical, nuclear, and civil 
engineering to name a few. These engineering applications 
have also resulted in intensive research attention on FGMs 
with focus mainly on its static, dynamic and vibration charac-
teristics of FG structures [2].  

Nanoscale engineering materials have displayed significant 
mechanical, electrical, and thermal performances superior to 

conventional structural materials. These materials have at-
tracted considerable interest in modern science and technology 
after the invention of carbon nanotubes (CNTs) by Iijima [3], 
such as in micro/nano electromechanical systems (MEMS/ 
NEMS). Nanostructures have been used in a number of areas, 
including communications, machinery, information technol-
ogy, and biotechnology.  

Thus far, three main methods have been utilized to investi-
gate the mechanical behaviors of nanostructures, namely, at-
omistic model [4], semi-continuum, and continuum models 
[5]. However, both atomistic and semi-continuum models are 
computationally expensive and not suitable for analyzing large 
scale systems. Therefore, considerable efforts have been ex-
erted to develop and calibrate continuum structural models for 
CNTs analysis. The inherent size effects at nanoscale often 
cause the mechanical characteristics of nanostructures to be-
have in a significantly different manner than at the macro-
scopic scale. Such effects are essential for nanoscale materials 
or structures and have substantial influence on nano-
instruments [6]. Generally, theoretical studies on size effects 
at nanoscale are conducted mostly through surface effects, 
strain gradients in elasticity and plasticity, and nonlocal stress 
field theory [7]. Choi et al. [8] first investigated the surface 
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effects on nanoscale thin films. Cho et al. [9] presented a con-
tinuum-based bridging model of a nanoscale thin film that 
considered surface effects, whereas Kim et al. [10] introduced 
molecular dynamics-based continuum models for linear elas-
ticity analysis of nanofilms and nanowires with anisotropic 
surface effects. Ko et al. [11] also investigated the quality 
factor in clamping loss of nano-cantilever resonators. Unfor-
tunately, classical continuum theories are deemed to fail for 
these nanostructures because the length dimensions at nano-
scale are often sufficiently small, and call the applicability of 
classical continuum theories into question. Consequently, 
classical continuum models need to be extended to consider 
the nanoscale effects, which can be achieved through the use 
of the nonlocal elasticity theory proposed by Eringen [7], 
which considers the size-dependent effect. According to this 
theory, the stress state at a reference point is considered a 
function of the strain states of all points in the body.  

In recent years, nanobeams and CNTs have had a wide va-
riety of potential applications, such as sensors, actuators, tran-
sistors, probes, and resonators in NEMSs [12]. The application 
of FG materials is in the areas of MEMS and NEMS such as 
atomic force microscopes and electrically actuated MEMS 
and NEMS. The dimensions of these structural devices do not 
usually exceed micron scale, making size-dependent analysis 
necessary when studying FGMs [13].  

With the quick growth of nanostructures, FGMs have also 
been used extensively in MEMS/NEMS, such as thin films, 
micro switches, and micro piezoactuators [14]. Understanding 
the mechanical properties and vibration behavior of FGMs are 
significantly important in the design and manufacture of FG 
MEMS/NEMS because of the high sensitivity of 
MEMS/NEMS to external stimulations. Thus, establishing an 
accurate model of FG nanobeams is a key factor in a success-
ful MEMS/NEMS design. Asghari et al. [15] studied the free 
vibration of FGM Euler–Bernoulli microbeams that was ex-
tended to consider a size-dependent Timoshenko beam based 
on modified couple stress. The dynamic characteristics of FG 
beams with power law material graduation in the axial or 
transversal directions were examined by Alshorbagy et al. [16]. 
Ke and Wang [17] exploited the effect of size on the dynamic 
stability of FG Timoshenko microbeams. The modified couple 
stress theory employed on nonlinear free vibration of FG mi-
crobeams based on von Karman geometric nonlinearity was 
presented by Ke et al. [18]. The study revealed that both linear 
and nonlinear frequencies increased significantly when the 
thickness of the FGM microbeam reached a scale comparable 
to the material length scale parameter. Eltaher et al. [19, 20] 
presented a finite element formulation for free vibration analy-
sis of FG nanobeams based on the nonlocal Euler beam theory. 
Their study also exploited the size-dependent static-buckling 
behavior of FG nanobeams based on the nonlocal continuum 
model [21]. Using nonlocal Timoshenko and Euler–Bernoulli 
beam theories, Simsek and Yurtcu [22] conducted an analyti-
cal investigation of the bending and buckling of FG nano-
beams. Most previous literature focused on modeling mi-

cro/nano-beams based on the assumptions that the material is 
homogeneous. Very few studies are available for FGM mi-
cro/nanoscale structures. Previous literature also shows the 
wide use of DTM to solve a vast range of problems in differ-
ent fields of engineering. To the best knowledge of the authors, 
thus far, no research efforts have been devoted to discovering 
a solution for the vibration of FG nanobeams by employing 
DTM.  

Motivated by these facts, in the current study, DTM is ap-
plied in analyzing the vibration characteristics of size-
dependent FG nanobeams. The superiority of DTM is its sim-
plicity, excellent precision, and dependence on Taylor series 
expansion as well as the lesser time it takes to solve the poly-
nomial series. DTMs differ from the traditional high order 
Taylor’s series method, which requires a symbolic competi-
tion of the necessary derivatives of data functions. The Taylor 
series method takes a computationally long time for large 
orders. DTM makes it possible to obtain highly accurate re-
sults or exact solutions for differential equations.  

In this study, the non-classical beam model within the 
framework of the Euler–Bernoulli beam theory is developed 
for FG nanobeams. Governing equations and boundary condi-
tions for the free vibration of a nonlocal FG beam were de-
rived via Hamilton principle. The detailed mathematical deri-
vations are presented and numerical investigations performed, 
with emphasis on investigating the effects of several parame-
ters, including size effects, constituent volume fractions, mode 
number, slenderness ratios, and small scale on vibration char-
acteristics of FG nanobeams. Comparisons with the results 
from existing literature are provided and good agreement be-
tween the results of this article and those available in literature 
validate the presented approach. Numerical results are pre-
sented to serve as benchmarks for the application and design 
of nanoelectronic and nanodrive devices, nano-oscillators, and 
nanosensors in which nanobeams act as basic elements. 

 
2. Theory and formulation 

2.1 Power-law functionally graded material (P-FGM) beam 

The material properties of an FGM nanobeam are assumed 
to vary according to the power law on spatial coordinates. The 
coordinate system for an FG nanobeam is shown in Fig. 1.  

According to the rule of mixture, effective material proper-
ties, P (Young’s modulus fE , shear modulus fG , and mass 
density fr ) can be expressed as [22] 

 
f c c m mV VP P P= + ,                           (1) 

 
where mP , cP , mV , and cV  are the material properties and 
the volume fractions of the metal and ceramic constituents are 
related by  

 
1c mV V+ = .                              (2a) 

 
The volume fraction of the ceramic constituent of the beam 
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is assumed to be given by 
 

1( )
2

P
c

zV
h

= + ,                              (2b) 

 
where p  is the non-negative variable parameter (power-law 
exponent) that determines the material distribution through the 
thickness of the beam. Based on Eqs. (1) and (2), the effective 
material properties of the FG nanobeam can be expressed as 
follows: 

 

( ) 1( )
2

p

f c m m
zP z P P P
h
æ ö= - + +ç ÷
è ø

.               (3) 

 
According to this distribution, the bottom surface (z = -h/2) 

of an FG beam is pure metal, whereas its top surface (z = h/2) 
is pure ceramics. 

 
2.2 Kinematic relations 

Using the Euler–Bernoulli beam model, the displacement 
field at any point of the beam can be written as follows: 

 

( ) ( ) ( , ), , ,x
w x tu x z t u x t z

x
¶

= -
¶

,             (4a) 

( , , ) ( , )zu x z t w x t=    (4b) 
 

where t  is time, and u  and w are displacement compo-
nents of the mid-plane along the x and z directions, respec-
tively. By assuming small deformations, the only nonzero 
strain of the Euler–Bernoulli beam theory is obtained as 

 
2

0 0 0 0
xx 2

( , ) ( , ), ,xx xx
u xzk t w t

x
k x

x
e e e ¶ ¶

= =
¶ ¶

= - ,  (5) 

 
where 0

xxe is the extensional strain and 0k  is the bending 
strain. Based on Hamilton’s principle, which states that the 
motion of an elastic structure during time interval 1t < t < 2t  
is such that the time integral of the total dynamics potential is 
extremum [23], we have 

 

0
( ) 0

t

extU T W dtd - + =ò ,                     (6) 

 
where U is strain energy, T is kinetic energy, and extW is 
work done by external forces. The virtual strain energy can be 

calculated as follows: 
 

( ) .ij ij xx xx
v v

U dV dVd s d e s d e= =ò ò              (7) 

 
Substituting Eq. (5) into Eq. (7) yields 
 

0

0

0( ( ) ( ))
L

xxU N M dk xd d e d= -ò ,               (8) 

 
where N , M are the axial force and bending moment, re-
spectively. The stress resultants used in Eq. (8) are defined as 

 

,xx xx
A A

N dA M zdAs s= =ò ò .               (9) 

 
The kinetic energy for Euler-Bernoulli beam is written as 
 

2 2

0

1 ( )(( ) ( ) )
2

L
x z

A

u uT z dAdx
t t

r ¶ ¶
= +

¶ ¶ò ò .        (10) 

 
The virtual kinetic energy is 
 

0
0

2 2 2 2

1 2

( )

( )

L u u w wT I
t t t t

u w u w w wI I dx
t t x t t x t x t x

d dd

d d d

¶ ¶ ¶ ¶é= +ê ¶ ¶ ¶ ¶ë
ù¶ ¶ ¶ ¶ ¶ ¶

- + + ú
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ úû

ò
,  (11) 

 
where 0 1 2( , , )I I I  are the mass moment of inertias, which are 
defined as 

 
2

0 1 2( , , ) ( )(1, , )
A

I I I z z z dAr= ò .                (12) 

 
The first variation of the work done by external forces can 

be written in the form of 
 

( )
0

( ) ( )
L

extW f x u q x w dxd d d= +ò ,           (13) 

 
where ( )f x  and ( )q x  are external axial and transverse load 
distributions along the length of the beam, respectively. By 
Substituting Eqs. (8), (11) and (13) into Eq. (6) and setting the 
coefficients of ud , wd , and w xd ¶ ¶  to zero, the following 
Euler–Lagrange equations can be obtained: 

 
2 3

0 12 2
N u wf I I
x t x t
¶ ¶ ¶

+ = -
¶ ¶ ¶ ¶

                  (14a) 

2 2 3 4

0 1 22 2 2 2 2
M w u wq I I I
x t x t x t

¶ ¶ ¶ ¶
+ = + -

¶ ¶ ¶ ¶ ¶ ¶
.      (14b) 

 
Under the following boundary conditions, 

 
 
Fig. 1. Typical FG beam with Cartesian coordinates. 
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0N =  or 0u =  at 0x =  and x L=          (15a) 
2 3

1 22 2 0M u wI I
x t x t

¶ ¶ ¶
- + =

¶ ¶ ¶ ¶
 or  

0w =  at 0x =  and x L=                  (15b) 

0M =  or 0w
x
¶

=
¶

 at 0x =  and x L= .     (15c) 

 
2.3 Nonlocal elasticity model for FG nanobeam 

The Eringen nonlocal elasticity model [7] holds that stress 
at a reference point x  in a body is considered as a function 
of strains of all points in the near region. This assumption is in 
agreement with experimental observations of atomic theory 
and lattice dynamics in phonon scattering in which for a ho-
mogeneous and isotropic elastic solid. The nonlocal stress-
tensor components ijs at any point x in the body can be ex-
pressed as 

 

( ) ( , ) ( ) ( )ij ijx x x t x d xs a t
W

¢ ¢ ¢= - Wò ,  (16) 

 
where ( )ijt x¢  are components of the classical local stress 
tensor at point x  related to the components of the linear 
strain tensor kle  through the conventional constitutive rela-
tions for a Hookean material, that is, 

 
ij ijkl klt C e= .  (17) 

 
The meaning of Eq. (16) is that nonlocal stress at point x is 

the weighted average of local stress of all points in the 
neighborhood of x , the size of which is related to nonlocal 
kernel ( , )x xa t¢ - . Here, x x¢ -  is the Euclidean distance 
and t  is a constant given by 

 
0e a
l

t =   (18) 

 
that represents the ratio between a characteristic internal 
length, a, (such as lattice parameter, C–C bond length and 
granular distance) and a characteristic external one, l, (e.g. 
crack length, wavelength) through an adjusting constant, 0e , 
dependent on each material. The magnitude of 0e is deter-
mined experimentally or approximated by matching the dis-
persion curves of the plane waves with those of atomic lattice 
dynamics. According to Ref. [7], for a class of physically ad-
missible kernel ( , )x xa t¢ - , it is possible to represent the 
integral constitutive relations given by Eq. (16) in an equiva-
lent differential form as 

 
2

0(1 ( ) ) kl kle a ts- Ñ = ,  (19) 
 

where 2Ñ  is the Laplacian operator. Thus, the scale length 
0e a  takes into account the effect of size on the response of 

nanostructures. For an elastic material in the one-dimensional 

case, nonlocal constitutive relations may be simplified as [7]: 
 

2
2

0 2
( )( ) ( ) ( )xx e a E x

x
ss e¶

- =
¶

,  (20) 

 
where s  and e  are the nonlocal stress and strain, respec-
tively and E is the Young’s modulus. For Euler–Bernoulli 
nonlocal FG beam, Eq. (20) can be written as 

 
2

2
( )xx

xx xxE z
x
s

s m e
¶

- =
¶

,  (21) 

 
where ( 2

0( )e am = ). We can obtain the force-strain by inte-
grating Eq. (21) over the cross-section area of the beam. The 
moment-strain of the nonlocal Euler-Bernoulli FG beam the-
ory can be obtained as follows: 

 
2 2

2 2xx xx
N u wN A B

xx x
m ¶ ¶ ¶

- = -
¶¶ ¶

,  (22) 

2 2

2 2xx xx
M u wM B C

xx x
m ¶ ¶ ¶

- = -
¶¶ ¶

.  (23) 

 
The cross-sectional rigidities are defined as  
 

2( , , ) ( )(1, , )xx xx xx
A

A B C E z z z dA= ò .  (24) 

 
The explicit relation of nonlocal normal force can be de-

rived by substituting for the second derivative of N from Eq. 
(14a) into Eq. (22) as follows: 

 
2 3 4

0 12 2 2 2( )xx xx
u w u w fN A B I I
x xx x t x t

m¶ ¶ ¶ ¶ ¶
= - + - -

¶ ¶¶ ¶ ¶ ¶ ¶
.  (25) 

 
The explicit relation of the nonlocal bending moment can 

be derived by substituting for the second derivative of 
M from Eq. (14b) into Eq. (23) as follows: 

 
2

2

2 3 4

0 1 22 2 2 2( )

xx xx
u wM B C
x x

w u wI I I q
t x t x t

m

¶ ¶
= -

¶ ¶
¶ ¶ ¶

+ + - -
¶ ¶ ¶ ¶ ¶

.  (26) 

 
The nonlocal governing equations of the Euler-Bernoulli 

FG nanobeam in terms of displacement can be derived by 
substituting for N and M from Eqs. (25) and (26), respec-
tively, into Eq. (14) as follows: 

 
2 3 4 5 2

xx xx 0 12 3 2 2 2 3 2

2 3

0 12 2 0

u w u w fA B I I
x x t x t x x

u wI I f
t t x

m
æ ö¶ ¶ ¶ ¶ ¶

- + - -ç ÷ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

¶ ¶
- + + =

¶ ¶ ¶

  (27a) 
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3 4

xx xx3 4

4 5 6 2

0 1 22 2 2 3 2 4 2

2 3 4

0 1 22 2 2 2

( )

0

u wB C
x x

w u w qI I I
t x t x t x x
w u wI I I q

t t x t x

m

¶ ¶
- +

¶ ¶
¶ ¶ ¶ ¶

+ - -
¶ ¶ ¶ ¶ ¶ ¶ ¶
¶ ¶ ¶

- - + + =
¶ ¶ ¶ ¶ ¶

. (27b)  

 
3. Solution method  

3.1 Analytical solution 

In this study, an analytical solution of the governing equa-
tions for free vibration of a simple supported FG nanobeam is 
presented based on the Navier method. The displacement 
functions are expressed as products of undetermined coeffi-
cients and known trigonometric functions to satisfy the gov-
erning equations and conditions at x = 0, L. The displace-
ment fields are assumed to be in the form of the following: 

 

1

( , ) cos( ) ni t
n

n

nu x t U x e
L

wp¥

=

=å ,                (28) 

1

( , ) sin ( ) ni t
n

n

nw x t W x e
L

wp¥

=

=å ,                (29) 

 
where ( nU , nW ) are the unknown Fourier coefficients to be 
determined for each n value. Boundary conditions for simple 
supported beam are as follows: 

 
(0) 0 , ( ) 0uu L

x
¶

= =
¶

   
2 2

2 2(0) ( ) 0 , (0) ( ) 0w ww w L L
x x
¶ ¶

= = = =
¶ ¶

.        (30) 

 
Substituting Eqs. (28) and (29) into Eqs. (27a) and (27b) re-

spectively, leads to Eqs. (31) and (32): 
 

2 2 2
xx 0

3 3 2
xx 1

( ( ) I (1 ( ) ) )

( ( ) I (( ) ( ) ) ) 0

n n

n n

n nA U
L L

n n nB W
L L L

p pm w

p p pm w

- + +

+ - + =
     (31) 

3 3 2
xx 1

4 2 2
xx 0

42 2
2

( ( ) I (( ) ( ) ) )

( ( ) I (1 ( ) )

I (( ) ( ) ) ) 0 .

n n

n

n n

n n nB U
L L L

n nC
L L

n n W
L L

p p pm w

p pm w

p pm w

- +

+ - + +

+ + =

           (32) 

 
By setting the determinant of the coefficient matrix of the 

above equations, a quadratic polynomial for 2
nw  can be ob-

tained. We can find nw by setting this polynomial to zero. 

 
3.2 Differential transformation method  

Several common numerical methods used to solve the ini-
tial-and/or boundary value problems that occur in engineering 

domain, include the finite element method (FEM), Galerkin 
method, and finite difference (FD) method. FEM and FD 
method for higher-order modes require to a significant number 
of grid points. The solution methods for all these points re-
quire considerable CPU time. DTM has several benefits be-
cause it is one of the most useful techniques for solving the 
differential solutions with small calculation errors and ability 
to solve nonlinear equations with boundary conditions. Abdel-
Halim Hassan [24] applied DTM on eigenvalues and normal-
ized eigenfunctions. Wang [25] presented an axial vibration 
analysis of stepped bars utilizing DTM. DTM has been proven 
to be a good computational tool for various engineering prob-
lems. Through the DTM technique, the ordinary and partial 
differential equations can be transformed into algebraic equa-
tions, from which a closed-form series solution can be ob-
tained easily. In this method, certain transformation rules are 
applied to both the governing differential equations of motion 
and boundary conditions of the system to transform them into 
a set of algebraic equations as presented in Table 1. The solu-
tions to these algebraic equations yield the desired results of 
the problem. The basic definitions and application procedure 
of this method can be introduced as follows. The transforma-
tion equation of function ( )f x can be defined as [24]  

 

0

1 ( )( )
!

k

x xk
d f xF k

k dx ==é ùë û ,                     (33) 

 
where ( )f x  is the original function and [ ]F k is the trans-
formed function. The inverse transformation is defined as 

 

( ) 0
0

( )k

k

f x x x F k
¥

=

= - é ùë ûå  .                  (34) 

 
Combining Eqs. (33) and (34) , we can obtain  
 

( ) ( )
0

0

0

( ) ( )
!

kk

x xk
k

d f xx xf x
k dx

¥

=
=

-
=å .  (35) 

 
In actual application, function ( )f x is expressed by a finite 

series and Eq. (35) can be written as  

Table 1. Transformation rules of one-dimensional DTM [24]. 
 

Original function Transformed function 

( ) ( ) ( )f x g x h x= ±  ( ) ( ) ( )F k G k H k= ±  

( ) ( )f x g xl=  ( ) ( )F k G kl=  

( ) ( ) ( )f x g x h x=  
0

( ) ( ) ( )
k

l

F k G k l H l
=

= -å  

( )( )
n

n

d g xf x
dx

=  ( )!( ) ( )
!

k nF k G k n
k
+

= +  

( ) nf x x=  
1

( ) ( )
k n

F k k n
n k n

d
=ì

= - = í ¹î
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( ) ( )
0

0

0

( ) ( )
!

kk

x x

N

k
k

d f xx xf x
k dx =

=

-
=å ,  (36) 

 
which implies that the term in relation Eq. (37) is negligible: 

 

( ) ( )
0

0

1

( ) ( )
!

kk

x xk
k N

d f xx xf x
k dx

¥

=
= +

-
= å .  (37) 

 
Generally, deriving an analytical solution for Eqs. (27a) and 

(27b) can be difficult because of non-homogeneity. In this 
circumstance, the DTM is employed to translate these equa-
tions into a set of ordinary equations. A sinusoidal variation of 

( , )u x t and ( , )w x t with a circular natural frequencyw is as-
sumed and the functions are approximated as follows: 

 
( , ) ( ) i tu x t u x e w= ,                         (38a) 

( , ) ( ) i tw x t w x e w= .                       (38b) 
 
Substituting Eqs. (38a) and (38b) into Eqs. (27a) and (27b), 

the equations of motion can be rewritten as follows: 
 

2 3
2

xx xx 02 3 2

2
2 2 2

1 0 13

2

3

2 0

u w uA B I
x x x

w f wI I u I f
xx x

m w

w w w

æ¶ ¶ ¶
- + - +çç¶ ¶ ¶è

ö¶ ¶ ¶
- + - + =÷÷ ¶¶ ¶ ø

     (39a) 

2 3

4 2

3 4
2 2

xx xx 0 13 4 2 3

2
2 2 2 2

2 0 1 24 2 2

(

) 0 .

u w w uB C I I
x x x x

w q u wI I w I I q
xx x x

m w w

w w w w

¶ ¶ ¶ ¶
- + - -

¶ ¶ ¶ ¶
¶ ¶ ¶ ¶

+ - + + - + =
¶¶ ¶ ¶

  

                  (39b) 
 
According to the basic transformation operations introduced 

in Table 1, the transformed form of governing equations Eqs. 
(27a) and (27b) around 0x = 0 may be obtained as follows: 

 
( )( )
( )( )( )

( )( )( )
( )( )( )

( )

xx

xx

2
0

2
1

1 2 [ 2]

1 2 3 [ 3]

[ ] 1 2 [ 2]

( 1 2 3 [ 3]

1 [ 1]) 0

A k k U k

B k k k W k

I U k k k U k

I k k k W k

k W k

w m

w m

+ + +

- + + + +

- - + + + +

- - + + + +

+ + + =

  (40) 

( )( )( )
( )( )( )( )

( )( )( )
( )

( )( )( )
( )( )( )( )

( )( )

xx

xx

2
0

2
1

2
2

(

1 2 3 [ 3]

1 2 3 4 [ 4]

[ ] 1 2 [ 2]
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,  (41) 

where [ ]U k  and [ ]W k  are the transformed functions of 
u and w , respectively. By employing DTM theorems, the 
simple supported edge condition can be given as 

 
0 0, 2 0, 1 0W W U= = =é ù é ù é ùë û ë û ë û    

0 0 0

[ ] 0 , ( 1) [ ] 0 , [ ] 0 .
k k k

W k k k W k kU k
= = =

¥ ¥ ¥

= - = =å å å  (42)  

 
Using Eqs. (40) and (41) together with the transformed 

boundary condition Eq. (42), we can arrive at the following 
eigenvalue problem: 

 
11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( ) 0
( ) ( ) ( )

A A A
A A A C
A A A

w w w
w w w
w w w

é ù
ê ú =é ùë ûê ú
ê úë û

,             (43a) 

 
where [ ]C corresponds to the missing boundary conditions at 
x = 0. For non-trivial solutions of Eq. (43a), the determinant 
of the coefficient matrix should be equal to zero:  

 
11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( ) 0
( ) ( ) ( )

A A A
A A A
A A A

w w w
w w w
w w w

= .                (43b) 

  
The frequency equation of the FG nanobeam, which is in 

the form of a transcendental eigenvalue equation and in terms 
of free vibration frequency, can be obtained by setting the 
determinant of the coefficient matrix of Eq. (43b) equal to 
zero. The eigen or mode function that describes the instanta-
neous deflected shape of the beam for a given frequency may 
then be obtained by using Eq. (34) as described in detail in 
Malik et al. [26]. Following an identical procedure, we can 
obtain the frequency equations and mode functions for all 
types of boundary conditions of FG nanobeams. The solution 
of Eq. (43b) is simply a polynomial root finding problem. In 
the present study, the Newton–Raphson method is used to 
solve the governing equation of non-dimensional natural fre-
quencies. Solving Eq. (43b), the ith estimated eigenvalue for 
nth iteration ( ( )n

iw w= ) may be obtained. The total number of 
iterations is related to the accuracy of calculations that can be 
determined by using the following equation:  

 
( ) ( 1) .n n
i iw w e-- <   (44) 

 
In this study, e = 0.0001 is considered in the process of de-

termining eigenvalues, which resulted in a four-digit precision 
in the estimated eigenvalues. 

 
4. Numerical results and discussion 

A numerical testing of the procedure and parametric studies 
are performed to establish the validity and usefulness of the 
DTM approach. The effect of FG distribution, nonlocality 
effect, and thickness ratios on the natural frequencies of the 
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FG nanobeam were determined. The FG nanobeam is com-
posed of steel and alumina ( 2 3Al O ), and its properties are 
provided in Table 2. The table shows that the steel material is 
assumed to be isotropic. Although single crystal material was 
dominant in the nanoscale, isotropicness could be achieved in 
the microscale film in polycrystalline configuration [10]. The 
bottom surface of the beam is pure steel, whereas its top sur-
face is pure alumina. The beam geometry has the following 
dimensions: L (length) = 10,000 nm, b (width) = 1000 nm, 
and h (thickness) = 100 nm. The relationship described in Eq. 
(45) is performed to calculate the non-dimensional natural 
frequencies: 

 
2 /L A EIw w r= , (45) 

 
where 3 / 12I bh=  is the moment of inertia of the cross-
section of the beam.  

Table 3 shows the convergence study of DTM for the first 
three frequencies of the nanobeam. After a certain number of 
iterations, eigenvalues converged to a value with good preci-
sion. The results in Table 3 clearly show the high convergence 
rate of the method, and it may be deduced that k = 35 led to 
accurate results. The accuracy of the natural frequencies can 
be predicted by the present method by comparing the results 
of the present study (both analytical and DTM-based solu-
tions) and the results presented by Eltaher et al. [19] that were 

obtained through FEM for FG nanobeams with different FG 
distribution indices, length-to-thickness ratios, and nonlocal 
parameters as presented in Table 4.  

Table 2. Material properties of FGM constituents [15]. 
 

Properties Steel Alumina 2 3( )Al O  

E  210 (Gpa) 390 (Gpa) 

r  7800 ( 3/Kg m ) 3960 ( 3/Kg m ) 

 
Table 3. Convergence study for the first three natural frequencies of 
the simple supported FG nanobeam ( 12/ 50 1*10,L h m -= = ). 
 

p = 5 
Method k  

1w  2w  3w  

15 5.6690 - - 

17 5.6690 20.4365 - 

19 5.6690 20.0842 - 

21 5.6690 20.1195 - 

23 5.6690 20.1161 - 

25 5.6690 20.1163 - 

27 5.6690 20.1163 38.9367 

29 5.6690 20.1163 38.8627 

31 5.6690 20.1163 38.8706 

33 5.6690 20.1163 38.8698 

35 5.6690 20.1163 38.8699 

37 5.6690 20.1163 38.8699 

Present DTM 

39 5.6690 20.1163 38.8699 

Present  
analytical  5.6689 20.1158 38.8699 

 
 

Table 4. Comparison of non-dimensional fundamental natural frequen-
cies ( 2

1 1 ρA / EILw w= ) of simple supported FG nanobeams (b = 1000 
nm, L = 10,000 nm, h = 100 nm). 
 

p = 0.1 

Present L/h 12*10m -  FEM eltaher et al. 
[19] DTM Analytical 

0 9.2129 9.1887 9.1887 

1 8.7879 8.7663 8.7663 

2 8.4166 8.3972 8.3972 

3 8.0887 8.0712 8.0712 

4 7.7964 7.7804 7.7804 

20 

5 7.5336 7.5189 7.5189 

0 9.2045 9.1968 9.1968 

1 8.7815 8.7740 8.7740 

2 8.4116 8.4047 8.4047 

3 8.0848 8.0783 8.0783 

4 7.7934 7.7873 7.7873 

50 

5 7.5313 7.5256 7.5256 

0 9.2038 9.1980 9.1980 

1 8.7806 8.7752 8.7752 

2 8.4109 8.4057 8.4057 

3 8.0842 8.0793 8.0793 

4 7.7929 7.7883 7.7882 

100 

5 7.5310 7.5265 7.5265 

p = 5 

Present L/h 12*10m -  FEM eltaher et al. 
[19] DTM Analytical 

0 6.0025 5.9373 5.9370 

1 5.7256 5.6643 5.6641 

2 5.4837 5.4258 5.4256 

3 5.2702 5.2152 5.2149 

4 5.0797 5.0273 5.0271 

20 

5 4.9086 4.8583 4.8581 

0 5.9990 5.9421 5.9421 

1 5.7218 5.6690 5.6689 

2 5.4808 5.4303 5.4303 

3 5.2679 5.2195 5.2194 

4 5.0780 5.0314 5.0314 

50 

5 4.9072 4.8623 4.8623 

0 5.9970 5.9428 5.9428 

1 5.7212 5.6696 5.6696 

2 5.4803 5.4309 5.4309 

3 5.2675 5.2201 5.2201 

4 5.0777 5.0320 5.0320 

100 

5 4.9071 4.8629 4.8629 
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The excellent agreement between the presented DTM re-
sults and the analytical based solution as well as the results 
provided by FEM [19] can be noticed clearly. Thus, the pro-
posed method of solution is validated. The classical isotropic 
beam theory is rendered when both material gradation index 
and nonlocal parameter vanish.  

The effects of slenderness ratios on dimensionless fre-
quency are presented in Table 4. When the slenderness ratio of 
the FG nanobeam decreased (thickness reduces), the frequen-
cies increased. Fixing the nonlocal parameter and varying the 
material distribution parameter resulted in a decrease in  fun-
damental frequencies, which can be attributed to the increase 
in the ceramics phase constituent as well as stiffness of the 
beam. However, increasing the nonlocal parameter caused a 
decrease in the fundamental frequency, for a constant material 
gradation index. For the case on hand, changing the nonlocal 
parameter from 0 to 5 resulted in a decrease in fundamental 
frequency parameter of about 22% when L/h = 20. This result 
indicated that the effect of the nonlocal small scale parameter 
softened the nanobeam.  

The qualitative effects of the nonlocal parameter and mate-
rial index on the first two dimensionless frequencies of the 
simple supported FG nanobeams are shown in Fig. 2. The first 

and second dimensionless frequencies of the simple supported 
FG nanobeam decreased as the material index parameter in-
creased from 0 to 10. Increasing the nonlocal parameter from 
0 to 5 also resulted in a decrease in the fundamental frequency 
parameters of the FG nanobeam. Fig. 3 demonstrates the 
variations in mode number with changes in the nonlocality 
parameter at constant slenderness ratios (L/h = 50) for differ-
ent material distributions. The influence of nonlocality pa-
rameter on the non-dimensional frequency increased for 
higher mode numbers. The influence of nonlocality parameter 
was also unaffected by the change in material distribution. 

 
5. Conclusions 

In this paper, a semi-analytical DTM is employed in the vi-
bration analysis of size-dependent FG nanobeams. This 
method provides a semi-analytical solution that considers the 
influence of various parameters, such as small scale effects, 
volume fraction index, mode number, and thickness ratio on 
the normalized natural frequencies of the FG nanobeams. The 
vibration behavior of FG nanobeams based on Euler–
Bernoulli beam theory and Eringen nonlocal constitutive 
equations is investigated. A Navier-based analytical model is 
also employed to solve the governing equations derived 
through Hamilton’s principle. The good agreement between 
the results of this article and those available in literature vali-
date the presented approach. Numerical results demonstrate 

 
(a) 

 

 
(b) 

 
Fig. 2. Variations in the (a) first and; (b) second dimensionless fre-
quencies of the simple supported FG nanobeam with material grada-
tion for various nonlocality parameters (L/h = 100). 

 
 

 
 
Fig. 3. Effects of nonlocality parameters on the dimensionless fre-
quency of FG nanobeams for various mode numbers and with different 
material gradation indices ( p = 1, 5) (L/h = 50). 
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that the small scale effects play an important role on the vibra-
tional behavior of the FG nanobeam. Thus, the nonlocality 
effects should be reflected in the study of dynamic behavior of 
nanostructures. The vibrational characteristics of FG nano-
beams can also be enhanced through the selection of appropri-
ate values of the power-law indices. Thus, it can be concluded 
that the applied DTM approach provides accurate results and 
can be easily used for vibration analysis of FG nanobeams. 
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