
 
 

 
Journal of Mechanical Science and Technology 29 (3) (2015) 973~979 

www.springerlink.com/content/1738-494x 
DOI 10.1007/s12206-015-0211-1 

 

 

 

 
Crane sway reduction using Coriolis force produced by radial spring and damper† 

La Duc Viet* 
Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Hanoi, Vietnam   

 
(Manuscript Received June 19, 2014; Revised November 10, 2014; Accepted November 17, 2014)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
This study considers the problem of crane payload sway reduction by spring and damper installed in radial direction between the pay-

load and the cable. Under sway motion, the centrifugal force causes the radial motion, which in turn produces the Coriolis force that re-
duces sway motion. In free vibration, the non-dimensional analytical form of the optimal spring and damper coefficients can be obtained. 
Analytical solution shows that the frequency of the radial motion should be twice that of the sway motion. The proposed radial spring and 
damper exhibits good performance under large sway motions. Numerical simulation of a 2D crane validates the effectiveness of the pro-
posed approach.  
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1. Introduction 

The crane payload suspended by cables is highly flexible. 
External disturbances, such as wind or the motion of support 
units (e.g., bridge, trolley, or tower), can cause residual sway 
oscillation. Over the past two decades, many studies have 
considered the crane anti-sway control problem. The control 
strategies proposed in the literature often involve the applica-
tion of control command to various parts of the crane, such as 
the cables [1-3], the trolley [4-9], the boom [10, 11], or the 
active mass damper [12]. The control algorithm can be based 
on open- or closed-loop techniques. The closed-loop (feed-
back) techniques use the crane measurements (e.g., deflection, 
position, etc.) to generate the control command. The feedback 
control provides disturbance rejection. However, accurate 
measurements of payload deflection and other system states 
are not easy to obtain, because the sensors can be expensive as 
well as difficult to mount, calibrate, and maintain. The feed-
back control can also cause unexpected motions that could 
prevent the human operator from driving the crane smoothly. 
In fact, the human operator is also a feedback controller, and 
competing feedback controllers can degrade performance [13]. 
Meanwhile, a typical open-loop technique, that is, input shap-
ing, modifies the desired velocity command before being is-
sued to the crane motors [14-16]. The input shaping tech-
niques are easy to apply and do not require sensors. However, 
they cannot handle external disturbances or initial conditions. 

Although many studies on crane open- and closed- loop con-
trol can be found in the references of the aforementioned pa-
pers, the current paper proposes a more conventional damping 
system. 

The passive damper is the most popular and simple device 
for vibration control. However, limited studies are available 
on the application of the passive damper to crane control. The 
main reason is that the installation of a passive damper into a 
pendulum with a single cable is hard to imagine. The current 
paper is motivated by the fact that the radial motion of a mass 
can produce the Coriolis damping to reduce the sway motion 
of a pendulum [17-19]. However, this phenomenon only ap-
pears in large nonlinear vibrations. Therefore, if the nonlinear-
ity of the pendulum is considered, the opportunity is opened 
for converting the radial movements between the cables and 
the payload into the energy dissipation in the dampers. The 
proposed damping system in the present paper is purely pas-
sive and it cannot replace the active control schemes (if any). 
Instead, because the passive devices do not rely on sensors 
and external energy, the proposed damping system is expected 
to improve any active control scheme acting on the crane. 
Moreover, the proposed system also has other advantages: has 
good effect in large vibration, minimizes the crane modifica-
tion, and usable for spherical pendulum. 

The rest of this paper is organized as follows. The full non-
linear equation is derived in Sec. 2. In Sec. 3, the second order 
approximation combined with effective damping approach is 
used to find the analytical optimal parameters in free vibration. 
In Sec. 4, the damper effectiveness is demonstrated by per-
forming numerical simulations of the crane payload sway 
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caused by the motions of support units and by the initial con-
ditions. 

 
2. Problem formulation 

The concept of the radial spring-damper for reducing crane 
sway motion is shown in Fig. 1.  

When the payload is in sway motion, the centrifugal force 
acting on the payload changes with time and the payload is in 
radial motion. The radial motion in turn produces the Coriolis 
damping that acts on the sway motion of the payload and re-
duces it. This approach is effective for large vibrations, be-
cause the Coriolis force is a second order term. This proposal 
has two more advantages: the crane modification is minimal, 
and the extension in the case of spherical pendulum of 3D 
crane is visible. The approach based on the radial spring, how-
ever, still has a disadvantage as there are strict specifications 
on the length of the cable. This is an obvious trade-off conse-
quence because a small radial motion is sacrificed to reduce a 
larger sway motion. As shown in Fig. 1, because the spring 
and damper are simple connections between the payload and 
the cable, they can be easily removed in the case of strict re-
quirements of radial movement. Moreover, the radial move-
ment be also reduced by increasing the damping. 

To illustrate the nature of the radial spring and damper, 
some following simplified assumptions have been made: 

- Only the 2D crane is considered, i.e. there are two com-
mands: the trolley motion and hoisting commands.  

- If the spring and damper weights are ignored in compari-
son with the payload weight, the single pendulum can be used 
to model the system. When the spring and damper weights are 
taken into account, the double pendulum model should also be 
considered.  

- When that cable’s stiffness is large enough in comparison 
with the spring stiffness, the cable deformation can be ignored. 
In future studies, the effect of the cable’s elasticity should be 
taken into account, especially for a very heavy payload. 

With those three simplifications, to write the motion equa-

tions, the symbols are shown in Fig. 2, in which, m is the pay-
load weight, k and c respectively are the spring and damper 
coefficients, l is the distances between the trolley and the pay-
load in the static condition, u is the payload radial motion 
measured from static position, and q is the sway angle. 

On the coordinate system in Fig. 2, with the horizontal posi-
tion of the trolley as x, the position of the payload (xP, yP) is 
obtained as 

 
( ) ( )sin , cos .p Px x l u y l uq q= + + = +  (1) 

 
The kinetic energy T, the potential energy V, and the energy 

dissipation function F are 
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where g is the acceleration of gravity. The system has 2 de-
grees of freedom: q and u. The Lagrange equations are given 
by 
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Using Eqs. (1), (2) in Eq. (3) gives: 
 
( ) ( )

( )
( ) ( )2

2 cos sin 0

sin

1 cos 0 .

l u x l u g

mx m l u ku cu

mg m l u

q q q q

q

q q

+ + + + + =

+ + + +

+ - - + =

& & &&& &&

&&&& && &

&

 (4) 

 
3. Optimal parameter for free vibration 

This section presents the analytical forms of the spring and 
damper coefficients in the case of free vibration (x = 0, l = 
const). To write the equations in non-dimensional forms, some 
parameters are introduced in Table 1. 

 
 
Fig. 1. Concept of radial spring-damper.  

 

 
 
Fig. 2. Symbol used in system modeling. 
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The Eq. (4) becomes: 
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in which the dot operator denotes the differentiation with re-
spect to the normalized time t. The first term in the first equa-
tion of Eq. (5) is the Coriolis damping to reduce the sway 
motion. This Coriolis damping is proportional to the radial 
velocity of the payload, which means it only shows effect 
under large vibration. To obtain the analytical solution, more 
simplifications are made: 

- The trigonometric functions are approximated as: 
 

2sin ; cos 1 / 2 .q q q q» » -  
 
- The normalized displacement un is small in comparison 

with unity that 1+un ≈ 1 
The Eq. (5) is simplified as: 
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Next, the Coriolis term is replaced by the effective damp-

ing: 
 

»n eu q z q& &&  (7) 
 

in which the effective damping ze is found by minimizing the 
following error: 
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Setting the derivative of Eq. (8) with respect to ze equal to 

zero gives: 
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Using Eq. (7) in Eq. (6) gives the following linear differen-
tial equation: 

 
=&p Ap  (10) 

 
where p is the expanded state vector and A is the system ma-
trix determined by: 
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where 02´5, 05´2 denote the zero matrices with appropriate 
dimensions. The effective damping Eq. (9) is rewritten as: 

 
2
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¥ ¥
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In brief, the simplified equations contain Eqs. (10) and (12). 

The differential Eq. (10) depends on the effective damping ze 
while this damping in its turn depends on the state vector as 
shown in Eq. (12). 

There are many ways to optimize the system based on the 
chosen criteria. In the present paper, the conditions of double 
poles [20, 21] are considered as the optimal conditions to ob-
tain a closed form of the optimal parameters. Because the 
parameters a and z only appear in the matrix A2, the charac-
teristic polynomial of A2 is determined by: 

 
( ) ( )( )( )2

2 2 22 4 4 2 .A e eP s s s s s sz z z a= + + + + +  (13) 

 
The quintic polynomial Eq. (13) has one real root and two 

pairs of roots of complex conjugate. The repeated roots condi-
tions give: 

 
2, 2 .ea z z= =  (14) 

 
Substitute Eq. (14) into Eq. (11) and we have the linear sys-

tem depending on the effective damping ze. The last step is to 
calculate the effective damping from Eq. (12). It is well 
known that in the linear system Eq. (10), the infinite integrals 
of the quadratic form in Eq. (12) can be obtained by solving 
the Lyapunov matrix equations. A general infinite integral of 
the quadratic form given: 

 

0

¥

= ò TJ dtp Qp  (15) 

Table 1. Symbols used to write the non-dimensional equations. 
 

Symbol Description 

q0 Initial angle of free vibration 

=s g lw  Natural frequency of sway motion 

= stt w  Non-dimensional time with time scale 1-
sw  

/= sk ma w  Ratio between natural frequencies 

( )2= sc mz w  Damping ratio of damper 

=nu u l  Non-dimensional form of radial movement 
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where Q is a symmetric positive definite matrix. Consider the 
matrix P being the solution of the Lyapunov matrix equation 
as: 

 
.T+ + =PA A P Q 0  (16) 

 
Substituting Eq. (16) into the integral Eq. (15) and using the 

state space Eq. (10) give: 
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in which p0 is a vector containing the initial conditions and 
p(¥) = 0 with the assumption that the system is asymptotically 
stable due to the presence of damping. 

Using Eqs. (16) and (17) in Eq. (12), after some manipula-
tions, we obtain: 
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The Eq. (18) is a cubic equation of ze

2. In brief, the optimal 
parameters is obtained by Eqs. (14) and (18). The plot of ze 
versus q0 is shown in Fig. 3. 

The effective damping ze is proportional to the initial angle 
q0. This result is from the inherent nonlinearity of the system. 
In practice, a certain value of q0 should be predefined to obtain 
the optimal parameters. 

Formula Eq. (18) is derived for the free vibration case. In 
other complex operating condition of the crane, it is not easy 
to develop a clear optimal formula. In the general case, we can 
modify the Formula Eq. (18) by considering q0 as the maxi-
mum sway angle when the crane operates. 

4. Numerical demonstration 

Numerical simulation is performed by solving the full non-
linear Eq. (4). A complex crane motion is simulated. The trol-
ley motion and cable hoisting are combined to move the pay-
load following the predefined trajectory shown in Fig. 4.  

The payload is picked up from a point 25 m below the trol-
ley and is raised 16 m with a maximum hoisting velocity of 2 
m/s while the trolley moves 48 m simultaneously with a max-
imum velocity of 4 m/s. The commanded trolley and hoist 
accelerations are shown in Fig. 5. 

To emphasize the effectiveness of the radial spring and 
damper in reducing free vibration, the initial payload angle is 
taken into account. The large sway motion occurs when the 
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Fig. 3. Effective damping versus initial angle. 
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Fig. 5. Commanded accelerations. 
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Fig. 6. Sway angle of the cable without spring and damper with the 
initial angle of 20o. 
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cable length is short; thus, the spring and damper coefficients 
are chosen for the minimum cable length, that is, the cable 
length l in Table 1 is chosen of 9 m. The sway angle of the 
cable without spring and damper in the case of initial angle of 
20° is shown in Fig. 6. 

In Fig. 6, the maximum angle is about 60°. Therefore, the 
damper is designed for the large vibration angle up to 60o, i.e 
the angle q0 is chosen of p/3 in Eq. (18). The results of the 
optimal parameters are summarized in Table 2. 

The payload vertical motions are shown in Figs. 7(a), 8(a), 
9(a) and 10(a) for several cases of initial angle. The respective 
payload horizontal motions are shown in Figs. 7(b), 8(b), 9(b) 
and 10(b). Two following indices are compared in Table 3 

0 0

1 1;= - = -ò ò
s sT T

h P r v P r
s s

I x x dt I y y dt
T T

 

 
where Ts = 40s is the simulation time, xr and yr respectively 
are the horizontal and vertical displacement references as 
shown in Fig. 4. 

The results in the Figs. 7-10 as well as Table 3 clearly show 
that the proposed radial spring and damper can reduce both 
the vertical and horizontal errors of the payload movement. 

Table 2. Optimal parameters for angle of p/3. 
 

Parameter Value 

Optimal frequency ratio a 2 

Optimal damping ratio z 0.3296 

Optimal spring stiffness k 2 0.4444= =k mg l mga  

Optimal damper coefficient c 2 0.2197= =c m g l m gz  
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Fig. 7. (a) Payload vertical motion with the initial angle of 15°; (b) 
payload horizontal motion with the initial angle of 15o. 

 

Table 3. Comparisons of error indices. 
 

Initial angle Index Without damper With damper Reduction 

-15o Ih (m) 3.418 2.201 35.6% 

-15o Iv (m) 0.426 0.276 35.1% 

15o Ih (m) 4.179 2.336 44.1% 

15o Iv (m) 0.656 0.348 47.0% 

-20o Ih (m) 4.638 2.600 43.9% 

-20o Iv (m) 0.791 0.424 46.4% 

20o Ih (m) 5.424 2.769 49.0% 

20o Iv (m) 1.105 0.505 54.3% 
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Fig. 8. (a) Payload vertical motion with the initial angle of -15o; (b) 
payload horizontal motion with the initial angle of -15o. 
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5. Conclusion 

The main objective of this paper is to propose an approach 
for reducing the crane payload sway motion. The spring and 
damper are proposed to be installed in the radial direction of 
the pendulum between the payload and the crane cable. The 
Coriolis damping is the key factor in the sway motion reduc-
tion. The proposed approach has a number of advantages. 
First, it has a good effect in large vibration that can be consid-
ered as a safety device to limit the large sway motion. Second, 
it minimizes crane modification. Third, it can be used for the 
spherical pendulum of 3D crane. The analytical optimal pa-
rameters are obtained in the case of free vibration. Numerical 
simulation is performed to verify the conclusions.  
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