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Abstract 
 
We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the 

submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experi-
ments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition 
rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO2 nanoparticles coated 
on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression 
equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate 
were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the 
cost function.  

 
Keywords: Imperialist competitive algorithm; Optimization; Submerged arc welding; Design of experiments   
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

The desire to increase productivity through continuous im-
provement of quality of weldments provides an ongoing in-
centive for process, equipment, and consumable development. 
One such development is the application of TiO2 nanoparticles 
in the submerged arc welding (SAW) process. One weld pro-
ductivity index as affected by input welding parameters in the 
SAW process is the weld deposition rate, which is defined as 
the rate that weld metal can be deposited by a given welding 
wire. In hard-facing processes, the weld deposition rate plays 
an important role in determining the productivity of weld-
ments. This paper reports the optimization of deposition rate 
as affected by the combined effect of TiO2 nanoparticles and 
input welding parameters such as the arc voltage, welding 
current, welding speed, and contact tip to plate distance in the 
SAW process using imperialist competitive algorithm (ICA) 
which has not been reported so far.  

The idea was to introduce the TiO2 nanoparticles directly 
into the weld puddle, which was not possible to accomplish 
due to its size and cost. Therefore, we decided to disperse the 
nanoparticles in ethanol and then apply the obtained paste on 

the low-carbon steel plates in different thicknesses as per the 
design matrix before the actual welding operation. To collect 
the experimental data to be used for modeling the process, 32 
welding runs were performed by using a five-level five-factor 
rotatable central composite design of experiments.  

In this research work input variables were changed in five 
levels to extend the searching domain in order to increase the 
chance of finding the best solutions and optimization per-
formed by novel algorithm, the imperialist competitive algo-
rithm (ICA). To validate the output of the proposed algorithm 
in actual welding conditions, confirmation tests were carried 
out. 

 
2. Review of literature 

It is generally well established that nanotechnology is the 
research field which will lead to the next generation of break-
throughs in the science and engineering sectors. Macwan et al. 
[1] defined nanomaterials as particles having diameters rang-
ing from 1 to 100 nm. Chen et al. [2] reported that small size 
and large surface and volume effects of nanoparticles offer 
unique mechanical, electrical, magnetic, optical, and physio-
chemical properties which make them suitable candidates for 
different applications in defense, electronic, aerospace, and 
chemical industries. 
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A search of science direct [3] from 2000 to the present con-
firmed that although many investigations have been reported 
on the effect of different input parameters on weld bead pene-
tration in arc welding processes [4], few have been conducted 
on the application of TiO2 nanoparticles in arc welding proc-
esses [5-8]. Fattahi et al. [7] reported the improvement of im-
pact toughness of the AWS E6010 weld metal with addition 
of TiO2 nanoparticles to the electrode coating. Pal and Maity 
[8] investigated the effect of nanosized TiO2 particles on me-
chanical properties of the AWS E11018M-type electrode and 
concluded that the charpy impact property was improved due 
to variation of Ti content of the weld deposit. Aghakhani et al. 
[5] investigated the effect of TiO2 nanoparticles on the weld 
bead width in submerged arc welding process and concluded 
that addition of TiO2 nanoparticles initially increased the bead 
width and decreased it subsequently. Aghakhani et al. [6] re-
ported that weld bead penetration was affected by the addition 
of TiO2 nanoparticles to the weld pool.  

To achieve the required weld bead, the input variables 
should be selected in appropriate combination, and proper 
selection of these variables needs to have adequate informa-
tion about the effects of different input variables on weld bead 
characteristic. Design and execution of experiment is useful 
for obtaining the required information about the welding input 
variable main effects and their interaction effects on the re-
sponse parameter. Many efforts have been made to study how 
welding parameters affected weld bead characteristics. Guna-
raj and Murugan [9] utilized response surface methodology 
(RSM) in submerged arc welding of pipes for generating 
welding data and subsequently developed a mathematical 
model to predict process responses. In the automatic SAW 
process, input welding variables must be adjusted on the weld-
ing system using mathematical equations to achieve the de-
sired quality characteristics. The mathematical model not only 
helps us in better understanding of the welding process, but 
also in optimizing the weld bead response for obtaining a high 
quality welded joint. In addition, several studies have been 
conducted on optimization of the SAW process. Patnaik et al. 
[10] utilized genetic algorithm (GA) for parameter optimiza-
tion of SAW in the hard-facing process using weighting 
method. The relationship between control factors and per-
formance outputs is established by means of nonlinear regres-
sion analysis. Tarng et al. [11] utilized the grey-based Taguchi 
methods for optimization of SAW process parameters in hard-
facing and obtained optimum values of input variables to 
achieve maximum deposition rate and other weld bead charac-
teristics. 

 
3. Submerged arc welding 

SAW is an arc welding process widely used in heavy fabri-
cation industries, especially in semiautomatic or automatic 
form for fabrication of water and petrochemical pipelines, gas 
cylinders, ship building and repair, and resurfacing (hard-
facing) applications in the mining, mineral processing, and 

power industries due to its high weld quality, reliability, deep 
penetration, high deposition rate, and a smooth bead [12, 13]. 
It is a process that melts and joins metals by heating them with 
an arc established between a consumable wire electrode and 
the metals, with the arc being shielded by a molten slag and 
granular flux [12]. The weld pool is protected from air con-
tamination by continuous stream of a flux that is supplied 
from a hopper traveling with the torch. 

 
4. Imperialist competitive algorithm 

The optimization problem can be easily described as to find 
an argument x whose relevant cost f(x) is optimum, and it has 
been extensively used in many different situations such as 
industrial planning, resource allocation, scheduling, pattern 
recognition and so on. The imperialist competitive algorithm 
(ICA) is an algorithm introduced for the first time by Atash-
paz-Gargari and Lucas [14] and used for optimizing inspired 
by imperialistic competition and has a considerable relevance 
to several engineering applications. Like other evolutionary 
ones, the proposed algorithm starts with an initial population. 
Population individuals called “country” are in two types, 
colonies and imperialists, that all together form some empires. 
Imperialistic competition among these empires forms the basis 
of the proposed evolutionary algorithm. During this competi-
tion, weak empires collapse and powerful ones take posses-
sion of their colonies. Imperialistic competition hopefully 
converges to a state in which there exists only one empire and 
its colonies are in the same position and have the same cost as 
the imperialist [14]. Using this algorithm, one can find the 
optimum condition of most functions. In this connection, the 
proposed model based on regression analysis is then embed-
ded into the ICA to optimize the objective function. The goal 
of optimization algorithms is to find an optimal solution in 
terms of the variables of the problem. We form an array of 
variable values to be optimized that is called “country”. In an 
NVar-dimensional optimization problem, a country is a 1×NVar 
array. This array is defined by: 

 
var1 2 3[ , , ,..., ] .Ncountry p p p p=  (1) 

 
The variable values in the country are represented as float-

ing point numbers. The cost of a country is found by evaluat-
ing the cost function f at the variables 

var1 2 3( , , ,..., )Np p p p  
[14]. Then 

 

var1 2 3( ) ( , , ,..., ) .Ncost f country f p p p p= =  (2) 

 
The flowchart of the ICA algorithm is shown in Fig. 1. To 

start the optimization algorithm we generate the initial popula-
tion of size Npop. We select Nimp of the most powerful countries 
to form the empires. The remaining Ncol of the population will 
be the colonies, each of which belongs to an empire. Then we 
have two types of countries: imperialist and colony. To form 



 M. R. Ghaderi et al. / Journal of Mechanical Science and Technology 29 (1) (2015) 357~364 359 
 

  

the initial empires, we divide the colonies among imperialists 
based on their power. That is, the initial number of colonies of 
an empire should be directly proportionate to its power.  

To divide the colonies among imperialists proportionally, 
we define the normalized cost of an imperialist by Cn=cn-
max{ci}, where cn is the cost of nth imperialist and Cn is its 
normalized cost. Having the normalized cost of all imperialists, 
the normalized power of each imperialist is defined by [14]:  

 

1

/ .
impN

n n i
i

p C C
=

= å  (3)                       

 
From another point of view, the normalized power of an 

imperialist is the portion of colonies that should be possessed 
by that imperialist. Then the initial number of colonies of an 
empire will be  

 
{ }. . .n n colN C round p N=  (4)   

 
where N.C.n , is the initial number of colonies of nth empire 
and Ncol is the number of all colonies. To divide the colonies, 
for each imperialist we randomly choose N.C.n of the colonies 
and give them to it. These colonies along with the imperialist 

will form the nth empire. A schematic representation of the 
initial population of each empire can be observed in Fig. 2. As 
shown, bigger (powerful) empires have a greater number of 
colonies, while smaller (weaker) ones have fewer [14]. As 
mentioned, imperialist countries started to improve their colo-
nies. We have modeled this fact by moving all the colonies 
toward the imperialist. This movement is shown in Fig. 3, 
where the colony moves toward the imperialist by x units. The 
new position of colony is shown in a darker color. The direc-
tion of the movement is the vector from colony toward impe-
rialist. In this figure x is a random variable with uniform or 
any proper profile [14]. Then for x we have 
 

(0, )x U db ´:  (5)                         
 
where β is a number greater than 1 and d is the distance be-
tween colony and imperialist. A,β > 1 causes the colonies to 
get closer to the imperialist state from both sides. 

To search different points around the imperialist we added a 
random amount of deviation to the direction of movement. Fig. 
4 shows the new direction. In this figure, θ is a random num-
ber with uniform or any proper profile. Then 

 
( , )Uq g g-:  (6)               

 
where γ is a parameter that adjusts the deviation from the 
original direction. Nevertheless, the values of β and γ are arbi-
trary; in most of our implementation a value of about 2 for β 
and about π/4 (Rad) for γ have resulted in good convergence 

 
 
Fig. 1. The procedure of the proposed algorithm [14]. 

 
 

 
 
Fig. 2. Generating the initial empires: the more colonies an imperialist 
possess, the bigger its relevant ★ mark [14]. 

 

 
 
Fig. 3. Moving colonies toward their relevant imperialists [14]. 
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of countries to the global minimum. 
 
5. Genetic algorithm 

Genetic algorithms have their philosophical basis in Dar-
win’s natural evolution process theory of survival. These algo-
rithms encode a possible solution to a specific problem on a 
simple chromosome string such as a data structure and apply 
specified operators to these structures to preserve important 
information, and to produce a new population to generate 
strings, which have a higher function value. The basic opera-
tions which affect the binary string’s makeup in natural evolu-
tion are a selection, a crossover of genetic information be-
tween reproducing parents and a mutation of genetic informa-
tion. 

The GA works according to selection rules as defined by 
the laws of evolutionary genetics. The model seeks the ‘‘fit-
test’’ model to the observed values. In the deposition rate 
value of the welded joint estimation, it is the model whose 
parameters, when input to the source (i.e., welding current, arc 
voltage, travel speed, contact tip to plate distance, thickness of 
TiO2 nano-particle), produce an estimation of the reinforce-
ment area, which is best matched with those measured in the 
experiments. The fitness function, f(x), takes the following 
form: f(x) = - Deposition rate. Inside the experimental space, 
the GA chose, randomly, the initial welding setup, i.e., the 
parameter values of the first experiment. After it was done, its 
response characteristics were measured and fed into the GAs. 
Then, based on the previous information, the algorithm chose 
another setup, which was done and its data again fed into the 
algorithm. The process continued until the optimum was 
found and the objective function reached its minimum, which 
is equal with reached the deposition rate into its maximum.  

 
6. Tools and techniques 

6.1 Response surface methodology  

Response surface methodology (RSM) is a collection of 
mathematical and statistical techniques for modeling and 
analysis of problems in which a desired response is influenced 
by several input variables [15]. The RSM is a sequential proc-
ess performed in the following manner [9]. First, a series of 
experiments are performed as per designed matrix; subse-

quently, responses are measured, and after that a mathematical 
model of the response surface based on experimental data is 
developed. Finally, the main effects of input variables and 
their interactions are presented through two- and three-
dimensional plots. The goal of RSM is to find an approximat-
ing function to predict a future response [9]. The main effect 
and second-order effects will generally capture the essence of 
the response function since third-order and higher effects are 
usually unimportant. The second-order response function for k 
quantitative factor is given as [16]: 

 
1 11 12 1( ,..., , ,..., , ,..., )k kk k kY f X X X X X X X-=  (7) 

 
where X1, X2, … , Xk are the independent input variables and 
Y is the response. 

 
6.2 Central composite rotatable design (CCRD) 

The first requirement for RSM involves the design of ex-
periments to achieve adequate and reliable measurement of 
the response of interest. The experimental design techniques 
commonly used for process analysis and modeling are the full 
factorial, partial factorial and central composite rotatable de-
signs. A full factorial design requires at least three levels per 
variable to estimate the coefficients of the quadratic terms in 
the response model [17]. A partial factorial design requires 
fewer experiments than the full factorial design. However, the 
former is particularly useful if certain variables are already 
known to show no interaction. An effective alternative to fac-
torial design is central composite rotatable design (CCRD), 
developed by Box and Wilson [17] and improved upon by 
Box and Hunter [18]. CCRD gives almost as much informa-
tion as a three-level factorial, requires many fewer tests than 
the full factorial design and has been shown to be sufficient to 
describe the majority of steady-state process responses. Hence 
we decided to use CCRD to design the experiments. When the 
response data are obtained from the test work, a regression 
analysis is carried out to determine the coefficients of the re-
sponse model (β0,β1, β2, …, βk), their standard errors and sig-
nificance [19]. the response model is 

 
2

0 1 1 11 1
2

12 1 2 1, 1

... ...

...
k k

kk k k k k k

Y X X X

X X X X X

b b b b

b b b - -

= + + + + + +

+ + +
 (8) 

 
where β0 is the constant coefficient, βk is the linear effect of 
the kth factor coefficients, βkk represents the quadratic effect 
of the kth factor and βk-1,k represents the interaction effect, 
between (k-1)th and kth factors under consideration, and Y is 
response. 

 
6.3 Experimental procedure 

Experiments are performed today in many manufacturing 
organizations to increase our understanding and knowledge of 
various manufacturing processes [20]. In this study experi-

 
 
Fig. 4. Moving colonies toward their relevant Imperialist in a randomly 
deviated direction [14]. 
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ments were performed based on rotatable central composite 
design (RCCD) having five factors and five levels each. The 
welding current (I), arc voltage (V), welding speed (S), con-
tact tip to plate distance (C), and thickness of TiO2 nano parti-
cles (F) were considered as input variables. The input vari-
ables and their levels are given in Table 1.  

Test pieces of size 150 mm ×50 mm ×15 mm were cut from 
steel plates; surfaces were cleaned and coated with layers of 
TiO2 nano powder before welding operation. The coated nano 
powder (AEROXIDE TiO2 P 25) is a highly dispersed tita-
nium dioxide manufactured according to the AEROSIL proc-
ess, obtained from the Degussa AG, Germany. Titanium Di-
oxide P 25 has an average primary particle size of about 21 
nm and a specific surface of about 50 m2/g. The chemical 
composition of the base metal is shown in Table 2. 

The experiments were performed by automatic SAW ma-
chine using direct current reverse polarity (DCRP), and the 
bead-on-plate technique was adopted for welding the speci-
mens. We conducted 32 experiments. The specimens were cut 
perpendicular to welding direction by BUEHLER cutting 
machine to measure the output of the process. The cut surfaces 
were grained with 240, 320, 400 and 600 numbered grinding 
paper and etched with 2% nital solution. The deposition rate is 
the rate that weld metal can be deposited by a given electrode 
or welding wire. Deposition rate is defined as below: 

 
RDeposition Rate A Vr=  (9) 

 
where ρ = 7833 Kg/m3, AR and V denote the density of filler 
wire, reinforcement area and welding speed respectively.  

Finally, the area of reinforcement was measured by means 
of an Olympus optical microscope and deposition rate was 
calculated. 

 
6.4 Mathematical model 

The objective of this section is to establish relationships be-

tween the process parameters (inputs) and process responses 
(outputs) in SAW process using regression analysis. Based on 
the response surface method, the relationship between the 
investigated five input variables and the response can be ob-
tained by regression equation. The least-square method was 
used to determine the coefficients of the regression model. 
The statistical software, MINITAB, was used to calculate the 
values of this coefficient for response function. The regression 
coefficients of the final model and their P-values (probability 
of error) used to determine the significant variables are given 
in Table 3. Therefore, the final model with the variables was 
reduced to the following equation:  

 

2 2 2 2

 = 8.25 - 0.143  + 1.44  + 0.497  + 0.523 
        - 0.210  + 0.186 + 0.424  - 0.231 +

0.393 - 0.227 +0.268 +0.0917 +0.100 

DR V I C F
VS VC IS SC

CF V I S C

 (10) 

 
where DR is deposition rate and V, I, S, C and F are the input 
variables. The adequacy of the models was tested using analy-
sis of variance (ANOVA). Table 4 is the ANOVA data for the 
deposition rate. 

Table 3 shows the influence of various process parameters 
and their interactions on response numerically. Analysis was 

Table 1. The input variables and their range. 
 

 Coding  

Units +2 +1 0 -1 -2 Variable 

Amp 700 650 600 550 500 I 

Volts 32 30 28 26 24 V 

mm 40 37.5 35 32.5 30 C 

mm/min 500 450 400 350 300 S 

mm 1 0.75 0.5 0.25 0 F 

 
Table 2. Chemical composition of base metal. 
 

 Cr P S Si 

% W 0.031 0.007 0.01 0.024 

 Ti Mn C Fe 

% W 0.002 0.417 0.113 Balance 

 
 

Table 3. Model regression coefficients and their P-values. 
  

Predictor Coef. SE Coef. T P 

Constant 8.248 0.164 50.26 0.000 

V -0.143 0.095 -1.50 0.150 

I 1.435 0.095 15.15 0.000 

C 0.497 0.095 5.24 0.000 

F 0.523 0.095 5.52 0.000 

VS 0.210 0.116 1.81 0.087 

VN 0.186 0.116 1.61 0.126 

IS 0.424 0.116 3.65 0.002 

SN 0.231 0.116 1.99 0.062 

NF 0.393 0.116 3.38 0.003 

VV 0.227 0.085 2.66 0.016 

II 0.268 0.085 3.14 0.006 

SS 0.092 0.085 1.07 0.297 

NN 0.100 0.085 1.18 0.255 

 
Table 4. Analysis of variance. 
 

Source of  
variance 

Degree of 
freedom 

(d.f.) 

Sum of 
square 
(SS) 

Mean of 
square 
(MS) 

F P 

Regression 13 74.2864 5.7143 26.53 0.00 

Residual error 18 3.8772 0.2154   

Lack of fit 12 3.3339 0.2778 3.07 0.089 

Pure error 6 0.5432 0.0905   

Total 31 78.1635    
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undertaken at a desired level of confidence 95%. The last col-
umn of Table 3 shows whether each factor has significant 
effect on response or not. Since the P-value of arc current, 
contact tip to plate distance and thickness of nano particles is 
less than 0.05, therefore these parameters significantly influ-
ence the deposition rate. 

 
6.5 Optimization of the process 

As mentioned, the weld deposition rate plays an important 
role in determining the productivity of weldments in hard-
facing processes. Thus, the objective of optimization in this 
research work is to maximize the deposition rate. Note that 
since ICA minimizes the cost function basically, the equation 
of deposition rate has been multiplied by minus. The models 
are developed in the MATLAB platform, which is highly 
reliable, and the regression equation was embedded into the 
ICA and optimized. The optimum algorithmic parameters 
used in the ICA model are brought in Table 5. 

The optimum levels of input variables in coded and un-
coded form to achieve optimal solution are shown in Table 6. 
Results show that to achieve the maximum DR the traveling 
speed, welding current, contact tip to plate distance and thick-
ness of TiO2 should be set at high level. Moreover, the prob-
lem is optimized by the so-called optimization algorithm, 
namely genetic algorithm (GA) to evaluate the obtained re-
sults from ICA. The optimum algorithmic parameters used in 
the GA model are brought in Table 7.  

Best fitness, mean fitness, fitness function, and generation 
in GA are equivalent to minimum cost, mean cost, cost func-
tion, and decades in ICA, respectively. These equivalent ter-
minologies help us to compare the results of two aforemen-
tioned algorithms accurately. 

 
7. Validation of the optimization results 

To test the accuracy of the algorithm outputs in actual weld-
ing conditions, confirmation tests were carried out by assign-
ing output values of the algorithm to input parameters of vali-
dation welding operation. Three experiments were performed, 
and their deposition rate was obtained. The percentage of error 
will provide the deviation of optimum values from the actual 
measured values. From Table 8, the average error of ICA and 
GA is 0.21 and 0.36, respectively. 

 
8. Results and discussion 

Our experiments were based on central composite design 
and RSM using automatic SAW machine as per design matrix. 
From Table 1 it can be seen that five input variables all were 
changed in five levels. A mathematical relationship (objective 
function) for DR in terms of input variables using statistical 
regression analysis was developed and the R-squared of de-
veloped model obtained and equal to 95%. The R-square indi-
cates how well the proposed model fits given data that the 
results show a good consistency of proposed model with ex-
perimental data. Fig. 5 shows the minimum and mean cost of 
all imperialists for minimization of cost function versus ep-
ochs (decades). From the figure it is evident that the minimal 
cost function is obtained at the 7st epoch. The DR is gradually 
increasing up to the 7st epoch, then the DR is constant for 
further epochs. Fig. 6 shows the best fitness and mean fitness 
of the objective function during optimization process using 
GA. The best calculated deposition rate due to maximization 
by ICA and GA is 17.39 Kg/hr and 17.29 Kg/hr, respectively. 
The performance of the proposed ICA and GA algorithms to 
optimize parameters of SAW was compared and results show 
that ICA model gives more optimal results than the GA model.  

Also Figs. 5 and 6 indicate that ICA converges to the global 
optimum solution at a faster rate in comparison with GA. 
Thus, the optimization process by ICA, especially for compli-
cated functions, is less time consuming than optimization by 
GA.  

Table 5. Algorithmic parameters setting for ICA. 
 

Number of total countries 80 

Number of initial imperialist countries 8 

Number of epochs (decades) 15 

Revolution rate 0.3 

Assimilation coefficient 2 

Assimilation angle 0.5 

Cost function -(Deposition rate) 

 
Table 6. The optimal input variables for optimum solution. 
 

Variable I 
(Amp) 

V 
(Volt) 

C 
(mm) 

S 
(mm/min) 

F 
(mm) 

Coded value 2.00 -0.4207 2.00 2.00 2.00 

Decoded value 700 27 400 500 1 

 
Table 7. Algorithmic parameters setting for GA. 
 

Population size 20 

Elite count 2 

Number of generations  50 

Cross over fraction 0.8 

Migration fraction 0.2 

Fitness function -(deposition rate) 

 
 

Table 8. Comparison of experimental output and optimum values of 
the weld deposition rate. 
 

S. No. ICA GA Experimental output 

1 17.30 

2 17.38 

3 

17.39 17.29 

17.36 

Average  17.35333 

% Error 0.210849 0.3663  
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9. Conclusion 

Experiments were carried out using automatic SAW ma-
chine based on rotatable central composite design for generat-
ing data and bead-on-plate weld runs were performed. A cor-
relation was developed using regression analysis to gain a 
relationship between optimization parameters and an output 
variable. The adequacy of proposed model was tested and 
results show good conformability of the developed model to 
the real process. Evolutionary computing techniques, genetic 
algorithm (GA) and imperialist competitive algorithm (ICA), 
were performed to optimize the parameters of SAW, for opti-
mal weld performance. According to the optimization results, 
all of the input variables except arc voltage should be set at 
high level to achieve maximum deposition rate. From the ob-
tained results by proposed ICA and GA, it can be concluded 
that the ICA model gives more optimal results than the GA 
model. In addition, the proposed algorithm is quite effective 
and powerful in optimizing the cost function and it converges 
to the global optimum solution at a faster rate in comparison 
with GA. 
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