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Abstract 
 
Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational 

joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The 
increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its 
longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the 
translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravita-
tional field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the 
longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a 
large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian 
approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where 
non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration 
and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is 
simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is imple-
mented on the model and the effectiveness of the scheme is verified numerically.  
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1. Introduction 

Flexible links with translational joints have been adopted in 
many motion systems, for example, the large-scale solar cell 
panel handling manipulators shown in Figs. 1(a) and (b), 
where the long and slender forks transport the heavy solar cell 
panel in the longitudinal direction of the forks. In these sys-
tems, vibration in the lateral direction of the links (or forks) 
perpendicular to the direction of the translational motion of the 
links (or forks) deteriorates the performance of the whole ma-
chine.  

Intuitively, lateral vibration during translation of a flexible 
link should not occur due to the orthogonal relationship be-
tween the translating direction (input) and the lateral vibration 
direction (output). Due to the deflection caused by the flexure 
of the link and gravitational effect, however, the slope of the 
link becomes a non-horizontal line such that input direction 
becomes non-orthogonal to the output direction. Furthermore, 
as it is to be explained in the following sections longitudinal 
motion could change the compliance of the lateral motion 
(which is often called dynamic stiffening and softening ef-

fects).  
These complex dynamic problems are becoming more se-

vere, since the trend in robot design is toward light and speedy 
systems. 

To reduce lateral vibration due to longitudinal motion and 
improve the performance of the robot mentioned above, an 
investigation is required to analyze the dynamics and the con-
trollability of this system. To explore the basic nature of the 
rotating/translating flexible link behavior and control of lateral 
vibration, various studies have been carried out. Behavior of a 
flexible cantilever beam on a moving base was investigated 
using Kane’s equation [1-4]. Furthermore, the concept of the 
dynamic stiffening effect was first introduced in Ref. [1]. Dy-
namic stability analysis was previously performed by employ-
ing the perturbation method [2]. Through expression of strain 
energy in quadratic form, the stiffness variation was accu-
rately captured [3]. In Ref. [4], dynamic stiffening and soften-
ing effects were intensively studied for the rotating bodies, 
and their relationship with frequency was introduced.  

Also, the significance of stiffening effects in rotating flexi-
ble multibody dynamic systems were previously studied and 
verified with experimental results [5]. An equation of motion 
was derived for a similar system by using the energy method 
[6]. Pratiher [7] obtained an approximate solution by using a 
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perturbation method and performed vibration control. The 
vibration of rotating beam systems has long been studied [8-
12]. All systems mentioned above are based on a cantilever 
beam model acting on an axial force. In Refs. [14-16], the 
effect of an axial load on system frequency was investigated. 

Most actual implementations in real systems employ an 
open-loop control approach for the effectiveness and the sta-
bility concern. The time-delayed command (input) shaping 
technique is one of the open-loop control schemes that are 
widely used to reduce vibration in the motion system [17-24]. 
There have been studies regarding the input shaping technique 
and its application. A ZV (zero vibration) shaping filter is a 
basic form of the delayed input shaping technique developed 
for the flexible system [17] and its effectiveness has bee veri-
fied in various applications [18]. Multi-hump EI (extra-
insensitive) input shaping filters were introduced for the im-
proved robustness and their effectiveness was verified [19, 20]. 
In order to deal with unknown or varying system parameters, 
adaptive and learning command shaping filters were devel-
oped as well [21, 22]. 

The aim of this work is to reduce the lateral vibration of an 
axially translating flexible link considering the frequency 
variation due to the dynamic stiffening effects. An equation of 
motion the translating link with lateral vibration is derived 
using Newtonian approach to analyze the influence of translat-
ing motion to lateral vibration and a numerical simulation is 
using the derived equations. Then the input shaping control 
method is applied to the model. Numerical analysis results are 
shown and discussed to show the effectiveness of the control 
approach in the presence of the pseudo-orthogonal relation-
ship between the input and output and also the frequency 

variation due to the dynamic stiffening effect.  
 

2. Mathematical modeling and equation of motion 

2.1 Modeling 

A schematic drawing of a translating flexible link to be dis-
cussed in this paper is shown in Fig. 2, where the base of the 
link is horizontally sliding, and the tip of the link is free to 
move. The frame O-X-Y is fixed on the ground and the mov-
ing frame o-x-y is attached at the base and moves along with 
the base. In Fig. 2, 0U  is the actuation input force applied on 
the base, and ( )tz  represents the displacement of the base 
along with axis X. 

Fig. 2 also shows the forces and moments acting on an in-
finitesimal element of the link. ( , )Q x t and ( , )M x t  are shear 
force and moment acting on the element, respectively. ( )f x  
represents the gravitational force acting on the element; 

( , )r x t and ( , )v x t  represent axial displacement and lateral 
displacement, respectively. From the force-momentum equi-
librium, Eqs. (1)-(3) can be obtained: 
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where r  is the mass density, A  is the cross-section area of 
the link, ( )X t xx= + , and '( ) ( ) /u x du x dx= . Also, the axial 

 
 
Fig. 1. Solar-cell panel transportation robot with flexible links (or forks). 

 

 
Fig. 2. Schematic drawing of the system and the free-body diagram of 
infinitesimal element. 
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force ( )u x  acting on the element at a given position is as-
sumed to follow Eq. (4), and then it would satisfy the force 
boundary condition at both ends of the link. 
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where L  is the length of the link. By substituting Eq. (3) into 
Eq. (2) and using the moment and curvature relation, we can 
rewrite Eqs. (1) and (2) as 
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where E  is Young’s modulus and I  is the moment of iner-
tia of the link. Utilizing this method of separation of variables, 
the solutions of Eqs. (5) and (6) may be represented as: 

 
( , ) ( ) ( )r x t t xh y=   (7) 
( , ) ( ) ( )v x t t xa f=   (8) 

 
where ( )th  and ( )ta  are time-dependent functions, and 

( )xy  and ( )xf  are space-dependent shape functions. 
 

2.2 Translational motion 

With the assumption of ignorable longitudinal vibration 
(rigid in the direction of the translation), ( )xy  in Eq. (7) 
becomes 

 
( ) 1xy = .  (9) 

 
Substituting Eq. (9) into Eq. (7) and inserting the result into 

Eq. (5) gives 
 

2
0

2
( ) Ud t

ALdt
h

r
= .  (10) 

 
Integrating Eq. (10) with respect to time and introducing it 

into Eq. (7) we obtain 
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The displacement of the base relative to the fixed frame O-

X-Y, ( )tx , is calculated as follows 
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2.3 Shape function of lateral vibration 

The shape function ( )xf  can be obtained by solving Eq. 
(13), which results from substituting Eq. (8) into Eq. (6) with 

( , ) 0f x t =  
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where m Ar=  denotes the mass of the link per unit length, 

2 2( ) ( ) /t d t dta a=&& , ( )( ) /n n nd x dxf f=  and so forth. Divid-
ing both sides of Eq. (13) by ( ) ( )m t xa f  we obtain 
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Since x  and t  are independent variables, each side of Eq. 

(14) must be constant. Then, the left side of Eq. (14) can be 
rewritten 

 
( ) ( ) 0t ta la- =&&   (15) 

 
where l  is a constant. The general solution to Eq. (16) can 
be expressed as Eq. (16) 

 
( ) cos( )t C ta w q= -   (16) 

 
where w  is the natural frequency of oscillation ( 2w l= - ), 
C  is an amplitude and q  is a phase angle. Substituting Eq. 
(16) into Eq. (13) gives 

 
2

(4) (2) (1)

2
(4) (2) (1)0

0

( ) '( ) 0

0

u x u x m
EI EI EI

UL x mU
LEI LEI EI

wf f f f

wf f f f

+ + - =

-æ öÛ + - - =ç ÷
è ø

.  (17) 

 
It is interesting to note that the second term on the left-side 

in Eq. (17) represents the effect of the axial force on the shape 
function and makes the equation non-linear. To simplify the 
4th order non-linear partial differential equation which is not 
easily solvable, it can be assumed that the effect of axial force 
on the shape function is negligible [14, 15]. Although a differ-
ence does exist between the current system and the axially 
loaded beam model studied in Refs. [14, 15], a considerably 
similar equation for the shape function is obtained indicates 
that the effect of the axial load on the shape function is negli-
gible for a small axial force. Fig. 3 shows the small variation 
of the shape functions for the axially loaded beam [14, 15], 
indicating that the axial force does not seriously affect the 
shape function. Therefore, the second and the third terms of 
Eq. (17) are assumed to be negligible and the shape function is 
derived from Eq. (18). 
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Applying the ‘clamped-free’ boundary conditions listed in 

Eq. (19) and Eq. (20) to Eq. (18), we can obtain the general 
solution to Eq. (18) as 
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where rb  is the solution to the characteristic equation 
cos cosh 1 0L Lb b + = , and the constant coefficient rA  
would be determined by satisfying the orthonormality of eigen-
functions and (sin sinh ) / (cos cosh ).r r r r rh L L L Lb b b b= + +  

 
2.4 Approximate solution 

The approximate solution to Eq. (13) is assumed based on 
the Rayleigh-Ritz method as follows  
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Substituting Eq. (22) into Eq. (6) we get 
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Multiplying the both sides of Eq. (23) with ( )m xf  and in-

tegrating over the length of the link and making use of the 
orthonormality property of ( )m xf , we can obtain a linear 
time-varying ordinary differential equation for ( )m ta : 
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and 1,2, ,m N= L . For better understanding of axial motion, 

mmk  and jmk  can be rewritten as: 
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where 
0ua  is the acceleration of the link caused by 0U  in 

the axial direction. It is noteworthy that the time function, ma  
is affected by the acceleration of the link, 

0ua , whose effect 
on vibration is shown in the following section. For a better 
representation of the actual system behavior, a simple linear 
damping model is added, and we obtain the equation of the 
time functions as follows: 
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where mv  is the damping coefficient to the thm  mode. 

 
3. Dynamic analysis 

It is evident that the coefficient of ma  in Eqs. (24) and 

 
(a) 1st mode 

 

 
(b) 2nd mode 

 
Fig. 3. Effect of various axial forces on mode shapes in axially loaded beam
(m = 4 kg, L = 1.8 m, E = 69 Gpa, I = 6.66 10-9 m4, A = 0.0008 m2). 
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(27) represents the stiffness of the flexible link, and it contains 
the axial force. Consequently, the natural frequency of the link 
varies along with the axial force. The variation of the stiffness 
due to the motion of the link is sometimes called the dynamic 
stiffening/softening effect, and it has been studied in a rotating 
system [1, 4]. Previous studies have modeled this system with 
Kane’s equation, but do not explain in detail what and how 
component properties of the system affect the dynamic stiffen-
ing effect. In this paper, the equation of motion is derived with 
a Newtonian approach, which is a more direct method of in-
vestigating the relationship between the system properties and 
the dynamic stiffening effect. The natural frequency of the nth 
elastic mode of the link when the link translates at a constant 
speed is called the base natural frequency, .bnw , and it is ex-
pressed as follows: 
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Then, the variable natural frequency of the thn  elastic 

mode is expressed using .bnw  as follows: 
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where 

0 .U cra  is critical acceleration that makes the frequency 
zero in analytical derivation. Eq. (29) explicitly shows that the 
translational acceleration affects nw  and is not equal to .bnw . 
The dynamic stiffening effect is basically invoked by the addi-
tional moment resulting from the offset of the link elements 
from the axial centerline, which is represented as dy  in Fig. 
2. The offset from the centerline, which acts as the moment 
arm, is primarily generated by the vertical deflection of the 
link. It would be interesting to investigate the effect of the 
deflection of the link on the dynamic stiffening phenomena. 
Let us here introduce a new parameter, the deflection ratio 
defined as: 
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The deflection ratio, k, represents the effective compliance 

of the link. Combining Eq. (29) with Eq. (30) gives 
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Examples of the frequency variation tendency of a translat-

ing link are calculated using Eq. (31) as a function of k , and 
the results for k = 0.02, 0.04, 0.06, 0.08 and 0.10 are shown in 
Fig. 4. In the example, the system parameters are assumed to 

be E = 69 Gpa, L = 1.8 m, r = 2770 kg/m3, and width of the 
cross-section of the link 0.08m= . The height and the width of 
the cross-section of the link are determined per k value using 
Eq. (30) listed above.   

As shown in Fig. 4, k affects the natural frequency of the 
system, and as the k value of the system increases, more varia-
tion in the natural frequency will result for the same given 
translational acceleration. The plot shown in Fig. 4 normalizes 
the frequency variation of a given link based on the k value 
and it helps us to anticipate the frequency range of the system 
without going through a complicated dynamic analysis. The 
information in the plot is useful for the design of an effective 
vibration control system. 

 
4. Vibration control using input shaping 

An input shaping filter is an open-loop control algorithm, 
which modifies the input trajectory to suppress the vibration. 
The input shaping filter reshapes the input trajectory without 
changing the DC gain of the trajectory and removes the exci-
tation energy at the target frequency from the original trajec-
tory. The control technique is widely used in vibration sup-
pression control for its effectiveness and the robustness of the 
system parameters [19-24].  

Since the introduction of the fundamental concept of the in-
put shaping technique, several types of input shaping filters 
have been designed and used for various motions systems. 
The basic form of the shaping filter is often called a ‘zero-
vibration (ZV)’ filter, which has a narrow working frequency 
range for the fixed vibration frequency system [17]. 

If a frequency of the system is not given or is variable, the 
performance of the input shaper becomes less effective. In 
order to increase the robustness of the filter, various input 
shaping filters have been designed, including the multi-hump 
positive impulse extra-intensity (EI) input shaping filter [20]. 
The sensitivity and robustness of the input shaping filter are 
represented by the width and magnitude of the stop-band in 
the frequency domain. The lower the magnitude of the fre-
quency response of the filter at the stopband becomes, the 

 
 
Fig. 4. Effect of axial mode and elasticity on frequency variation. 
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lower the amplitude of the residual vibration of that frequency. 
For wider stopband frequency responses, uncertainty (or the 
variation) in the target frequency increases, resulting in the 
increased response of the filter. Fig. 7 compares the sensitivity 
curves of the typical ZV input shaping filter and the two-hump 
EI input shaping filters. In the figure, it is apparent that the 
two-hump EI shaper has a wider stopband, but has a higher 
magnitude at the stopband. This means more excitation energy 
will remain in the filtered trajectory and more residual vibra-
tion will be excited in the system in that frequency range.  

Based on the analysis results shown previously, the EI 
shaper would be more appropriate for the translating flexible 
link system, which has a varying vibration frequency. In this 
paper, an effective two-hump EI filter is designed to suppress 
the lateral vibration of the axially translating flexible link. An 
effective two-hump EI input shaping filter can be designed 
from the system parameters as follows [20]. 
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As shown in Eqs. (32)-(35), the design of an effective EI fil-

ter requires the determination of the target frequency, the 
range of effective frequency range, and the pass-through mag-
nitude V (or the maximum magnitude of the stopband in the 
sensitivity curve within that range). In this study, the target 
frequency is set to .n bw . The sensitivity, V, and the range of 
effective target frequency, r, are coupled, and only one of 
them can be chosen freely. The choice of a large value of V 
results in a wider range. In this study, the pair of (V, r) is cho-
sen to ensure that the range of r  includes the variation range 
of the natural frequency of the flexible link system. The effec-
tiveness of the two-hump EI input shaping filter is compared 
with the ZV filter in the next section. 

 
5. Simulation results 

The numerical simulation of the dynamic behavior of a 
flexible link translating on a horizontal plane was performed 
using the equations of motion derived in the previous section. 
The system parameters were assumed to be E = 69 Gpa, L = 
1.8 m, and r = 2770 kg/m3. The width of the cross-section of 
the link is set, and the height of the cross-section of the link is 
chosen to produce 0.10k = . The accuracy of the simulation 
model would increase as the number of elastic modes included 
in the simulation model increases but the improvement in 
accuracy significantly decreases after the second elastic mode. 
Therefore, only the first two elastic modes are considered for 
the simulation without losing the validity. 

Fig. 6 shows the lateral vibration response to the step-force 
axial translation input given at the base of the link. Plot (a) in 
Fig. 6 shows the acceleration step input of the longitudinal 
translational motion of the base. Fig. 6(b) depicts the response 
of the system model without damping, while Fig. 6(c) repre-
sents the response of the system model with damping. In both 
plots, it is apparent that the period and the amplitude of the 
vibration increase as the input force (or the axial acceleration) 
increases. In both plots, larger acceleration results in larger 
fluctuation. An interesting result found in Fig. 6(b) is that for 
greater acceleration of the translation, a larger steady state 
deformation is observed after the transient vibration dies out. 

The vibration suppression controllers using input shaping 
filters are designed and implemented in the simulation for 
various system parameters, and very consistent results are 
obtained. In this paper, only a single set of simulation results 
from a flexible link with the deflection ratio 0.10k =  is in-
cluded. Fig. 7 shows the lateral vibration responses of the link 
for the motion cases with no input shaping filter, ZV filters, 
and two-hump EI filters.  

Plot (a) in Fig. 7 shows the acceleration ramp input of the 
longitudinal translational motion of the base. As explained in 
Eqs. (24)-(26), the variation in the acceleration (ramp signal) 
during the motion causes a dynamic stiffening effect in the 

 
(a) Sensitivity curves 

 

 
(b) Magnified plot 

 
Fig. 5. Sensitivity curves of ZV input shaping filter and two-hump EI 
input filter. 
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link, and the natural frequency of the lateral vibration varies 
during the motion between 0.9436 and 1 times .n bw . The two 
ZV filters are designed to target the natural frequency of the 
first two elastic modes, 1.bw  and 2.bw . Two two-hump EI 
filters were designed with target frequencies at 1.bw  and 

2.bw , and the sensitivity magnitude was set to V = 0.001 so 
the effective frequency range r would cover the frequency 
variation range explained above. 

 
6. Conclusion 

The longitudinal (axial) motion of the link is considered to 
be decoupled completely from the lateral vibration in normal 
cases. However, with the presence of non-ignorable flexure 
(or the consequent deformation) of the link, the longitudinal 
motion is coupled with the lateral vibration. A light-weight 
slender link used to transport a large, heavy panel in the hori-
zontal plane would result in the deflection of the link in the 
vertical direction, and the axial translation of the link excites 

the lateral vibration of the link. 
The coupling dynamics between the longitudinal motion 

and the lateral vibration of the flexible link are analyzed and 
the equations of motion are derived using the Newtonian ap-
proach. In particular, the frequency variation of the lateral 
vibration due to the acceleration change of the axial motion is 
analyzed using the dynamic stiffening effect mathematically 
modeled in the equations of the motion. The frequency varia-
tion tendency is mathematically formulated using a newly 
introduced system parameter, the deflection ratio, to estimate 
the frequency variation range. Knowing the frequency varia-
tion range would be very helpful in designing a vibration con-
trol system for lateral vibration.  

A vibration controller using the input shaping technique is de-
signed to reduce the lateral vibration induced by the longitudinal 
motion. The effectiveness of the vibration controller is verified 
by simulation. Two-hump EI shapers and ZV shapers are im-
plemented to reshape the reference trajectory of the longitudinal 
motion of the flexible link, and the simulation results indicate 

 
(a) Acceleration input for longitudinal motion 

 

 
(b) Lateral vibration from model without damping 

 

 
(c) Lateral vibration from model with damping 

 
Fig. 6. Effect of acceleration from model with damping. 

 

 
(a) Acceleration input for longitudinal motion 

 

 
(b) Lateral vibrations with no-filter, ZV filters, EI shapers 

 

 
(c) Lateral vibrations with no-filter, ZV filters, EI shapers (magnified) 

 
Fig. 7. Simulation results of vibration control with various shaping filters. 
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that the reshaped longitudinal reference input reduces the ampli-
tude of the lateral vibration down to less than 10% of the origi-
nal amplitude. Due to the frequency variation of the system 
during the longitudinal translation, the EI shaper results in better 
suppression of the vibration than the ZV shaper. 
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