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Abstract 
 
Sound transmission through laminated composite plates reinforced by two sets of orthogonal stiffeners is investigated theoretically. A 

layerwise shear deformable theory is used to model the vibration of the laminated composite face-panel; A governing equation of I sec-
tion composite beam is introduced, which accounts for the extensional, flexural, torsional and their coupling effects. The Euler-Bernoulli 
beam theory and torsional wave equation are employed to describe the flexural and rotational motions of the rib stiffeners, respectively. 
The technique of Fourier transform is applied to solve the governing equations resulting in infinite sets of simultaneous algebraic coupled 
equations, which are numerically solved by truncating them into a finite range insofar as the solutions converge. The accuracy of the 
numerical solutions is checked by comparing the present model predictions with existing literature. The validated model is subsequently 
employed to quantify the effects of the spacing of the stiffeners and the stacking geometry of the laminated composite face-panel and 
stiffeners on sound transmission through the structure. It is demonstrated that both the stiffener spacing and the stacking geometry have 
significant influences on the sound transmission loss across the structure. The proposed theoretical model successfully characterizes the 
process of sound penetration through stiffened laminated composite plates, which should be much helpful for the practical design of such 
structures with acoustic requirements.  
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1. Introduction 

Vibroacoustic property of beam stiffened plate has been a 
long-standing research topic [1-9] because of its widely appli-
cations and the complexity of the problem itself. Many useful 
theoretical models have been built to solve the problem of 
stiffened plate under various operating conditions, and there 
are a few favorable review papers [10-12] to refer to. A few of 
important literatures limited to deterministic method are em-
phasized below to describe the state of art of investigation of 
orthogonally stiffened composite plate. 

At the early stage, Mead and Mace have done a lot of work 
[2-5, 10] for stiffened plates. Among them, Mead and Pujara 
[2] developed a space-harmonic method to study double-leaf 
plates with periodic links [13]. Mace employed Fourier trans-
form to solve the vibration response of parallel stiffened [4, 5] 
and orthogonally stiffened plate [3], in which only fluid load-
ing on one side has been taken into account. As a matter of 
fact, both space-harmonic method and Fourier transform tech-
nique transform the governing equations into infinite sets of 
simultaneous algebraic equations, and then numerically solve 

them by truncating them into a finite range. 
If composite plate was considered, the Kirchhoff assump-

tion for thin isotropic plate is not appropriate obviously. In 
fact, stiffened composite plate has been widely used in appli-
cations due to the great advantage of composite material [14]. 
However, less attention has been paid to the sound radiation 
and transmission of stiffened laminated composite plates. 
Based on the classical laminated composite plate theory 
(CLPT), Yin et al. [15, 16] extended Mace’s model [5] to 
study the parallel stiffened composite plate. Recently, a first 
order shear deformation theory (FSDT) is employed by Mejdi 
et al. [17] to consider the transverse shear strain of the base 
plate, where the in plane motion of the stiffeners is also ac-
counted for. Whereas, the governing equations for stiffeners 
only pertain to thin-walled isotropic beam (or uncoupled com-
posite case) while not the general composite beam.  

To develop a more accurate theoretical model, the layer-
wise shear deformable theory is applied to model the vibration 
of the laminate composite base plate, and the shear deform-
able beam theory is utilized to model the vibration of arbitrary 
thin-walled composite beam stiffeners. Note that the single-
layer theories (e.g. CLPT or FSDT) used by previous re-
searchers remain acceptable for thin bare plate, which proba-
bly induce significant deviations for thicker and stiffened 
plates. On the basis of the present theoretical model, numeri-
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cal investigations are conducted specially focusing on the 
influence of stiffeners spacing and stacking geometry on the 
vibroacoustic property of the structure. 

 
2. Mathematical formulation of the problem  

As illustrated in Fig. 1, we consider a laminated composite 
plate reinforced by orthogonal stiffeners, where the two sets of 
stiffeners are assumed to be uniform and straight along the 
lines xx ml=  and yy nl=  (here m and n being integers) 
with xl  and yl  denoting stiffeners spacing, respectively. 
The origin of the system’s coordinate is selected to be located 
at the junction of two sets of orthogonal stiffeners, with x-axis 
and y-axis aligning with line stiffeners so as to simplify the 
following algebra operations. The whole structure is a two 
dimensionally periodic structure and assumed to be immersed 
in acoustic fluid (e.g. air). 

Following the layerwise shear deformable theory [18], the 
displacements of the i th layer of the composite base plate are 
expressed as: 
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where 0 0 0( , , )i i iu v w  and ( , )i i

x yf f  are displacement and rota-
tion unknowns of transverse normal respectively. Notice 
that the present layerwise shear deformable theory model 
can be degraded to the FSDT model if the number of the 
total layers is set to be one. Under above assumptions, the 
governing equation of ith material layer for a fluid-loaded 
laminated composite structure can be expressed in the fol-
lowing form: 
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where ( ), ,i i i

xx yy xyN N N , ( ),i i
x yQ Q  and ( ), ,i i i

xx yy xyM M M  are 
the force and moment resultants, respectively. 1

incP , 1
sP  denote 

incident sound and reflected sound pressure on the first layer, 
and N

tP  corresponds to transmitted sound pressure on Nth 
layer; ( xF e , yF e ) { }, ,x y ze =  and ( xM , yM ) are the cou-
pling forces and reactive torsional moments between the stiff-
eners and the base plate. ( i

xF , i
yF , i

zF ) are interlayer forces 
of the base plate, ih  is the thickness of material layer, iId  is 
the Kronecker delta symbol. N is the number of total layers, 
then total number of interlayer forces is 3(N-1). Therefore, 
total 5N+3(N-1) variables can be grouped into two vectors 
including the displacement vector { }U  and the interlayer 
force vector { }F : 
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Further, 0

iI , 1
iI  and 2I  are the mass moments of inertia, 

defined by ( )2
0 1 2( , , ) 1, ,

i
t

i
b

z
i i i i

z
I I I z z dzr= ò ; where ir  and 

( )i i
b tz z  denotes the mass density and the bottom (top) coordi-

nate of the i th layer of the laminated composite plate, respec-
tively. Interlayer displacement continuity condition requires: 
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In all, the 5N+3(N-1) variables [Eq. (7)] correspond to 5N 

dynamic equilibrium equations [Eqs. (2)-(6)] and 3(N-1) dis-
placement continuity equations [Eq. (8)]. Applying the Fourier 
transform: 

 
 
Fig. 1. Laminated composite plate reinforced by orthogonal stiffeners. 
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where a  and b  are the transformed wavenumbers in the x- 
and y-direction. After Fourier transform, the governing equa-
tion can be reduced to: 
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where 1i = - , the coefficient matrixes ( 0 1 2[ ],[ ],[ ]A A A ) are 
defined by Ghinet et al. [18]. Then, the hybrid variables vector, 
excitation forces vector, reaction forces between the base plate 
and the stiffeners can be written as: 
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2.1 The fluid loading 

In Cartesian coordinates, the incident sound wave can be 
described as follows: 

 
[ ]0exp (sin sin sin cos cos )inc incP ik x y ze q f q f q= - + +  (12) 

 
where 0 0k cw= , 0c  is the speed of sound in the fluid. q  
and f  are incident angle. The scattered sound pressure 1

sP  
can be decomposed into two scattered pressure 1P¥  and 1

seP  
generated by rigid boundary and elastic motion of structure 
respectively. 

Consider the Helmholtz equation of the acoustic fluid 
around: 
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Here P  can be 1

seP  or N
tP . Then, the coupling between 

plate and fluid can be expressed according to the Euler equa-
tion, 2

00 ( , )zP z w x yr w
=

¶ ¶ = . Incorporating Helmholtz equa-
tion, Euler equation and Fourier transform, we obtain: 
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2.2 Reactive forces by stiffeners 

A general governing equation of I section composite beam 
(as shown in Fig. 2) is introduced, which accounts for the 
extensional, flexural, torsional and their coupling effects. 
Moreover, arbitrary laminate stacking sequences (e.g. sym-
metric or unsymmetrical) can be handled by this theory. 

Taking the stiffeners in the y -direction as an example, the 
coupling reactive forces between the stiffeners and the base 
plate can be expressed as: 
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Detailed constants can be found in Lee and Kim’s paper 

[19]. To solve the Dirac function appeared in Eqs. (2)-(6), 
Poisson formula is employed [20]: 
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After Fourier transform and incorporating the Eqs. (15) and 

(16), the reactive forces of stiffeners can be written as: 
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Fig. 2. Thin walled I section composite beam. 
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where the coefficient ( , 1 4)ij
xz i j =% :  represents the trans-

formed coefficient matrix elements. ( ),A a b , ( ),m
m Z

W a b
Î
å  

( ma = 2 xm la p+ ) denotes coefficient matrix and displace-
ment vector, respectively. With nb = 2 yn lb p+ , the reactive 
forces of stiffeners in x -direction are given by: 
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2.3 Solution in wavenumber domain 

Combining Eqs. (17), (18) and (10), and introducing the ab-
breviated equations defined in Eqs. (17) and (18), the resultant 
governing equation in wavenumber domain is:  
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which contains only one set of unknowns ( ),m nW a b  with 

 to +m = -¥ ¥  and  to +n = -¥ ¥ . Insofar as the solution 
converges, the equation can be solved by truncation. In other 
words, ( , )m n  only take the values in a finite range of 

ˆ ˆ to m m m= -  and ˆ ˆ to n n n= - , then the resulting equations 
are simplified to simultaneous equations containing a finite 
number (i.e. 2MN , where ˆ2 1M m= + , ˆ2 1N n= + ). Re-
markably, intrinsic physical mechanism of this computational 
method [1] is that the flexural wave with wavenumber ( ,a b ) 
is able to excite the waves with wavenumber components 
( 2 xm la p+ , 2 yn lb p+ ). By the way, the inherent conver-
gence rule say that once solution was convergent at a given 
frequency, then it will be convergent for all frequencies lower 
than that Ref. [8]. Therefore, enough terms (M = N = 21) have 
been chosen to ensure the convergence of the results at the 
highest frequency 5000 Hz of interest within the error bound 
of 0.5 dB. 

 
2.4 Sound transmission loss 

Considering an infinite structure, the incident sound inten-

sity can be defined as follows: 
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As for the transmitted sound intensity, it can be given by us-

ing the displacements in wavenumber domain [21]: 
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Hence, the sound transmissivity at frequency w  and inci-

dence angle ( ,q f ) is then: 
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When diffused sound field is taken into account, the sound 

transmissivity can be given by: 
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Thereby, sound transmission loss is expressed as 
 

( )10STL 10log .difft wé ù= - ë û  (24) 

 
3. Validation of theoretical modeling 

To the authors’ knowledge, no direct experimental data re-
garding the STL of orthogonally stiffened composite panel 
exist in the open literature. To validate the present theoretical 
model, the model predictions are firstly compared with pub-
lished theoretical results [22] for unidirectional stiffened thin 
homogeneous panel as shown in Fig. 3.  

It can be seen that the two curves coincide well in a wide 

 
 
Fig. 3. Comparison between the theoretical predictions and Lee and 
Kim’s theoretical results [22].  
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frequency range at first glance, which thus validates the pre-
sent model to a large extent. The existing deviation between 
these two curves is mainly attributed to different modeling 
assumptions. Specifically, in Lee and Kim’s work [22], the 
stiffeners are represented by a series of lumped mass and 
springs linked to ground. In contrast, beam theory is employed 
to model the vibration of the stiffener in the present paper. 
Moreover, in the low frequency range (approximately lower 
than 120 Hz ), the equivalent springs directly linked to ground 
by Lee and Kim [22] improves the whole rigidity of structure 
and thus overestimates the STL significantly. In the frequency 
range higher than 120 Hz, the existing discrepancy between 
these two models is attributed to the different stiffener ap-
proximation. In fact, the fluctuations on the current STL 
curves come from the flexural wave reflection and transmis-
sion by the stiffeners, while the resulting curves of unstiffened 
plates are smooth. Generally, the present model gives reason-
able predictions under the hypothesis of beam stiffeners.  

 
4. Parameter investigation and discussions 

After validation of the theoretical model, parameter investi-
gations are performed in the following sections to explore the 
sound transmission properties of the structure, which should 
be beneficial for the design of the orthogonally stiffened lami-
nated composite plate in practice. Material and geometry 
properties of the considered structure are listed in Table 1, 
where the same fiber/epoxy has been chosen for the base plate 
and the stiffeners. Unless otherwise stated, incident angles 
hold at 45q f o= = , the stacking geometry of the composite 
stiffeners (five layers) are assumed to be [0°/0°/0°/0°/0°]. 

 
4.1 Different plate theories 

As stated above, the present layerwise shear deformable 
theory can be degraded to the first order shear deformable 
theory (FSDT) if the number of total layers is assumed to be 
one. Then, two typical layer configurations (one layer [45°] 
and three layers [45°/45°/45°]) are chosen to illustrate the 
difference between the two different plate theories, as shown 
in Fig. 4. 

As for an infinite unstiffened plate, it is known that its STL 
curve can be divided into three regions from low to high fre-
quency, including mass-controlled region, damping-controlled 
region and stiffness-controlled region [23]. While for stiffened 
composite plate, these are three similar regions illustrated in Fig. 
4, which include the mass-controlled region and damping-
controlled region by the base plate, as well as the stiffness-
controlled region by the base plate and stiffeners. In other words, 
the influence of stiffeners is mainly limited to the frequency 
range higher than the coincidence frequency. Besides, the coin-
cidence frequency for an isotropic plate can be calculated fol-
lowing the formula ( )2 2 2

0 2 sin 12 (1 )cf c h Ep q r u= -  in 
the Ref. [24], which helps to understand the influence of pa-
rameters on coincidence frequency here. In order to achieve 

an accurate result for the coincidence frequency of composite 
plate, a more sophisticated model based on the first order 
shear deformable theory [25] may be applied.  

Moreover, it can be observed from Fig. 4 that the one layer 
and three layers configurations coincide well owing to the 
same mass density of the two structures in the mass-controlled 
region. While, there exist significant differences between the 
two curves in damping-controlled and stiffness-controlled 
regions, which actually demonstrates that the layewise shear 
deformable theory employed here can give more accurate 
results. Of course, the present model with more layers is capa-
ble of obtaining more accurate results while requiring larger 
computational efforts. As a compromise between the accuracy 
and the computational cost, the three layer configuration is 
used in the subsequent analysis. 

 
4.2 Different beam stiffener theories 

For all metallic stiffened plate, only reactive forces from the 
stiffener flexural motion is usually considered, which lies on 
the fact that the influence of other motion forms can be ne-
glected [5]. However, for all composite stiffened structure, this 
approximation does not work since coupling effect exists due 
to the material anisotropy. In the present work, the extensional, 
flexural and torsional motions of the composite stiffeners are 
taken into account in Eq. (11). To explore the influences of the 
coupling effects of the composite stiffeners, the sound trans-
mission losses of the whole structure with complete motions 
and with only flexural motion of the composite stiffeners are 
compared in Fig. 5. As shown in Fig. 5, it is found that there 
appears discrepancy between the two cases in stiffness-

Table 1. Material and geometry properties. 
 

Base plate (fiberglass/epoxy) Acoustic fluid 

E1 E2 G12 η h ρ ρ0 C0 

56 GPa 13 GPa 4.2 GPa 0.02 0.01 m 1900 kg/m3 1.21 kg/m3 343 m/s 

I-section composite stiffeners 

Thickness h0 Flange width Web width Spacing lx = ly 

0.001 m 0.01 m 0.02 m 0.25 m 

 

 
 
Fig. 4. Sound transmission loss of composite plate with one layer and 
three layers. 
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controlled region, which actually proves the necessity of accu-
rately considering the complete motions of the composite 
stiffeners. 

 
4.3 Influence of stiffener spacing 

Periodic stiffener spacing is a key geometry parameter to 
determine the configuration of the orthogonally stiffened 
plates. As depicted in Fig. 6, two different spacings have been 
chosen to examine the influence of the stiffeners spacings on 
structural sound transmission loss. In the damping controlled 
region, plate bending wave length greatly exceeds stiffener 
spacing, where structure works similar to unstiffened plate 
with equivalent static stiffness as stated by Fahy [23]. There-
fore, as shown in Fig. 6, the coincidence frequency shifts to 
higher frequency with the increase of the stiffener spacing 
because of the decreased equivalent bending stiffness. As for 
the peaks and dips appearing in STL curves in stiffness-
controlled region, it is shown that larger stiffener spacing pro-
duces smother sound transmission curve, which results from 
the fact the structure with larger stiffener spacing owns sparser 
modal density compared to its companions.  

 
4.4 Different stacking geometry 

Once the materials of laminated composite plates are cho-
sen, stacking geometry will be the most important variable 

parameter which can change the overall stiffness of the struc-
ture. This kind of designability of composite material is one of 
the core reasons explaining the widespread applications of 
composites. Sound transmission losses for orthogonally stiff-
ened llaminated composite plates with three typical kind of 
stacking geometries of the base plate are plotted in Fig. 7. In 
very low frequency, the three curves coincide well in mass-
controlled region. With the increase of the frequency, the three 
curves display significant discrepancies especially for the 
laminate scheme [-30°/45°/60°], which shifts the coincidence 
frequency to higher frequency remarkably. This is because the 
bending stiffness is highly determined by the stacking geome-
try, which thus provides a feasible approach to amend the 
acoustic performances of laminated composites in the way of 
changing the stacking geometry of the base plate in a wide 
frequency range. 

Moreover, the sound transmission losses of the stiffened 
laminated composite plates with three typical kinds of stack-
ing geometries of the composite stiffeners are plotted in Fig. 8. 
Compared to the influence of the stacking geometry of the 
base plate, the stacking geometry of the stiffeners has a 
smaller influence on the structure sound transmission. In other 
words, the influence of the stacking geometry of the stiffeners 
is mainly limited to the stiffness-controlled region. It actually 
tells that it may not effectively work for amending the vi-
broacoustic behavior of the stiffened composite plates by ad-
justing the stacking geometry of the composite stiffeners.  

 
 
Fig. 5. Comparison between the results considering the complete mo-
tion and the only flexural motion of the composite stiffeners. 

 

 
 
Fig. 6. Influence of stiffener spacing on sound transmission loss of the 
whole structure. 

 

 
 
Fig. 7. Influence of stacking geometry of base plate on sound transmis-
sion loss. 

 

 
 
Fig. 8. Influence of stacking geometry of stiffeners on sound transmis-
sion loss. 
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5. Conclusions 

A theoretical model for sound transmission across or-
thogonally stiffened composite plate has been developed by 
using the Fourier transform and a layerwise shear deformable 
theory. After validation of the model by comparing with exist-
ing theoretical results, the influences of several key parameters 
of the system on STL are quantified including stiffeners spac-
ing and stacking geometry. The results show that present 
layerwise shear deformable theory will give more accurate 
results especially at high frequency. Stacking geometry has 
little influence on sound transmission loss in low frequency, 
but which plays a significant role in transmission loss in 
higher frequency and becomes an important design parameter 
to tailor the structural sound insulation property. In general, 
the present model provides an efficient theoretical approach to 
predict the transmission loss of stiffened composite plate. 
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