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Abstract 
 

Unbalance, misalignment, partial rub, looseness and bent rotor are one of the most commonly observed faults in rotating machines. 

These faults cause breakdowns in rotating machinery and create undesired vibrations while operating. In this study, an approach to detect 

combined fault of unbalance and bent rotors for advance detection of the features of the fault rotors diagnosis is proposed. Empirical 

mode decomposition (EMD) is used efficiently to decompose the complex vibration signals of rotating machinery into a known number 

of intrinsic mode functions so that the fault characteristics of the unbalanced and bowed shaft can be examined in the time-frequency 

Hilbert spectrum. A test bench of Spectra-Quest has been used for performing experiments to illustrate the unbalance and the bent rotor 

conditions as well as the healthy rotor condition. Analysis of the results shows the usefulness of proposed approach in diagnosing the 

unbalance and bowed fault of the shaft in rotating machinery.  
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1. Introduction 

Mass unbalance is the major source of vibration in rotor 

systems. Several techniques such as temperature monitoring, 

acoustic emission, non-destructive testing, visual inspection, 

motor current signature analysis (MCSA) and vibration based 

techniques are being used currently for detection of faults. Out 

of the above techniques, use of vibration based techniques still 

remains an effective approach. The identification of faults 

using vibration based techniques such as rotor unbalance [1, 2], 

rotor bends, cracks rubs [3], misalignment [4], turbines, 

pumps, compressors, gear boxes [5] and induction motors etc. 

has been explored immensely. The vibrations can occur due to 

different reasons like initial deformation or mass unbalance. If 

the initial deformation in a shaft is also present along with 

mass unbalance, it gives rise to a synchronous vibration which 

is different from that obtained with mass unbalance only. It 

becomes difficult to predict whether the vibration response is 

because of the mass unbalance or initial permanent deflection 

or both. Therefore, an in-depth study on the vibration charac-

teristics is very helpful in diagnosing the rotor unbalance to 

avoid any failure [8].  

Vibration analysis techniques have been reported by various 

researchers in the literature for the diagnosis of faults in rotat-

ing machinery [9]. Nicholas [10, 11] conducted first extensive 

investigation into shaft bow mathematically. They proposed 

the balancing theory and presented experimental results for the 

balancing of a flexible rotor with shaft bow. Parkinson et al. 

[12] described the differences in whirl experienced by a rotat-

ing shaft subject to shaft bow and mass unbalance. Shaft bow 

behavior has also been investigated by many authors [13-15]. 

Lee [16] has discussed the analytical aspects of rotor dynam-

ics ranging from simple Jeffcott rotor to multi-degree-of-

freedom systems.  

The influence of bowed rotor on the dynamics of rotor has 

also been discussed by Ehrich [17]. Rao [18] made an investi-

gation of response of an unbalanced rotor with an initial per-

manent deflection. Several important observations regarding 

the use of phase information for detection of the same have 

been made. Manu and Rao [19] experimentally verified the 

theoretical results for different case studies given by Rao [18]. 

It is well known that vibration frequency of rotor unbalance 

is synchronous with the shaft rotation speed (1X r.p.m.), since 

the unbalance force rotates at the shaft running speed. Rotor 

unbalance manifests itself in the frequency domain as a series 

of harmonics of the shaft running speed, i.e. at 1X rpm, 2X 

rpm, 3X rpm and 4X rpm. But, the advances in the signal 

processing techniques have empowered the vibration signal 

analysis to play an important role in the fault diagnosis. Vibra-

tion signal processing analyzes the vibration signal measured 

at particular locations on the machine, and extracts enough 
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information to determine the condition of each of the sub-

elements of the machine. The vibration signal contains the 

information of the oscillatory motion of the machine and its 

sub-components. Features hidden in the vibration signals can 

be extracted by the proper selection of appropriate signal pro-

cessing and hence, assessment of the machine health status 

can be made [20].  

A crack in a shaft, rubbing of stator-rotor arrangement and 

different faults in a rolling bearing of a machine in operation 

are some of the examples of signals emerging from the rotat-

ing machines. The signals acquired from the rotating machin-

ery are often non-linear and non-stationary. The inability of 

Fourier transforms to process non-linear and non-stationary 

signals have been cited by Ref. [21]. Time-frequency analysis 

techniques, such as the Short-time Fourier transform (STFT) 

[22] and wavelet transform [23-25] have been used exten-

sively for feature extraction from non-stationary, transient 

signals. Out of these, wavelet transforms have been reported 

of analyzing complex vibration signals [26]. But, the limita-

tions of wavelet analysis like energy leakage, interference and 

distortion at the ends made way for a relatively new technique 

Hilbert-Huang transform (HHT) [27]. Since its inception, this 

technique has been exclusively used in various fields viz- 

biomedical applications, image processing [28], meteorologi-

cal and atmospheric applications [29], the problems of wind 

generated ocean wave [30], spectral representation of earth-

quake data [31], structural health monitoring [32] and speech 

recognition [33]. 

Hilbert-Huang transform [21] is based on the principles of 

empirical mode decomposition (EMD) and Hilbert transform. 

It extracts the signal characteristics viz- amplitude, instantane-

ous phase and frequency of vibrations resulting from the in-

trinsic mode functions (IMFs) of the signal being analyzed 

and is not constrained by the limitations of time and frequency 

resolutions as it happens in the case of wavelet analysis. Using 

this method, any complicated signal can be decomposed into a 

collection of based on the local time scale features of the sig-

nal. The IMFs represent the natural oscillatory mode embed-

ded in the signal [34]. Most of the studies in the recent past 

have been carried out for diagnosing various faults viz- shaft 

misalignment [35], bearing faults [36-39, 41], rotor rubbing 

faults [39], shaft crack faults [40] and gear tooth faults [44] 

using empirical mode decomposition method (EMD) of the 

Hilbert-Huang transform technique.  

In the present study, an effort has been made to diagnose 

vibrations for combined unbalance and bowed shaft fault us-

ing HHT. The experiments are performed for different bow 

phase angles viz - 0°, 60°, 120°, 180°, 240° and 300° for the 

centrally bent shaft and compared with a healthy shaft running 

at steady speeds. The fault features of centrally bent shaft with 

different bow angles are successfully detected with the pro-

posed technique. The results reveal the usefulness of time-

frequency Hilbert-Huang spectrum for signal decomposition 

and feature extraction in machine health monitoring applica-

tions. 

2. Theoretical background of Hilbert-Huang transform 

Hilbert–Huang transform is based on the principle of em-

pirical mode decomposition and corresponding Hilbert trans-

form. The signals acquired from the vibration analysis of ma-

chines are usually non-stationary and nonlinear signals. The 

drawback of the applicability of the concept of instantaneous 

frequency to a multi-component signal has been reported by 

many authors [21, 39, 45, 46]. According to the process de-

fined by Huang et al. [21], a original time series is decom-

posed in intrinsic mode functions using empirical mode de-

composition and then, Hilbert transform is applied to each 

IMF which leads to obtaining the time-frequency distribution. 

For understanding the concept of empirical mode decomposi-

tion and Hilbert transform, these techniques have been dis-

cussed in brief in the following sub-sections:  

 

2.1 Empirical mode decomposition method (EMD) 

EMD method is a process in which orthogonal and intrinsic 

mono components (from an original time series when EMD 

applied to it) are obtained after a recursive process. The signal 

is assumed to consist of different intrinsic modes of oscilla-

tions. The number of extrema and zero-crossings for each 

linear or non-linear mode will be same. Any successive zero-

crossings will have only one extremum. Each mode should 

not be dependent on other modes. In this way, each signal 

could be decomposed into a number of intrinsic mode func-

tions (IMFs) defined by Huang et al. [21]. The IMF’s must 

satisfy two conditions viz – firstly, the number of extrema and 

the number of zero-crossings must either equal or differ at 

most by one, secondly the mean value of the envelope defined 

by local maxima and the envelope defined by the local min-

ima must be zero at any point [21].  

The algorithm for obtaining IMF’s from a complex signal 

given by Huang et al. for decomposing any signal x(t) is as 

follows [21]: 

(a) Identify all the local extrema, and then connect all the 

local maxima by a cubic spline line as the upper envelope. 

(b) Repeat the procedure for the local minima to produce 

the lower envelope. The upper and lower envelopes should 

cover all the data between them.  

(c) The mean of upper and low envelope value is designated 

as m1, and the difference between the signal x(t) and m1 is the 

first component, h1, i.e. 
 

( )
1 1

   .x t m h− =                             (1)                                     

 

Ideally, if h1 is an IMF, then h1 is the first component of x(t). 

(d) If h1 is not an IMF, h1 is treated as the original signal 

and repeat (a), (b), (c); then 
 

1 11 11
  h m h− =                         (2) 

 

in which m11 is the mean of upper and low envelope value of 
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h1. After repeated sifting, i.e. up to k times, h1k becomes an 

IMF, that is 

 

1( 1) 1 1k k k
h m h− − =                                   (3) 

 

then, it is designated as  

 

1 1k
c h=                                          (4) 

 

the first IMF component from the original data. The shortest 

period component of the signal is retained in c1. 

(e) Separate c1 from x(t), we get 

 

1 1
( ) .r x t c= −   (5) 

 

r1 is treated as the original data and repeat the above proc-

esses, the second IMF component c2 of x(t) could be got. Re-

peating the process as described above for n times, then n-

IMFs of signal x(t) can be achieved got. Then,              

 

1 2 2
r c r− =  

     ⋮   

( 1)
.

n n n
r c r− − =                                                           (6) 

 

The decomposition process can be stopped when rn be-

comes a monotonic function fromwhich no more IMF can be 

extracted. By summing up Eqs. (5) and (6), we finally obtain  

 

( )
1

.  
n

j

j

cx t
=

=∑                                    (7) 

 

Residue rn is the mean trend of x(t). The IMFs c1, c2. . . cn 

include different frequency bands ranging from high to low. 

The frequency components contained in each frequency band 

are different and they change with the variation of signal x(t), 

while rn represents the central tendency of signal x(t). 

 

2.2 Hilbert spectrum 

EMD technique decomposes the signal into a number of 

IMF’s and every IMF is a mono-component function. After 

getting IMFs, Hilbert transform is applied to the original sig-

nal to calculate the amplitude and instantaneous frequency. 

For one IMF ci (t) in Eq. (7), we can always have its Hilbert 

transform as 
 

( )
  1 '          

c
i t

H c t dt
i t tπ

 
   

 

∞
= ∫

−∞

′

′−
                    (8) 

 

with this definition, we can have an analytic signal as   

 

( ) ( ) ( ) ( )  

j
i t

z t c t jH c t a t e
i i i i

 
  
  

 

∅
= + =                  (9)              

where  

                            

( ) ( ) ( )2 2            a t c t H c t
i i i

 
 = +             (10)                                 

( )
( )
( )

  .
H c t

it arctan
i c t

i

 
 ∅ =                  (11)                                 

 

From Eq. (11), we can have the instantaneous frequency as 

 

( )
( )

. 
d t

it
i dt

ω
∅

=                                  (12)                                 

 

After performing the Hilbert transform to each IMF com-

ponent, the original signal can be expressed as the real part 

(RP) in the following form: 

 

( ) ( ) ( )

( )

.

 

              
1

t dtijjn i t
x t RP a t e a t e

i i
i

ω
 
  
 

∅ ∫
= =∑

=
    (13)                                 

 

Here, we left out the residue rn on purpose, for it is either a 

monotonic function or a constant. Eq. (13) gives both ampli-

tude and frequency of each component as functions of time. 

This frequency-time distribution of the amplitude is desig-

nated as the Hilbert spectrum H (ω, t): 

 

( ) ( ) ( )
. ,

1

n j t dtiH t RP a t e
i

i

ω
ω ∫= =∑

=
               (14)                                 

 

Since the IMFs have well - behaved Hilbert transforms, the 

corresponding instantaneous frequencies are calculated. The 

local energy and the instantaneous frequency derived from the 

IMFs give us a full energy-frequency-time distribution of the 

data and such a representation is designated as the Hilbert 

spectrum.  

 

3. Experimental setup 

The experimental setup consists of a machinery fault simu-

lator (MFS) test bench manufactured by Spectra Quest®, Inc. 

The schematic of the MFS is shown in Fig. 1. The configura-

tion of the setup consists of a slotted disc (aluminium) mount-

ed on a 19.05 mm dia shaft (cold rolled steel), and the shaft is 

supported on two identical roller bearings. The shaft is at-

tached to a torsionally stiff spring coupling that is driven by a 

three phase 3/4 HP induction motor. A variable frequency 

drive (VFD) has been attached with the induction motor so as 

to adjust the motor speed which can be increased or decreased 

in the range from 0 to 4500 rpm. Reverse dial gauge method is 

used to align the shaft with the motor end shaft. A pair of 

proximity probes are mounted radially (in horizontal and ver-

tical directions) on the rotor system with an attachment. Two 

shafts, one healthy (HS) and one centrally bent shaft (CBS) 
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with a bend of 200 microns are used to simulate the different 

shaft unbalance conditions. 

For simulating unbalance, the holes in the disc can be load-

ed with nuts and bolts of predetermined weight of 9 g. First, 

the experiments are performed for healthy shafts with/without 

disk along with one unbalance. Then, experiments are per-

formed for different bow phase angles viz - 0°, 60°, 120°, 

180°, 240° and 300° for the centrally bent shaft running at 

steady speeds. The bending natural frequency (ωn/2) of the 

shafts is 59.5 Hz. The rotational speed considered for this 

study is one half of the first bending natural frequency 29.9 Hz 

for the shafts. 

 

4. Results and discussion 

The difficulty in extracting the fault information from the 

complex non-stationary and non-linear vibration signal has led 

to the development of specialized techniques apart from tradi-

tional approaches. Out of these techniques, Hilbert-Huang 

transform technique has been successfully used by researchers 

in the literature for diagnosing various faults viz- shaft mis-

alignment [35], gear tooth faults [36] and bearing faults [41] 

and because of its wide applicability. Fast Fourier transform 

(FFT) and Hilbert-Huang transform (HHT) are based on dif-

ferent approaches [47]. FFT assumes the linearity and station-

arity of the data i.e. it can only process linear data. It is also 

dependent on the globally defined orthogonal basis states, 

whereas, HHT has an edge over FFT in the sense that it can 

process non-linear and non-stationary data. In this transform, 

global basis states must be replaced with adaptive, locally 

determined ones. Also, the resulting basis states are not re-

quired to be strictly orthogonal. The traditional way of observ-

ing signals is to view them in time domain. The wave form of 

a healthy shaft (unbalanced disk) running at ωn/2 acquired 

with a proximity probe (PP) has been shown in Fig. 2(a). Sim-

ilarly Figs. 2(b)-(g) show the waveforms of a CBS with one 

unbalance running at ωn/2 at different bow phase angles (BP) 

varying from 0°-300° with increments of 60° respectively. In 

Fig. 2(b), as the bow phase angle is 0° which means that the 

unbalance and the bow are on the same side, so the vibration 

amplitude of such a rotor should be higher than the healthy 

rotor running with same  conditions [18]. The vibration am-

plitude of CBS with BP 0° is 0.6428 mils, whereas for HS 

with disk and unbalance it is 0.3088 mils. 

With BP angle 60° for a CBS, the amplitude is 0.5219 mils 

and for BP angle 120°, the magnitude is 0.2821 mils. In Fig. 

2(e), the amplitude reaches to a lower value (0.0657 mils) 

when the BP is 180°, which means the bow and the unbalance 

are opposite to each other. With further changing of the BP 

angle with CBS running at ωn/2 to 240° (0.36828 mils) and 

300° (0.5837 mils) leads to an increase in the amplitude of the 

vibrations, but less than the maximum amplitude attained 

when the BP was 0°. Preliminary investigation for the faults in 

the acquired signals has been done using fast Fourier trans-

forms (FFT). Figs. 3(a)-(g) shows the FFT spectrum of the HS 

and CBS (at different BP angles) with unbalance running at 

ωn/2 respectively. For the subsequent vibration spectra, the 

analysis bandwidth has been limited to 300 Hz. From the Fig. 

3, it is seen that the vibration frequency of rotor unbalance is 

synchronous, i.e., one time the shaft rotation speed (1X r.p.m.). 

As the BP angle is changed from 0° to 300° for the CBS, a 

variation in the vibration amplitude is observed. The magni-

tude of the CBS at BP 0° is higher than the amplitude obtained 

at other BP angles and the healthy shaft.  

 
 

Fig. 1. Line diagram of the experimental setup. 
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Fig. 2. Displacement waveform of the healthy shaft (unbalanced disk at 

ωn/2) and centrally bent shaft (unbalanced disk at ωn/2) at different 

bow phase angles respectively. 
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Fig. 3. Spectrum of the healthy shaft (unbalanced disk at ωn/2) and 

centrally bent shaft (unbalanced disk at ωn/2) at different bow phase 

angles.  
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At 180° BP condition, a decrease in the amplitude of the 

vibration is seen. FFT can diagnose the unbalance, but could 

not diagnose the effect of a bowed shaft along with an unbal-

ance present in the rotor. Therefore, HHT technique has been 

applied to data acquired for healthy and centrally bent shafts 

for making further investigations. 

From the Sec. 2, we need to efficiently decompose the 

complicated vibration signals of rotating machinery into a 

finite number of intrinsic mode functions (IMFs) in order to 

study the fault characteristics in the time-frequency Hilbert 

spectrum. The IMF’s of vibration signals for three cases, viz- 

HS (with unbalanced disk) and CBS (with unbalanced disk 

with BP angle 0° and 180° running at ωn/2 have been shown 

in Figs. 4-6. The IMF’s in three cases have been shown in 

time domain showing variation of amplitude in each fre-

quency range with time. The IMF’s contain frequencies in the 

decreasing order, with the first IMF (C1) indicating the maxi-

mum rate of change of amplitude and the last IMF known as 

residue indicates the variations with the slowest rate. The 

variation in the number of the IMF’s generated for the various 

conditions is because of the self-adaptive nature of the EMD 

process. 

For healthy shaft, only six IMF’s have been generated 

whereas for centrally bent shaft the IMF’s generated are vary-

ing (four for CBS with BP at 0° and nine for CBS with BP at 

180°). The first IMF of the Figs. 4 and 5 can be seen to be 

similar to the original signal, as it shows the highest frequen-

cies contained in the signal. Third IMF in the case of the CBS 

with unbalanced disk at 180°, Fig. 6 shows similarity to the 

original signal. Since IMF’s show presence of frequencies but 

do not reveal much about the fault and the extent of fault. The 

wiggle phenomena seen in the intrinsic mode functions C2 

and C3 in Fig. 4 at the end of analyzing time, and C4, C5 and 

C6 in Fig. 5 in the beginning is the mode mixing problem of 

empirical mode decomposition (EMD). It is one of the limita-

tions of EMD. Wiggle is the under shoot or overshoot during 

the sifting process and it corrupts the decomposition. The 

mode mixing problem can be taken care by using the ensem-

ble empirical mode decomposition [35]. It is clear from the 

Fig. 6 that the IMF’s with order frequencies experience largest 

variation when the bow phase angle changes to 180°. Fig. 7 

shows the time-frequency Hilbert Huang spectrum of all the 

cases of the vibration data respectively within the frequency 

band of the shaft rotating speed.  

The HHT spectrum of the healthy shaft (with unbalanced 

disk at ωn/2) in Fig. 7 shows that the mono component corre-

sponding to ωn/2 experiences a variation in the frequency. It 

shows that the frequency of the major concentrated vibration 
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Fig. 4. IMF’s of the healthy shaft.  

 

 
 

Fig. 5. IMF’s of centrally bent shaft (unbalanced disk) at bow phase 

angle 0°. 

 

 
 

Fig. 6. IMF’s of centrally bent shaft (unbalanced disk) at bow phase 

angle 180°. 
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Fig. 7. Contour plot of the healthy shaft. 
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energy fluctuates with a mean frequency of ωn/2. 

This variation in the frequency phenomenon in the HHT 

spectrum is known as intra-wave frequency modulation and it 

represents nonlinear behavior [35]. 

The HHT spectrum for the centrally bent shaft with unbal-

anced disc and the bow phase angle 0° shows an increase in 

the frequency band of the intra-wave frequency modulation, 

Fig. 8. This result is similar to the Fig. 2(b) in which the am-

plitude of the centrally bent shaft with unbalanced disc and the 

bow phase angle 0° vibration signal is more than the healthy 

shaft running at same conditions [18]. 

It is known that at bow phase angle 180°, bow and the un-

balance are opposite to each other and they try to balance out 

each other resulting in the lower amplitude of the vibration 

refer Figs. 2(e) and 3(e). The HHT spectrum for this case 

shown in Fig. 10 reveals that in order to balance the shaft, the 

mean amplitude of frequency band of the intra-wave fre-

quency modulation becomes far smaller in comparison to the 

mean amplitude of healthy shaft without disk and centrally 

bent shaft with unbalanced disc. 

 

5. Conclusions 

In this paper, combined unbalance and bowed shaft faults 

have been investigated using Fourier transform and Hilbert-

Huang transform. The vibration response of the healthy shaft 

and the faulty shafts has been compared using FFT. In the 

FFT analysis, it is difficult to diagnose the combined fault of 

unbalance and bow phase angle, whereas by using HHT 

analysis, the fault feature can be diagnosed in the form of in-

crease in the intra-wave frequency band. With the IMF’s gen-

erated using EMD and contour plots using Hilbert-Huang 

technique, one can recognize the frequency components that 

exist in the system and one can have a more clarity about its 

information contained in the vibration signal in comparison to 

the other existing signal processing techniques. It is seen from 

the results that for the centrally bent shaft with unbalanced 

disc and the bow phase angle 0° shows an increase in the fre-

quency band of the intra-wave frequency modulation, whereas 

for the same case with bow phase angle of 180°, the a de-

crease in the frequency band has been noticed. Results indi-

cate that the mono components corresponding to the running 

speed experience variation in the frequency under different 

shaft faults in comparison to the healthy shafts.  
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